
Deep Determinantal Point Process for Large-Scale Multi-Label Classification

Pengtao Xie*†, Ruslan Salakhutdinov*, Luntian Mou§ and Eric P. Xing†

*Machine Learning Department, Carnegie Mellon University, USA
†Petuum Inc.

§Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, China
{pengtaox,rsalakhu}@cs.cmu.edu, ltmou@bjut.edu.cn, eric.xing@petuum.com

Abstract

We study large-scale multi-label classification (MLC) on

two recently released datasets: Youtube-8M and Open Im-

ages that contain millions of data instances and thousands

of classes. The unprecedented problem scale poses great

challenges for MLC. First, finding out the correct label

subset out of exponentially many choices incurs substan-

tial ambiguity and uncertainty. Second, the large data-size

and class-size entail considerable computational cost. To

address the first challenge, we investigate two strategies:

capturing label-correlations from the training data and in-

corporating label co-occurrence relations obtained from ex-

ternal knowledge, which effectively eliminate semantically

inconsistent labels and provide contextual clues to differ-

entiate visually ambiguous labels. Specifically, we pro-

pose a Deep Determinantal Point Process (DDPP) model

which seamlessly integrates a DPP with deep neural net-

works (DNNs) and supports end-to-end multi-label learn-

ing and deep representation learning. The DPP is able to

capture label-correlations of any order with a polynomial

computational cost, while the DNNs learn hierarchical fea-

tures of images/videos and capture the dependency between

input data and labels. To incorporate external knowledge

about label co-occurrence relations, we impose relational

regularization over the kernel matrix in DDPP. To address

the second challenge, we study an efficient low-rank kernel

learning algorithm based on inducing point methods. Ex-

periments on the two datasets demonstrate the efficacy and

efficiency of the proposed methods.

1. Introduction

Recently two large-scale multi-label datasets have been

released: YouTube-8M [1] and Open Images [32]. The

YouTube-8M dataset contains about 8 million videos, each

associated with multiple labels coming from 4800 classes.

These videos are 0.5 million hours long and contain 1.9 bil-

lion frames. The Open Images dataset contains about 9
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Figure 1. DDPP for multi-label classification. The inputs of DDPP in-

clude the image (or video), the embedding vectors of labels and (optional)

must/cannot-links regarding label co-occurrence, and the output is a subset

of selected labels. DDPP captures the correlation among labels using DPP,

characterizes the dependency between the image and labels using DNN,

and incorporates the must/cannot-links via relational regularization.

million images, each annotated with multiple class labels.

The total number of unique labels is 6012. The scale of

these two datasets is much larger than previous multi-label

datasets such as NUS-WIDE [12], PASCAL VOC1, SUN

attributes [42], Mediamill2, in terms of both the number of

data instances and the number of classes, bringing in great

challenges for multi-label classification (MLC). For each

data instance x, a subset of labels S ⊆ Y = {1, · · · ,K}
are to be selected to annotate x, where S has exponentially

many (2K) choices. The number (K) of unique labels is

4800 in Youtube-8M and 6012 in Open Images, which re-

sult in a tremendous combinatorial search space. Finding

out the correct label-subset S∗ in this space requires not

only efficient algorithms that can tackle this NP-hard prob-

lem in polynomial time, but also modeling techniques that

can effectively resolve the ambiguity and uncertainty when

picking up S∗ from 2K choices.

In this paper, we aim at addressing these challenges. To

correctly hit S∗ from 2K candidates, we investigate two

strategies: (1) capturing high-order correlations among la-

bels from the training data; (2) incorporating external prior

knowledge about label co-occurrence relations. Both strate-

gies aim at ruling out candidate subset S where the labels

are semantically and contextually inconsistent, thus effec-

1http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
2http://mulan.sourceforge.net/datasets-mlc.html
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Figure 2. Labels that are visually less distinguishable can be well discrim-

inated by leveraging label correlations learned from training data (left) and

label co-occurrence relations obtained from external knowledge (right).

tively shrinking the search space and reducing the ambigu-

ity/uncertainty of hitting S∗. As a complement of visual

features, the dependency relationship between labels pro-

vides additional clues for correct prediction. Visually hard-

to-distinguish labels could be well differentiated based on

label-correlations. Fig. 2 presents two examples. In the

left figure, the image region marked with yellow box can

be predicted either as bed or car, with similar confidence.

But compared with car, bed possesses stronger correlation

with other predicted labels including painting, curtain, sofa,

which collectively form an indoor scene. Leveraging label-

correlation, we can correctly assign bed to the region. The

figure on the right shows a similar example, where the label

co-occurrence relations obtained from external knowledge,

such as “sky is likely to co-occur with cloud, not sheep”,

are leveraged to discriminate the two visually similar labels

cloud and sheep.

Characterizing label correlation [18, 49, 23, 68, 52, 4,

38, 56] has been widely studied in MLC. While exist-

ing methods have demonstrated success on tens or hun-

dreds of labels, they are less capable to deal with thou-

sands of labels. To retain computational efficiency, many

approaches [18, 23, 31, 9, 38] limit the order of label-

correlations to be less than three and ignore high-order ones.

High-order relations can represent semantics that is diffi-

cult to be captured in low-order relations. For instance,

considering two label sets S1 = {bed, desk, sofa} and

S2 = {bed, desk, woods}, both of them exhibit strong

second-order correlations: every two labels therein are cor-

related. But S1 also possesses a third-order correlation: the

three words collectively represent a furniture topic, while

S2 does not. Several methods [27, 22, 4, 56] are proposed

to capture high-order correlations, but they either make

strong assumptions that degrade classification performance

[27, 22, 56], or incur substantial computational cost [4].

To address this issue, we develop a Deep Determinan-

tal Point Process (DDPP) model (Fig. 1) that is not only

highly expressive to capture high-order label-correlations,

but also computationally efficient. In DPP [34], the se-

lection of label-subset S is based upon the volume of the

parallelepiped formed by nonlinear feature vectors of la-

bels in S [33]. The volume is collectively determined by

the global relationship among all vectors, rather than their

pairwise relations, hence is able to characterize high-order

label dependency. The volume can be computed efficiently

as the determinant of a kernel matrix between the embed-

ding vectors of labels, with polynomial (specifically, cubic)

complexity. Other than capturing label-correlation, DDPP

seamlessly integrates deep neural networks (DNNs) to mea-

sure the dependency between input data and labels. The

DNNs learn features from input images/videos and can be

trained in an end-to-end fashion.

Besides label-correlations derived from training data, we

can leverage the co-occurrence relations obtained from ex-

ternal knowledge to distinguish visually ambiguous labels.

For simplicity, we consider binary relations: two labels can

have a must-link suggesting they are very likely to co-occur,

or a cannot-link indicating that they barely co-occur. Many

knowledge sources provide such relations. For instance,

WordNet [41] contains a lot of “A is a B” relations, such

as apple-fruit and tiger-animal. In this case, if label A is

assigned to the input data, so should be B. To incorporate

these must/cannot links, we impose relational regularization

over the kernel matrix in DDPP. According to the property

of DPP [33], two labels represented with vectors ai and aj

have a better chance to be co-selected if k(ai,aj) – the out-

put of the kernel function over them – is small. If label i and

j have a must-link, the regularizer encourages k(ai,aj) to

be small to promote co-selection. If they share a cannot-

link, k(ai,aj) is favored to be large.

Lastly, to make DDPP scale to thousands of labels and

millions of data instances presenting in Youtube-8M and

Open Images, we study an efficient algorithm. In DDPP,

for each of the N training instances, one needs to evaluate

the determinant and inverse of a data-dependent K×K ker-

nel matrix (where K is the number of classes) with a sub-

stantial O(NK3) cost. To address this problem, we inves-

tigate a scalable low-rank kernel learning algorithm based

on inducing point methods [48] which seek a low-rank pa-

rameterization of the kernel matrix using auxiliary points.

Thereafter, the Woodbury matrix identity can be applied to

compute matrix inverse, reducing the cost from O(K3) to

O(M3), where M ≪ K is the number of inducing points.

The major contributions of this paper are:

• We propose a deep DPP method to perform large-

scale MLC. DDPP is able to capture high-order label-

correlations with polynomial computational complex-

ity and facilitates end-to-end deep feature learning.

• To incorporate external knowledge regarding label co-

occurrence relations, we propose to impose relational

regularization over the kernel matrix of DDPP.

• We study a low-rank kernel learning algorithm to scale

DDPP to thousands of labels and millions of instances.

• Experiments on YouTube-8M and Open Images
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demonstrate the effectiveness and efficiency of the pro-

posed methods.

The rest of the paper is organized as follows. Section

2 reviews related works. Section 3 introduces the DDPP

methods and scalable algorithms. Section 4 presents exper-

imental results and Section 5 concludes the paper.

2. Related Works

Multi-label classification (MLC) has been widely stud-

ied in computer vision and and machine learning [30, 8, 7,

57, 62, 16, 17, 50, 44, 61, 69, 29, 57, 64, 70]. We present a

brief review from the following perspectives.

Capturing Label Correlations Many approaches have

been proposed to capture label correlations, based on

graphical models, latent space learning and class chaining.

Graphical model (GM) based approaches leverage undi-

rected [18, 49, 23, 52, 4, 38] and directed [68, 22] GMs

to capture the dependency structure among labels. To re-

tain computational efficiency, many methods limit the order

of correlation to be less than three [18, 23, 31, 9, 38] or

assume label-dependency is linear [22]. To capture high-

order nonlinear correlation, Belanger and McCallum [4]

learn a neural network which takes labels as input and

produces their dependency score. This method is com-

putationally inefficient: during training, an iterative in-

ference procedure needs to be performed over each data

instance. In [49, 68, 52], hypergraph spectral learning,

Bayesian network structure learning and max-margin struc-

ture learning are studied respectively to learn high-order

label-correlations. These methods lack the flexibility to per-

form deep visual feature learning in an end-to-end manner.

Latent space learning approaches propose to capture label

dependency in a shared hidden space. Linear subspaces

based on low-rankness [27, 28] and conditional Bernoulli

mixture [37] cannot capture nonlinear correlations. Nonlin-

ear spaces induced by Restricted Boltzmann machine [39]

and deep neural networks [58, 4, 65] make a strong assump-

tion: the labels are independent conditioned on the latent

space, which may not hold in practice and leads to inferior

performance. Class chaining methods [11, 45, 56] orga-

nize the classes into a linear chain and predict them in a

greedy manner: the prediction of class i depends on classes

1, · · · , i−1. The overall prediction relies on the class order,

which is difficult to specify. To address this issue, they pro-

pose to average the predictions over a randomly chosen set

of class permutations, which substantially increases com-

putational cost. Another disadvantage is early prediction

errors will be propagated to subsequent classes.

Incorporating Prior Knowledge Several approaches

leverage external knowledge, such as label hierarchy [46,

55], label correlation statistics [23, 39], object bounding

boxes [63], to boost MLC performance. In [23], a linear

projection matrix is designed to encode prior knowledge of

label-correlations. In [39], a prior distribution is defined

to encourage labels with large cosine similarity (computed

from external Wikipedia corpora) to be co-selected. These

knowledge-incorporation methods are model-specific, and

are not applicable to DPP. We propose a new approach tai-

lored to the property of DPP.

Scaling to Large Number of Labels To solve MLC

problems that have a large number of classes, approaches

based on label space dimension reduction (LSDR) or sec-

tion [25, 10, 3, 51, 6] and label hierarchy learning [5, 2, 43]

have been studied. LSDR encodes the high-dimensional

label vectors into low-dimensional coding vectors. Then

predictive models are trained from instance features to

codes, which are decoded to recover the original labels.

These methods lack the flexibility to incorporate label co-

occurrence knowledge since labels are transformed into a

latent space. In [2], a hierarchy of labels is learned via re-

cursive node-partitioning, which reduces the prediction cost

to sub-linear. The limitation of this approach is its inflexi-

bility to capture label correlations.

DPP for Computer Vision and Deep Kernel Learning

DPP has been applied for several vision tasks, including

video summarization [20, 67], pedestrian detection [36],

among others. Our work represents the first one using DPP

[33] for multi-label classification. Using deep neural net-

works to parameterize kernel function is studied in [60, 67].

In our method, DNN is utilized to parameterize a condi-

tional kernel.

3. Methods

In this section, we present the DDPP model and algo-

rithms for parameter learning and label-subset inference.

3.1. Deep Determinantal Point Process

MLC can be formulated as a subset selection problem:

given the input data x and the K classes Y = {1, · · · ,K},

we aim at selecting a subset S ⊆ Y of labels that best

describes x. This is a NP-hard problem since S has in-

finitely many choices. The selection of S needs to con-

sider two factors: (1) the labels in S should be highly rel-

evant to x; (2) the labels should exhibit strong correlation.

As stated earlier, incorporating label-correlation effectively

eliminates semantically-inconsistent labels and reduces the

search space of S . However, it greatly complicates com-

putation. One popular model that is able to simultaneously

incorporate these two factors is Conditional Random Field

(CRF) [35], where the dependency between input data and

labels, together with correlation among labels, is character-

ized by potential functions. However, CRF involves a parti-

tion function which sums over exponentially many config-

urations and makes inference and learning extremely hard
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Figure 3. In DDPP, the conditional kernel function k̃(ai,aj |x) is the

product of a label-label kernel function k(ai,aj) and two label-input score

functions g(ai, x) and g(aj , x). k(ai,aj) is characterized by a label-

correlation network (LCN) and g(ai, x) is represented by a visual feature

network (VFN) and a label-input dependency network (LIDN).

when the potential function is of high-order. We aim at

designing methods that are able to capture correlations of

any-order, but also computationally tractable.

To achieve this goal, we resort to Determinantal Point

Process (DPP) [34], which defines a probability distribu-

tion over subsets. Given a set of items {ai}
K
i=1, each rep-

resented with a vector a, DPP computes a kernel matrix

L ∈ R
K×K , where Lij = k(ai,aj) and k(·, ·) is a ker-

nel function. Then the probability over a subset of items

indexed by S ⊆ {1, · · · ,K} can be defined as

p(S) =
det(LS)

det(L+ I)
(1)

where LS ≡ [Lij ]i,j∈S denotes the restriction of L to the

entries indexed by elements of S and det(·) denotes the

determinant of a matrix and I is an identity matrix. The

determinant enables DPP to capture the high-order label-

dependency. To understand this, we first present the geom-

etry interpretation of det(LS). According to the kernel trick

[47], k(ai,aj) can be written as φ(ai)
⊤φ(aj), where φ(·)

is a reproducing kernel feature map [47]. Then det(LS)
is essentially the volume of the parallelepiped formed by

the vectors {φ(ai)|i ∈ S} [33]. The size of the vol-

ume is collectively determined by all these vectors in a

global way, which hence captures the high-order correla-

tion among them. Another way to understand why determi-

nant entails high-order correlation is to expand det(LS) as

a sum of terms each involving the multiplication of |S| ker-

nel function values, which hence captures label-correlations

of |S|-th order. While able to represent high-order correla-

tion, DPP is computationally efficient. DPP’s normalizer

det(L+ I) can be computed in polynomial (cubic) time, as

opposed to the exponential complexity in CRF.

In the context of MLC, we apply DPP to capture the cor-

relation among labels: given the representations of K labels

{ai}
K
i=1 (we will discuss how to learn these representations

later on), we compute the kernel matrix L and define prob-

ability over label subset according to Eq.(1). For label-label

kernel function k(ai,aj), we parameterize it using a label

correlation network (LCN) where the inputs are ai and aj

and the output is a scalar indicating the correlation of the

two labels, as shown in Fig. 3. As stated earlier, the se-

lection of labels relies not only on the correlation among

labels, but also the dependency between input data and la-

bels. We use a deep neural network (Fig. 3) to define a

score function g(ai, x) to measure the dependency between

input image/video x and label i. x is first fed into a visual

feature network (VFN) to extract deep features, which then

together with the representation of a label are inputted into

a label-input dependency network (LIDN) to generate a de-

pendency score. To enable end-to-end training of the VFN,

we incorporate g(ai, x) into the kernel function in DPP. On

top of the kernel function k(ai,aj) measuring the correla-

tion between label i and j, we define a new kernel

k̃(ai,aj |x) = g(ai, x)k(ai,aj)g(aj , x) (2)

which is conditioned on the input x. k̃(ai,aj |x) simul-

taneously captures label-input dependency and label-label

correlation. Under this conditional kernel parameterized by

deep networks, we obtain a Deep DPP:

p(S|x) =
det(LS(x))

det(L(x) + I)
(3)

where Lij(x) = k̃(ai,aj |x).
Given training data {(xn,Sn)}

N
n=1 where xn is the input

and Sn is the subset of labels assigned to xn, we learn the

parameters Θ of DDPP, mainly the weight and bias param-

eters in DNNs, by maximizing the data likelihood

maxΘ L({(xn,Sn)}
N
n=1) =

N∏

n=1
p(Sn|xn; Θ) (4)

Since the DPP used in our paper has learnable weight

parameters (those in the neural networks) that are adjusted

during training to best fit the output labels, it is able to

capture any type of relations among labels. This is differ-

ent from the traditional non-learnable DPP [34] where the

kernel matrix is computed on fixed feature vectors of data

points and a repulsion effect among data points is favored.

3.2. Learning Label Embeddings

In DDPP, evaluating the label-label kernel function

k(ai,aj) and label-input score function g(ai, x) both re-

quire the labels to have vector representations. Inspired

from studies on word embedding [40], we propose a label

embedding approach that learns an embedding vector ai for

each label i, by exploiting the label co-occurrence patterns

in the training data. Given a training instance with labels S ,

we predict the existence of each label i in S based on other

labels S − {i}. Let a¬i =
1

|S|−1

∑
j∈(S−{i}) aj be the av-

erage embedding of labels in S − {i}, then the probability
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Figure 4. In DPP, the probability of a subset S is proportional to det(LS),
which is the volume of the parallelepiped formed by vectors {φ(ai), i ∈
S}. φ(·) is the reproducing kernel feature map. As we increase the in-

ner product between φ(ai) and φ(aj) (which is essentially k(ai,aj)),
the volume of the parallelepiped decreases and p(S) decreases, which dis-

courages the co-selection of label i and j. On the contrary, decreasing

k(ai,aj) encourages the two labels to be co-selected.

that S contains i is

p(i|S − {i}) =
exp(a⊤i a¬i)∑

j∈((Y−S)∪{i}) exp(a
⊤
j a¬i)

(5)

We learn these embedding vectors by maximizing the data

likelihood
∏N

n=1

∏
i∈Sn

p(i|Sn − {i}). Note that the label

embeddings could be learned jointly with the weight param-

eters of VFN, LIDN and LCN. For simplicity, we performed

the learning separately while leaving joint learning to future

study.

3.3. Incorporating External Knowledge on Label
Co­occurrence

There exists abundant prior knowledge regarding the co-

occurrence relations among labels. In particular, we con-

sider binary relations: if two labels have a must-link, they

co-occur with high probability; if bearing a cannot-link,

they seldom co-occur. Such relations can be obtained from

various knowledge base. Other than the WordNet example

given in Section 1, one can derive such relations by com-

puting the correlation statistics on a much larger external

dataset such as textual tags of Flickr images [53]: two labels

are connected with a must-link if their correlation score is

high and a cannot link otherwise.

We aim to incorporate these externally-obtained co-

occurrence relations to boost MLC performance on

Youtube-8M and Open Images. Specifically, we impose

relational regularization over DDPP such that labels with

must-links are encouraged to be co-selected and those with

cannot-links are penalized for co-selection. This regulariza-

tion approach is designed according to the property of DPP,

which assigns larger probability mass p(S) over a label-

subset S where the labels are more mutually “different”

(Fig. 4). The “difference” between two labels ai and aj

is measured by the kernel function k(ai,aj): the smaller

k(ai,aj) is, the more different ai and aj are. To encour-

age label i and j to be simultaneously selected into S , we

encourage k(ai,aj) to be small to increase p(S). To dis-

courage simultaneous selection, k(ai,aj) is preferred to be

large to decrease p(S). Denoting M and C the set of la-

bel pairs possessing must and cannot links respectively, we

define the following relation-regularized DDPP (RDDPP)

problem

maxΘ L({(xn,Sn)}
N
n=1)+

λ(−
∑

(i,j)∈M

k(ai,aj) +
∑

(i,j)∈C

k(ai,aj)) (6)

In the second term of the objective function, we encourage

label pair (i, j) with must-link to have smaller k(ai,aj) and

those with cannot-link to have larger k(ai,aj).

3.4. Parameter Learning

To solve the problem defined in Eq.(4) and Eq.(6), we

use gradient descent method to minimize the negative log-

likelihood
∑N

n=1(− log det(LSn
(xn)) + log det(L(xn) +

I)). To compute the gradient of log det(L(xn) + I), one

needs to invert the matrix L(xn) + I, with a complex-

ity of O(K3) where K is the number of classes. When

K is large, the scalability of the algorithm is very pro-

hibitive. To address this issue, we leverage a low rank

kernel learning approach based on inducing points meth-

ods [48] and structure exploiting approaches [59]. The in-

ducing points method introduces a set of auxiliary points

U = {um}Mm=1 and approximates the kernel k(ai,aj)
as k(ai,aj) ≈ V

⊤
ai,U

V
−1
U,UVaj ,U where Vai,U is a M -

dimensional vector whose m-th element is k(ai,um) and

VU,U is M × M matrix in which the (m,n)-th entry is

k(um,un). Inspired by [59], the vector Vai,U can be fur-

ther approximated using interpolation: first finding two in-

ducing points ua and ub that closely bound ai, then approx-

imating k(ai,um) as wik(ua,um) + (1 − wi)k(ub,um),
where wi is a learnable weight. Let wi ∈ R

M denote a

sparse vector with only two non-zeros entries where the a-th

and b-th entry are wi and 1−wi respectively, then Vai,U can

be approximated as w⊤
i VU,U . To this end, the approxima-

tion of k(ai,aj) is k(ai,aj) ≈ w
⊤
i VU,UV

−1
U,UVU,Uwj =

w
⊤
i VU,Uwj . Under this approximated kernel, the ker-

nel matrix L(x) can be written as L(x) = WVU,UW
⊤

where W is a K ×M sparse matrix of which the i-th row

is g(ai, x)w
⊤
i . According to the Woodbury matrix iden-

tity, the inverse of WVU,UW
⊤ + I can be computed as

(WVU,UW
⊤ + I)−1 = I −W(V−1

U,U +W
⊤
W)−1

W
⊤

where the dominating computation is inverting the M ×M
matrix V

−1
U,U + W

⊤
W with a complexity of O(M3). M

is typically much smaller than K, hence complexity can be

reduced greatly. Since W is very sparse where each row

contains only two non-zeros, the matrix multiplication in-

volving W can be performed very efficiently.

3.5. Inference

Given the learned model parameters, we perform MLC

by inferring the mode of the conditional probability p(S|x).
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Given the input data x, we compute the conditional kernel

matrix L(x), then select the optimal subset of labels S∗ as

S∗ = argmaxS p(S|x) = argmaxS log det(LS(x)). This

is a NP-hard problem since the search space {S|S ⊆ Y} is

exponential. To address this challenge, we use an approxi-

mate inference algorithm proposed by [19], which (1) first

relaxes the original 0/1 integer programming problem into a

continuous one; (2) then solves the continuous optimization

problem in polynomial time; (3) finally rounds the continu-

ous solution back to the 0/1 binary solution. Please refer to

the supplements for details.

4. Experiments

In this section, we present experimental results on the

Youtube-8M and Open Images datasets. Due to space limit,

some results are deferred to the supplements.

4.1. Datasets

The YouTube-8M [1] dataset contains ∼8 million

videos, each annotated with multiple labels from 4,800

classes. The average number of annotations per video is 1.8.

These videos are 0.5 million hours long and contain ∼1.9

billion frames in total. The dataset is split into a training set

with ∼5.8 million videos, a validation set with ∼1.7 mil-

lion videos and a hidden test set with ∼0.8 million videos.

Two types of features are provided for this dataset: frame-

level and video-level. To extract frame-level features, each

video is decoded at 1 frame-per-second up to the first 360

seconds. The decoded frames are fed into the Inception

v3 network [26] pre-trained on ImageNet [14] where the

2048-dimensional ReLu activation of the last hidden layer

(layer name pool 3 reshape) is utilized as frame-level fea-

tures. Feature dimension is reduced to 1024 using PCA

(+ whitening) followed by quantization (1 byte per coef-

ficient). To obtain video-level features, the first-, second-

order and ordinal statistics of frame-level features are com-

puted and normalized. Please refer to [1] for details.

The Open Images [32] dataset contains ∼9 million im-

ages which are annotated with labels spanning 6012 classes.

The average number of labels per image is 8.85. The dataset

is split into a training set (9,011,219 images) and a valida-

tion set (167,057 images).

For both datasets, testing is performed on the validation

set, which is untouched during model training. The two

datasets have been updated since their first release. We used

the first version released in September 2016.

4.2. Experimental Setup

Hyperparameters DDPP performs visual representation

learning on Youtube-8M frame-level features and Open Im-

age raw pixels. For Youtube-8M, the visual feature network

(VFN) in DDPP is configured as a 2-layer 1024-units LSTM

network [66]. On Open Images, the VFN is chosen to be

the Inception v3 network [26]. For Youtube-8M video-level

features, they are directly fed into the label-input depen-

dency network (LIDN) in DDPP without further represen-

tation learning. For both datasets, the LIDN is configured

to be a fully-connected network with 2 hidden layers where

the number of units in the first and second layer is 1024

and 512 respectively and the activation function is ReLU. It

takes the concatenation of label embedding and visual rep-

resentation as inputs and produces a dependency score. The

label-correlation network (LCN) has 2 hidden layers where

the number of units in the first and second layer is 200

and 100 respectively and the activation function is ReLU.

It takes each label-embedding vector as input and produces

a 100-dimensional latent representation. Then a linear ker-

nel is applied to the latent representations of two labels. The

dimension of label embeddings is set to 300. The regular-

ization parameter in RDDPP is set to 0.1 for Youtube-8M

and 0.01 for Open Images. We use AdaGrad [15] with a

learning rate of 0.1 and batch size of 32 to learn model pa-

rameters. In LSTM training, the network is unrolled for

60 iterations. In low-rank kernel learning, the number of in-

ducing points is set to 200. The hyperparameters of baseline

methods are deferred to the supplements.

Baselines For Youtube-8M experiments, we compare

with the following baselines on frame-level features:

• Logistic regression with average pooling (LR-Avg) [1]:

train 4800 one-vs-rest LR classifiers for each class based

on frame-level features; at test time, prediction scores on

individual frames are averaged into a video-level score.

• Deep bag of frames [1] with independent labels (DBoF-

IL), and long short-term memory network [24, 66, 1] with

independent labels (LSTM-IL): use DBoF and LSTM to

encode frame features; the output labels are treated as

independent, each associated with a sigmoid unit and a

binary cross-entropy loss.

• Structured prediction energy networks (SPEN) [4].

and the following baselines on video-level features:

• LR, Support Vector Machine (SVM), Mixture of Experts

(MoE) [1]: learn one-vs-rest LR, SVM and MoE classi-

fiers on video-level features.

• Multi-label learning by exploiting label dependency

(LEAD) [68], principle label space transformation

(PLST) [51], clique generating machine (CGM) [52].

For Open Images, we compare with:

• LR and SVM: use the Inception v3 network pre-trained

on ImageNet to extract image features, then learn one-vs-

rest LR or SVM classifiers for each class.
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Feature Methods MAP Hit@1 PERR

Frame

level

LR-Avg [1] 11.0 50.8 42.2

DBoF-IL [1] 26.9 62.7 55.1

LSTM-IL [1] 26.6 64.5 57.3

SPEN [4] 27.4 65.7 57.9

DDPP-Sep 29.1 66.3 59.1

DDPP 30.3 67.9 59.8

RDDPP 31.8 69.1 60.6

Video

level

LR [1] 28.1 60.5 53.0

SVM [1] 17.0 56.3 47.9

MoE [1] 29.6 62.3 54.9

LEAD [68] 30.3 63.5 55.6

PLST [51] 30.7 62.7 56.2

CGM [38] 31.5 65.2 55.3

DDPP 33.8 67.1 57.5

RDDPP 34.9 68.7 58.4

Table 1. MLC Performance (%) on the Youtube-8M Validation Set

• CNN with independent labels (CNN-IL): replace the

softmax output layer in Inception v3 network with 6012-

way sigmoid layer.

• Deep convolutional ranking (DCR) [21], CNN-RNN

[56], conditional graphical Lasso (CGL) [38], multi-task

label cleaning (MTLC) [54].

Evaluation Metrics Following [1, 54], we use mean

average precision (MAP), Hit@k and precision at equal

recall rate (PERR) to evaluate the MLC performance.

The AP for each class c is defined as AP (c) =

1/M
∑N

n=1 p(c, n)I(c, n) where p(c, n) is the precision for

class c when retrieving n annotations, I(c, n) is an indicator

function that is 1 if the ground truth for class c and the im-

age at rank n is positive. N is the size of the validation set

and M is the number of positives. The MAP of C classes

is 1/C
∑C

c=1 AP (c). Hit@k is the percentage of test in-

stances that contain at least one of the groundtruth labels in

the top k predictions. For the definition of PERR, please

refer to [1]. These metrics require DDPP to assign a confi-

dence score to each predicted label. We use the continuous

values obtained in step 2 of the inference algorithm (Section

3.5) to represent the confidence.

External Knowledge on Label Co-occurrence Rela-

tions We harvest label co-occurrence relations from the

YFCC100M dataset [53], which contains ∼99.2 million

photos and ∼0.8 million videos from Flickr, each annotated

with multiple textual tags. On YFCC100M tags, we com-

pute the pointwise mutual information (PMI) [13] between

each pair of classes in Youtube-8M or Open Images and as-

sign must-links to 5000 class-pairs that have the largest PMI

and cannot-links to 5000 pairs with the smallest PMI.

4.3. Results

Table 1 shows the MLC performance on the Youtube-8M

dataset. As can be seen, our method DDPP outperforms

the baselines with a large margin, on both the frame-level

features and video-level features. At frame level, LSTM-

IL and DDPP both leverage LSTM networks to learn vi-

sual representations. Their major difference is: LSTM-

Methods MAP

LR 51.9

SVM 53.5

CNN-IL 62.4

DCR [21] 63.6

CNN-RNN [56] 64.1

CGL [38] 63.5

MTLC [54] 63.3

DDPP-Sep 64.6

DDPP 65.1

RDDPP 67.2

Table 2. MLC Performance on the Open Images Validation Set

IL treats the output labels as independent while DDPP

aims at capturing high-order label-correlations. As a result,

DDPP achieves much better performance than LSTM-IL.

Similar to LSTM-IL, DBof-IL ignores label-correlations,

which loses the semantic and contextual clues among la-

bels. SPEN uses deep networks to capture nonlinear label-

dependency. While outperforming other baselines, it is in-

ferior to DDPP. One possible reason is: during parame-

ter learning of SPEN, an approximated inference procedure

is conducted over each training instance, which may incur

large approximation errors. On the contrary, no inference is

needed when learning DDPP parameters. LR-Avg reduces

video-level MLC into frame-level MLC, which fails to con-

sider the inter-frame relations, hence leading to inferior per-

formance.

The importance of capturing high-order label-

correlations is reflected on the video-level features as

well. LR, SVM and MoE ignore label-correlations, hence

performing less well. LEAD, PLST and CGM aim at

exploiting high-order label dependency based on Bayesian

network structure learning, label space dimension reduction

and clique generation. The experiments show that they are

less effective than DDPP. The possible reasons are: (1)

LEAD performs structure learning and parameter learning

separately while DDPP learns label-correlations and label-

input dependency in a joint manner; (2) PLST projects

the labels into a linear subspace, hence can only capture

linear dependency while DDPP uses kernel methods to

exploit nonlinear dependency; (3) Similar to SPEN, CGM’s

parameter learning involves approximate inference on

training data, which may incur considerable approximation

errors, while DDPP can avoid this. Besides, these methods

lack the flexibility to perform end-to-end feature learning

and hence cannot be applied to frame-level features.

In DDPP, capturing label-correlations and learning vi-

sual features are performed jointly. To evaluate whether

joint learning is better than performing the two tasks

separately, we compare DDPP with a model variant

which first learns visual features without considering label-

correlation, then feeds the learned features to DPP to per-

form correlation-aware MLC. The first step is performed on

the frame-level features using LSTM-IL. We refer to this

method as DDPP Separation (DDPP-Sep). As shown in
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Figure 5. MAP versus the total number of must/cannot links, on

the Youtube-8M frame-level features.

Table 1, DDPP-Sep performs worse than DDPP, which cor-

roborates the merit of joint learning.

By incorporating label co-occurrence knowledge, RD-

DPP improves DDPP greatly. To further study the effect

of knowledge-incorporation, we measure how the MAP

varies as we gradually add must/cannot links. Class-pairs

are ranked according to their PMI in descending order.

Must and cannot links are added by visiting the ranked list

from top to bottom and from bottom to top respectively.

The number of must-links is equal to that of cannot links.

Fig. 5 shows the results on Youtube-8M frame-level fea-

tures. MAP consistently increases when the link number

is increased from 2,000 to 10,000, which demonstrates the

benefits of incorporating prior knowledge and the efficacy

of relational regularization in RDDPP to realize that. Fur-

ther increasing the link number does not improve MAP, pos-

sibly because the links added later contain more noise.

Table 2 shows the MAP on Open Images, where DDPP

and RDDPP outperform baselines. LR, SVM, CNN-IL and

MTLC learn independent classifiers for each class and ig-

nore label-correlations. DCR uses a ranking-loss to dif-

ferentiate relevant and irrelevant labels, but is less capa-

ble of capturing fine-grained correlations among relevant

labels. CNN-RNN characterizes label-dependency using

class chaining, where a proper class-order is difficult to

specify. CGL captures pairwise correlations using con-

ditional graphical Lasso, but is unable to exploit high-

order label-dependency. DDPP performs better than DDPP-

Sep by jointly capturing label-correlation and learning vi-

sual features. RDDPP outperforms DDPP by incorporating

label-correlation knowledge. More results on Open Images

are in the supplements.

4.4. Computational Time

The experiments were conducted on two clusters: a 40-

machines GPU (Titan X) cluster which ran deep learning

(DL) experiments and a 34-machines CPU cluster for non-

DL experiments. We compare the training time of DDPP

with DL methods. To verify the efficiency-gain brought

by low rank kernel learning (Section 3.4), we also com-

pare with the case where the kernel matrix in DDPP is

of full rank (DDPP-FullRank). Each model is trained us-

ing a distributed system that adopts a data-parallel strat-

egy. Table 3 shows the convergence time of different mod-

Methods Youtube-8M Open Images

DBoF-IL [1] 6.3 –

LSTM-IL [1] 6.7 –

SPEN [4] 23.6 –

CNN-IL – 9.4

DCR [21] – 9.5

CNN-RNN [56] – 9.8

MTLC [56] – 10.6

DDPP-FullRank 19.3 38.2

DDPP 7.4 10.4

RDDPP 7.8 11.3

Table 3. Convergence Time (Hours)

els on the GPU/CPU cluster, from which we observe: (1)

DDPP, which by default adopts low-rank kernel learning,

is much more efficient than DDPP-FullRank; the computa-

tional complexity of DDPP and DDPP-FullRank is O(M3)
and O(K3) respectively, where the number of inducing

points M is much smaller than the number of classes K. (2)

RDDPP, though adding an additional regularizer to DDPP,

does not incur substantial extra cost. (3) While being able to

capture high-order label-correlations, DDPP’s convergence

time is comparable with that of other deep learning meth-

ods which assume label-independence, such as DBoF-IL,

LSTM-IL and CNN-IL. (4) DDPP is much more efficient

than SPEN which involves a costly inference procedure

in parameter learning; no inference is needed in learning

DDPP parameters.

5. Conclusions and Future Works

We study the large-scale multi-label classification on two

recently released datasets: Youtube-8M and Open Images.

To capture the high-order correlation among labels while

retaining computational efficiency, we propose Deep Deter-

minantal Point Process (DDPP) that seamlessly integrates

DPP and deep neural networks (DNNs) and supports end-

to-end learning. DPP is able to capture label-correlation

of arbitrary order within polynomial computational time

while DNNs play the role of representation learning of im-

ages and videos. To incorporate prior knowledge regard-

ing label co-occurrence relations, we impose relational reg-

ularization over DDPP’s kernel matrix. A low-rank kernel

learning algorithm is investigated to scale DDPP to millions

of instances and thousands of labels. Experiments on the

two datasets demonstrate the efficacy and efficiency of our

methods. For future works, we plan to investigate the noisy

and missing label problem [54] presenting in Open Images

and leverage label hierarchy to improve MLC performance.

Acknowledgements

P.X and E.X are supported by National Institutes of Health

P30DA035778, R01GM114311, National Science Founda-

tion IIS1617583, DARPA FA872105C0003. L.M is sup-

ported by National Natural Science Foundation of China

No.61672068.

480



References

[1] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,

B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m: A

large-scale video classification benchmark. arXiv preprint

arXiv:1609.08675, 2016. 1, 6, 7, 8

[2] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label

learning with millions of labels: Recommending advertiser

bid phrases for web pages. In WWW, 2013. 3

[3] K. Balasubramanian and G. Lebanon. The landmark selec-

tion method for multiple output prediction. ICML, 2012. 3

[4] D. Belanger and A. McCallum. Structured prediction energy

networks. In ICML, 2016. 2, 3, 6, 7, 8

[5] S. Bengio, J. Weston, and D. Grangier. Label embedding

trees for large multi-class tasks. In NIPS, 2010. 3

[6] W. Bi and J. T.-Y. Kwok. Efficient multi-label classification

with many labels. In ICML, 2013. 3

[7] S. S. Bucak, R. Jin, and A. K. Jain. Multi-label learning with

incomplete class assignments. In CVPR, 2011. 3

[8] S. S. Bucak, P. K. Mallapragada, R. Jin, and A. K. Jain. Ef-

ficient multi-label ranking for multi-class learning: applica-

tion to object recognition. In ICCV, 2009. 3

[9] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. ICLR, 2014. 2, 3

[10] Y. Chen and H. Lin. Feature-aware label space dimension

reduction for multi-label classification. In NIPS, 2012. 3
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