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Abstract

Most of the existing denoising algorithms are developed

for grayscale images. It is not trivial to extend them for

color image denoising since the noise statistics in R, G, and

B channels can be very different for real noisy images. In

this paper, we propose a multi-channel (MC) optimization

model for real color image denoising under the weighted

nuclear norm minimization (WNNM) framework. We con-

catenate the RGB patches to make use of the channel redun-

dancy, and introduce a weight matrix to balance the data

fidelity of the three channels in consideration of their differ-

ent noise statistics. The proposed MC-WNNM model does

not have an analytical solution. We reformulate it into a

linear equality-constrained problem and solve it via alter-

nating direction method of multipliers. Each alternative up-

dating step has a closed-form solution and the convergence

can be guaranteed. Experiments on both synthetic and real

noisy image datasets demonstrate the superiority of the pro-

posed MC-WNNM over state-of-the-art denoising methods.

1. Introduction
Image denoising is a classical yet fundamental problem

for image quality enhancement in computer vision and pho-

tography systems. Most of existing denoising algorithms

are designed for grayscale images, aiming to recover the

clean image x from its noisy observation y = x + n,

where n is generally assumed to be additive white Gaussian

noise (AWGN). State-of-the-art image denoising methods

include sparse representation [1], dictionary learning [2],

low-rank approximation [3], non-local self-similarity (NSS)

[4] based methods, and the combination of those techniques

[1–3, 5–8]. Recently, some discriminative denoising meth-
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ods have also been developed by learning discriminative

priors from pairs of clean and noisy images [9–12].

When the input is a noisy RGB color image, there are

mainly three strategies for color image denoising. (1) The

first strategy is to apply the grayscale image denoising algo-

rithm to each channel. However, such a straightforward so-

lution will not exploit the spectral correlation among RGB

channels, and the denoising performance may not be very

satisfying. (2) The second strategy is to transform the RGB

image into a less correlated color space, such as YCbCr,

and perform denoising in each channel of the transformed

space [13, 14]. One representative work along this line is

the CBM3D algorithm [14]. However, the color transform

will complicate the noise distribution, and the correlation

among color channels is not fully exploited. (3) The third

strategy is to perform joint denoising on the RGB channels

simultaneously for better use of the spectral correlation. For

example, the patches from RGB channels are concatenated

as a long vector for processing [15, 16].

Though joint denoising of RGB channels is a more

promising way for color image denoising, it is not a triv-

ial extension from single channel (grayscale image) to mul-

tiple channels (color image). The noise in standard RGB

(sRGB) space can be approximately modeled as AWGN,

but it has different variances for different channels [17–19]

due to the sensor characteristics and on-board processing

steps in digital camera pipelines [19, 20]. This makes the

real color image denoising problem much more complex. If

the three channels are treated equally in the joint denoising

process, false colors or artifacts can be generated [15]. How

to account for the different noise characteristics in color

channels, and how to effectively exploit the within and cross

channel correlation are the key issues for designing a good

color image denoising method.

This paper presents a new color image denoising algo-

rithm. Considering that the weighted nuclear norm mini-
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mization (WNNM) method [3, 21], which exploits the im-

age NSS property via low rank regularization, has achieved

excellent denoising performance on grayscale images, we

propose to extend WNNM to real color image denois-

ing. More specifically, we propose a multi-channel WNNM

(MC-WNNM) model, which concatenates the patches from

RGB channels for rank minimization but introduces a

weight matrix to adjust the contributions of the three chan-

nels based on their noise levels. The proposed MC-WNNM

model no longer has a closed-form solution as in the orig-

inal WNNM model [21]. We reformulate it into a linear

equality-constrained problem with two variables, and solve

the relaxed problem under the alternating direction method

of multipliers [22] framework. Each variable can be updated

with closed-form solutions, and the convergence analysis is

given to guarantee a rational termination of the proposed

algorithm.

2. Related Work

2.1. Weighted Nuclear Norm Minimization

As a generalization to the nuclear norm minimization

(NNM) model [23], the weighted nuclear norm minimiza-

tion (WNNM) model [3, 21] is described as

min
X

‖Y −X‖2F + ‖X‖w,∗, (1)

where ‖X‖w,∗ =
∑

i wiσi(X) is the weighted nuclear

norm of matrix X, w = [w1, ..., wn]
⊤ (wi ≥ 0) is the

weight vector, and σi(X) is the ith singular value of X.

According to the Corollary 1 of [21], if the weights are non-

decreasing, the problem (1) has a closed-form solution:

X̂ = US
w/2(Σ)V⊤, (2)

where Y = UΣV⊤ is the singular value decomposition

(SVD) [24] of Y and S
w/2(•) is the generalized soft-

thresholding operator with weight vector w:

S
w/2(Σii) = max(Σii − wi/2, 0). (3)

WNNM has demonstrated highly competitive denoising

performance on grayscale images. However, if we directly

extend it to color image denoising by concatenating the

patches from RGB channels, denoising artifacts may hap-

pen (please refer to Fig. 1 and the section of experimental

results). In this paper, we propose a multi-channel WNNM

(MC-WNNM) model for color image denoising, which pre-

serves the power of WNNM and is able to address the noise

differences among different channels.

2.2. Real Color Image Denoising

During the last decade, a few methods have been pro-

posed for real color image denoising. Among them, the

CBM3D method [14] is a representative one, which first

transforms the RGB image into a luminance-chrominance

space (e.g., YCbCr) and then applies the benchmark BM3D

method [1] to each channel separately. The non-local simi-

lar patches are grouped by the luminance channel. In [17],

Liu et al. proposed the “Noise Level Function” to esti-

mate and remove the noise for each channel in natural im-

ages. However, processing each channel separately would

often achieve inferior performance to processing the color

channels jointly [15]. Therefore, the methods [16, 25, 26]

perform real color image denoising by concatenating the

patches of RGB channels into a long vector. However, the

concatenation treats each channel equally and ignores the

different noise statistics among these channels. The method

in [19] models the cross-channel noise in real noisy images

as multivariate Gaussian and the noise is removed by the

Bayesian non-local means filter [27]. The commercial soft-

ware Neat Image [28] estimates the noise parameters from

a flat region of the given noisy image and filters the noise

accordingly. The methods in [19, 28] ignore the non-local

self-similarity of natural images [1, 3].

In this paper, we present an effective multi-channel im-

age denoising algorithm, which utilizes the strong low-rank

prior of image non-local similar patches, and introduces a

weight matrix to balance the multi-channels based on their

different noise levels.

3. The Proposed Color Image Denoising Algo-

rithm

3.1. The Multi­channel Weighted Nuclear Norm
Minimization Model

The color image denoising problem is to recover the

clean image xc from its noisy version yc = xc +nc, where

c = {r, g, b} is the index of R, G, B channels and nc is the

noise in the c channel. Patch based image denoising [1–3, 5–

13] has achieved a great success in the last decade. Given a

noisy color image yc, each local patch of size p × p × 3
is extracted and stretched to a patch vector, denoted by

y = [y⊤
r y⊤

g y⊤
b ]

⊤ ∈ R
3p2

, where yr,yg,yb ∈ R
p2

are

the corresponding patches in R, G, B channels. For each

local patch y, we search the M most similar patches to it

(including y itself) by Euclidean distance in a relatively

large local window around it. By stacking the M similar

patches column by column, we form a noisy patch matrix

Y = X + N ∈ R
3p2×M , where X and N are the corre-

sponding clean and noise patch matrices.

The noise in standard RGB (sRGB) space could be ap-

proximately modeled as additive white Gaussian (AWGN),

but noise in different channels has different variances [17–

19]. Therefore, it is problematic to directly apply some

grayscale denoising methods to the concatenated vectors y

or matrices Y. To better illustrate this point, in Fig. 1, we

show a clean image “kodim08” (only the R and G channels

are shown due to limit of space), its noisy version generated

by adding AWGN to each channel, and the denoised image

by applying WNNM [21] to the concatenated patch matrix

Y. The standard deviations of AWGN added to the R, G, B

channels are σr = 40, σg = 20, σb = 30, respectively. To
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(a) Clean Red Channel (b) Noisy Red Channel (c) Clean Green Channel (d) Noisy Green Channel

(e) Denoised Red by WNNM (f) Denoised Red by MC-WNNM (g) Denoised Green by WNNM (h) Denoised Green by MC-WNNM

Figure 1. The Red and Green channels of the image “kodim08” from the Kodak PhotoCD Dataset, its synthetic noisy version, and the

images recovered by the concatenated WNNM and the proposed MC-WNNM methods.

make WNNM applicable to color image denoising, we set

the noise standard deviation as the average deviation of the

whole noisy image, i.e., σ =
√

(σ2
r + σ2

g + σ2
b )/3 ≈ 31.1.

From Fig. 1, one can see that the concatenated WNNM re-

mains some noise in the R channel while over-smoothing

the G channel. This is because it processes R and G chan-

nels equally without considering their differences in noise

corruption.

Clearly, a more effective color image denoising algo-

rithm should consider the different noise strength in color

channels. To this end, we introduce a weight matrix W to

balance the noise in the RGB channels, and present the fol-

lowing multi-channel WNNM (MC-WNNM) model:

min
X

‖W(Y −X)‖2F + ‖X‖w,∗. (4)

We follow the method in [21] to set the weight vector w on

nuclear norm as wk+1
i = C/(|σi(Xk)|+ǫ), where ǫ > 0 is a

small number to avoid zero numerator and σi(Xk) is the ith
singular value of the estimated data matrix X at the kth iter-

ation. Note that if σr = σg = σb, the proposed MC-WNNM

model will be reduced to the concatenated WNNM model.

With an appropriate setting of the weight matrix W and

a good optimization algorithm, the proposed MC-WNNM

model will lead to much better color image denoising re-

sults. As shown in Figs. 1(f) and 1(h), MC-WNNM removes

clearly the noise in the R channel while preserving textures

effectively in the G channel.

3.2. The Setting of Weight Matrix W

Let’s denote the noisy patch matrix by Y =
[Y⊤

r Y⊤
g Y⊤

b ]
⊤, where Yr,Yg,Yb are sub-matrices of

similar patches in R, G, B channels, respectively. The cor-

responding clean matrix is X = [X⊤
r X⊤

g X⊤
b ]

⊤, where

Xr,Xg,Xb are similarly defined. The weight matrix W

can be determined under the maximum a-posterior (MAP)

estimation framework:

X̂ = argmax
X

lnP (X|Y,w)

= argmax
X

{lnP (Y|X) + lnP (X|w)}.
(5)

The log-likelihood term lnP (Y|X) is characterized by

the statistics of noise. According to [18], we assume that

the noise is independent among RGB channels and inde-

pendently and identically distributed (i.i.d.) in each chan-

nel with Gaussian distribution and standard deviations

{σr, σg, σb}. There is:

P (Y|X) =
∏

c∈{r,g,b}
(2πσ2

c )
− 3p2

2 exp(− 1

2σ2
c

‖Yc −Xc‖2F ). (6)

For the latent data X, the small weighted nuclear norm

prior is imposed on it, i.e., ‖X‖w,∗ =
∑

i wiσi(X) should

be sparsely distributed. We let it be:

P (X|w) ∝ exp(−1

2
‖X‖w,∗). (7)

Putting (7) and (6) into (5), we have

X̂ = argmin
X

∑

c∈{r,g,b}

1

σ2
c

‖(Yc −Xc)‖2F + ‖X‖w,∗

= argmin
X

‖W(Y −X)‖2F + ‖X‖w,∗,

(8)

with

W =





σ−1
r I 0 0

0 σ−1
g I 0

0 0 σ−1
b I



 , (9)
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where I ∈ R
p2×p2

is the identity matrix.

Clearly, the weight matrix W is diagonal and deter-

mined by the noise standard deviation in each channel. The

stronger the noise in a channel, the less the contribution

that channel should make to the estimation of X. Our ex-

perimental results (refer to Section 4 please) on synthetic

and real noisy images clearly demonstrate the advantages

of MC-WNM over WNNM and other methods in color im-

age denoising.

3.3. Model Optimization

The proposed MC-WNNM model does not have an an-

alytical solution. In the WNNM model [21], when the

weights assigned on singular values are in a non-descending

order, the weighted nuclear norm proximal operator can

have a global optimum with closed-form solution. Unfor-

tunately, such a property is not valid for the MC-WNNM

model because a weight matrix W is assigned to the rows

of data matrix X. This makes the proposed model more dif-

ficult to solve than the original WNNM model.

We employ the variable splitting method [29, 30] to solve

the MC-WNNM model. By introducing an augmented vari-

able Z, the MC-WNNM model can be reformulated as a

linear equality-constrained problem with two variables X

and Z:
min
X,Z
‖W(Y −X)‖2F + ‖Z‖w,∗ s.t. X = Z. (10)

Since the objective function is separable w.r.t. the two vari-

ables, the problem (10) can be solved under the alternating

direction method of multipliers (ADMM) [22] framework.

The augmented Lagrangian function is:

L(X,Z,A, ρ) =‖W(Y −X)‖2F + ‖Z‖w,∗

+ 〈A,X− Z〉+ ρ

2
‖X− Z‖2F ,

(11)

where A is the augmented Lagrangian multiplier and ρ > 0
is the penalty parameter. We initialize the matrix variables

X0, Z0, and A0 to be zero matrix and ρ0 > 0 to be

a suitable value. Denote by (Xk,Zk) and Ak the opti-

mization variables and Lagrange multiplier at iteration k
(k = 0, 1, 2, ...), respectively. By taking derivatives of the

Lagrangian functionLw.r.t. X and Z and setting the deriva-

tive function to be zero, we can alternatively update the vari-

ables as follows:

(1) Update X while fixing Z and A:

Xk+1 = argmin
X

‖W(Y−X)‖2F+
ρk
2
‖X−Zk+ρ−1

k Ak||2F .
(12)

This is a standard least squares regression problem with

closed-form solution:

Xk+1 = (W⊤W +
ρk
2
I)−1(W⊤WY +

ρk
2
Zk −

1

2
Ak).

(13)
(2) Update Z while fixing X and A:

Zk+1 = argmin
Z

ρk
2
‖Z− (Xk+1 + ρ−1

k Ak)‖2F + ‖Z‖w,∗.

(14)

According to the Theorem 1 in [21], given the SVD of

Xk+1 + ρ−1
k Ak, i.e., Xk+1 + ρ−1

k Ak = UkΣkV
⊤
k , where

Σk =

(

diag(σ1, σ2, ..., σM )
0

)

∈ R
3p2×M (without

loss of generality, we assume that 3p2 ≥ M ), the global

optimum of the above problem is Ẑk+1 = UkΣ̂kV
⊤
k ,

where Σ̂k =

(

diag(σ̂1, σ̂2, ..., σ̂M )
0

)

∈ R
3p2×M and

(σ̂1, σ̂2, ..., σ̂M ) is the solution to the following convex op-

timization problem:

min
σ̂1,σ̂2,...,σ̂M

∑M

i=1
(σi − σ̂i)

2 +
2wi

ρk
σ̂i

s.t. σ̂1 ≥ σ̂2 ≥ ... ≥ σ̂M ≥ 0.

(15)

According to the Remark 1 in [21], the problem above has

closed-form solution (i = 1, 2, ...,M ):

σ̂i =

{

0 if c2 < 0
c1+

√
c2

2 if c2 ≥ 0
, (16)

where c1 = σi − ǫ, c2 = (σi − ǫ)2 − 8C
ρk

, ǫ > 0 is a small

number, and C is set as
√
2M by experience in [21].

(3) Update A while fixing X and Z:

Ak+1 = Ak + ρk(Xk+1 − Zk+1). (17)

(4) Update ρk: ρk+1 = µ ∗ ρk, where µ > 1.

The above alternative updating steps are repeated until

the convergence condition is satisfied or the number of iter-

ations exceeds a preset threshold. The convergence condi-

tion of the ADMM algorithm is: ‖Xk+1 − Zk+1‖F ≤ Tol,

‖Xk+1 −Xk‖F ≤ Tol, and ‖Zk+1 − Zk‖F ≤ Tol are si-

multaneously satisfied, where Tol > 0 is a small tolerance

number. We summarize the updating procedures in Algo-

rithm 1. The convergence analysis of the proposed Algo-

rithm 1 is given in Theorem 1. Note that since the weighted

nuclear norm is non-convex in general, we employ an un-

bounded sequence of {ρk} here to make sure that Algorithm

1 converges.

Theorem 1. Assume that the weights in w are in a non-

descending order, the sequences {Xk}, {Zk}, and {Ak}
generated in Algorithm 1 satisfy:

(a) lim
k→∞

‖Xk+1 − Zk+1‖F = 0; (18)

(b) lim
k→∞

‖Xk+1 −Xk‖F = 0; (19)

(c) lim
k→∞

‖Zk+1 − Zk‖F = 0. (20)

Proof. We give a sketch proof here and detailed proof of

this theorem can be found in the supplementary file.

We first prove that the sequence {Ak} generated by Al-

gorithm 1 is upper bounded. Since {ρk} is unbounded, i.e.,

limk→∞ ρk = +∞, we can prove that the sequence of

Lagrangian function {L(Xk+1,Zk+1,Ak, ρk)} is also up-

per bounded. Hence, both {W(Y − Xk)} and {Zk} are

upper bounded. Then {Xk} is also upper bounded. Ac-

cording to Eq. (17), we can prove that limk→∞ ‖Xk+1 −
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Algorithm 1: Solve MC-WNNM via ADMM

Input: Matrices Y and W, µ > 1, Tol > 0, K1;

Initialization: X0 = Z0 = A0 = 0, ρ0 > 0,

T = False, k = 0;

While (T == false) do

1. Update Xk+1 as

Xk+1=(W⊤W + ρk

2 I)−1(W⊤WY + ρk

2 Zk − 1
2Ak)

2. Update Zk+1 by solving the problem

minZ
ρk

2 ‖Z− (Xk+1 + ρ−1
k Ak)‖2F + ‖Z‖w,∗

3. Update Ak+1 as Ak+1 = Ak + ρk(Xk+1 − Zk+1)
4. Update ρk+1 = µ ∗ ρk;

5. k ← k + 1;

if (Convergence condition is satisfied) or (k ≥ K1)

6. T← True

end if

end while

Output: Matrices X and Z.

Zk+1‖F = limk→∞ ρ−1
k ‖Ak+1 − Ak‖F = 0, and (a)

is proved. Then we can prove that limk→∞ ‖Xk+1 −
Xk‖F ≤ limk→∞(‖(W⊤W + ρk

2 I)−1(W⊤WY −
W⊤WZk − 1

2Ak)‖F + ρ−1
k ‖Ak − Ak−1‖F ) = 0 and

hence (b) is proved. Finally, (c) can be proved by check-

ing that limk→∞ ‖Zk+1 − Zk‖ ≤ limk→∞(‖Σk−1 −
S
w/ρk−1

(Σk−1)‖F + ‖Xk+1 − Xk‖F + ‖ρ−1
k−1Ak−1 +

ρ−1
k Ak+1 − ρ−1

k Ak‖F ) = 0, where Uk−1Σk−1V
⊤
k−1 is

the SVD of Xk + ρ−1
k−1Ak−1 .

3.4. The Denoising Algorithm
Given a noisy color image yc, suppose that we have ex-

tracted N local patches {yj}Nj=1 and their similar patches.

N noisy patch matrices {Yj}Nj=1 can be formed to esti-

mate the clean matrices {Xj}Nj=1. The patches in matrices

{Xj}Nj=1 are aggregated to form the denoised image x̂c. To

obtain better denoising results, we perform the above de-

noising procedures for several rounds. The proposed MC-

WNNM based color image denoising algorithm is summa-

rized in Algorithm 2.

3.5. Complexity Analysis

In Algorithm 1 for solving the MC-WNNM model via

ADMM, the cost for updating X is O(max(p4M,M3)),
while the cost for updating Z is O(p4M +M3). The costs

for updating A and ρ can be ignored. So the overall com-

plexity is O((p4M + M3)K1), where K1 is the number

of iterations. In Algorithm 2 for image denoising, we con-

sider the number of patches N extracted from the input

noisy image and the number of itertations K2 and ignore

the cost for searching similar patches. The overall cost is

O((p4M +M3)K1K2N).

4. Experiments

We evaluate the proposed MC-WNNM method on syn-

thetic and real noisy color images. We compare the pro-

Algorithm 2: Color Image Denoising by MC-WNNM

Input: Noisy image yc, noise levels {σr, σg, σb}, K2;

Initialization: x̂
(0)
c = yc, y

(0)
c = yc;

for k = 1 : K2 do

1. Set y
(k)
c = x̂

(k−1)
c ;

2. Extract local patches {yj}Nj=1 from y
(k)
c ;

for each patch yj do

3. Search non-local similar patches Yj ;

4. Apply the MC-WNNM model (10) to Yj and

obtain the estimated Xj ;

end for

5. Aggregate {Xj}Nj=1 to form the image x̂
(k)
c ;

end for

Output: Denoised image x̂
(K2)
c .

posed method with state-of-the-art denoising methods, in-

cluding CBM3D [14], MLP [9], WNNM [3], TNRD [11],

DnCNN [12] “Noise Clinic” (NC) [25, 26], CC [19],

and the commercial software Neat Image (NI) [28]. The

Matlab source code of our MC-WNNM algorithm can

be downloaded at http://www4.comp.polyu.edu.

hk/˜cslzhang/code/MCWNNM.zip.

4.1. Experimental Settings

Noise level estimation. For most of the competing de-

noising algorithms, the standard deviation of noise should

be given as a parameter. In synthetic experiments, the noise

levels (σr, σg, σb) in R, G ,B channels are assumed to be

known. In the case of real noisy images, the noise levels can

be estimated via some noise estimation methods [31, 32]. In

this paper, we employ the method [32] to estimate the noise

level for each color channel.

Noise level of comparison methods. For the CBM3D

method [14], a single parameter of noise level should be

input. We set the noise level as

σ =
√

(σ2
r + σ2

g + σ2
b )/3. (21)

The methods of MLP [9] and TNRD [11] are originally de-

signed for grayscale images. We retrain their models (using

the released codes by the authors) at different noise levels

from σ = 5 to σ = 75 with a gap of 5. The denoising on

color images is performed by processing each channel with

the model trained at the same (or nearest) noise level.

Comparison with WNNM. In order to make a full and

fair comparison with the original WNNM method [21],

we implement WNNM for color image denoising in three

ways. 1) We apply WNNM to each color channel separately

with the corresponding noise levels σr, σg, σb. We call this

method “WNNM-1”. 2) We perform WNNM on the con-

catenated matrix Y formed by the patches in RGB chan-

nels, while the input noise level σ is computed by Eq. (21).

We call this method “WNNM-2”. 3) We set the weight ma-

trix W as W = σ−1I in the proposed MC-WNNM model,
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Figure 2. The 15 cropped real noisy images used in [19].

and use our developed algorithm for denoising. We call this

method “WNNM-3”.

For a fair comparison, we tune the parameters of

WNNM-1, WNNM-2, WNNM-3 and MC-WNNM to

achieve their best denoising performance. The detailed pa-

rameters are as follows: we set the patch size as p = 6,

the number of non-local similar patches as M = 70, the

window size for searching similar patches as 40 × 40. For

WNNM-3 and MC-WNNM, the updating parameter is set

as µ = 1.001. The number of iterations in Algorithm 1 is

set as K1 = 10. The number of iterations K2 in Algorithm

2 and the initial penalty parameter ρ0 will be given in the

following sub-sections.

4.2. Experiments on Synthetic Noisy Color Images

We first compare MC-WNNM with the competing de-

noising methods [9, 11, 12, 14, 25, 28] on the 24 color im-

ages from the Kodak PhotoCD Dataset (http://r0k.

us/graphics/kodak/). The noisy images are gener-

ated by adding AWGN to each of the R, G, B channels,

respectively. In the main paper, we report the results by set-

ting σr = 40, σg = 20, σb = 30. More results with other

noise settings can be found in the supplementary file. For

WNNM-3 and MC-WNNM, the initial penalty parameter is

set as ρ0 = 10 and ρ0 = 3, respectively. The number of

iterations in Algorithm 2 is set as K2 = 8.

The PSNR results by competing methods are listed in

Table 1, while the best PSNR result for each image is

highlighted in bold. One can see that on all the 24 im-

ages, our method achieves the highest PSNR values among

the competing methods. On average, MC-WNNM achieves

0.47dB, 0.48dB and 1.09dB improvements over WNNM-

1, WNNM-2 and WNNM-3, respectively. For space limita-

tion, we leave the visual comparisons of the synthetic noisy

image denoising results in the supplementary file.

4.3. Experiments on Real Noisy Color Images

We evaluate the proposed method on two real noisy

color image datasets, where the images were captured un-

der indoor or outdoor lighting conditions by different types

of cameras and camera settings. For WNNM-3 and MC-

WNNM, the initial penalty parameter is set as ρ0 = 8 and

ρ0 = 6, respectively. The number of iterations in Algorithm

2 is set as K2 = 2.

The first dataset is provided in [26], which includes 20

real noisy images collected under uncontrolled outdoor en-

vironment. Since there is no “ground truth” of the noisy im-

ages, the objective measures such as PSNR cannot be com-

puted on this dataset.

The second dataset is provided in [19], which includes

noisy images of 11 static scenes. The noisy images were

collected under controlled indoor environment. Each scene

was shot 500 times under the same camera and camera set-

ting. The mean image of the 500 shots is roughly taken as

the “ground truth”, with which the PSNR can be computed.

Since the image size is very large (about 7000× 5000) and

the 11 scenes share repetitive contents, the authors of [19]

cropped 15 smaller images of size 512 × 512 for experi-

ments. Fig. 2 shows the contents of these images. Quantita-

tive comparisons on the 15 cropped images will be reported.

4.3.1 Results on Dataset [26]

Since there is no “ground truth” for the real noisy images

in dataset [26], we only compare the visual quality of the

denoised images by the compared methods. (Note that the

method CC [19] is not compared here since its code is not

publically available.)

Fig. 3 shows the denoised images of “Dog” by the com-

peting methods. It can be seen that CBM3D, MLP, TRND

and WNNM-1 tend to generate some noise caused color

artifacts. Besides, WNNM-2 and WNNM-3 tend to over-

smooth much the image. These results demonstrate that for

color image denoising, neither processing each channel sep-

arately nor processing the three channels jointly but ignor-

ing their noise difference is an effective solution. Though

NC and NI methods are specifically developed for real color

image denoising, their performance is not very satisfactory.

In comparison, the proposed MC-WNNM recovers much

better the structures and textures (such as the eye area) than

the other competing methods. More visual comparisons on

this dataset can be found in the supplementary file.

4.3.2 Results on Dataset [19]

As described at the beginning of Section 4.3, there is a

mean image for each noisy image in dataset [19], and those

mean images can be roughly taken as “ground truth” for

quantitative evaluation of denoising algorithms.

The results on PSNR and averaged computational time

by competing methods (including CC [19] whose results

are copied from [19]) are listed in Table 2. For methods

MLP [9] and TNRD [11], both of them achieve the best

results when setting the noise level of the trained models

at σ = 10. The highest PSNR results are highlighted in

bold. On average, MC-WNNM achieves 1.94dB, 0.44dB,

0.59dB improvements over the three WNNM methods, and

significantly outperforms other competing method, includ-

ing CC [19]. On 10 out of the 15 images, the proposed MC-
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Table 1. PSNR(dB) results of different denoising methods on 24 natural color images.

σr = 40, σg = 20, σb = 30

Image# CBM3D MLP TNRD DnCNN NI NC WNNM-1 WNNM-2 WNNM-3 MC-WNNM

1 25.24 25.70 25.74 20.47 23.85 24.90 26.01 25.95 25.58 26.66

2 28.27 30.12 30.21 20.47 25.90 25.87 30.08 30.11 29.80 30.20

3 28.81 31.19 31.49 20.53 26.00 28.58 31.58 31.61 31.20 32.25

4 27.95 29.88 29.86 20.47 25.82 25.67 30.13 30.16 29.84 30.49

5 25.03 26.00 26.18 20.52 24.38 25.15 26.44 26.39 25.32 26.82

6 26.24 26.84 26.90 20.66 24.65 24.74 27.39 27.30 26.88 27.98

7 27.88 30.28 30.40 20.52 25.63 27.69 30.47 30.54 29.70 30.98

8 25.05 25.59 25.83 20.57 24.02 25.30 26.71 26.75 25.26 26.90

9 28.44 30.75 30.81 20.50 25.94 27.44 30.86 30.92 30.29 31.49

10 28.27 30.38 30.57 20.52 25.87 28.42 30.65 30.68 29.95 31.26

11 26.95 28.00 28.14 20.52 25.32 24.67 28.19 28.16 27.61 28.63

12 28.76 30.87 31.05 20.60 26.01 28.37 30.97 31.06 30.58 31.48

13 23.76 23.95 23.99 20.52 23.53 22.76 24.27 24.15 23.52 24.89

14 26.02 26.97 27.11 20.51 24.94 25.68 27.20 27.15 26.55 27.57

15 28.38 30.15 30.44 20.71 26.06 28.21 30.52 30.60 30.13 30.81

16 27.75 28.82 28.87 20.52 25.69 26.66 29.27 29.21 29.02 29.96

17 27.90 29.57 29.80 20.56 25.85 28.32 29.78 29.79 29.16 30.40

18 25.77 26.40 26.41 20.53 24.74 25.70 26.63 26.56 26.01 27.22

19 27.30 28.67 28.81 20.53 25.40 26.52 29.19 29.22 28.67 29.57

20 28.96 30.40 30.76 21.44 24.95 25.90 30.79 30.83 29.97 31.07

21 26.54 27.53 27.60 20.51 25.06 26.48 27.80 27.75 27.12 28.34

22 27.05 28.17 28.27 20.51 25.36 26.60 28.21 28.16 27.81 28.64

23 29.14 32.31 32.51 20.54 26.13 23.24 31.89 31.97 31.21 32.34

24 25.75 26.41 26.53 20.59 24.55 25.73 27.10 27.03 26.18 27.59

Average 27.13 28.54 28.68 20.58 25.24 26.19 28.84 28.83 28.22 29.31

(a) Noisy [26] (b) CBM3D [14] (c) MLP [9] (d) TNRD [11] (e) NI [28]

(f) NC [25, 26] (g) WNNM-1 [3] (h) WNNM-2 [3] (i) WNNM-3 [3] (j) MC-WNNM

Figure 3. Denoised images of the real noisy image “Dog” [26] by different methods. The estimated noise levels of R, G, and B channels

are 16.8, 17.0, and 16.6, respectively. The images are better to be zoomed in on screen.

WNNM achieves the highest PSNR values, while WNNM-

2 achieves the highest PSNR results on 3 of 15 images.

It should be noted that in the CC method [19], a specific

model is trained for each camera and camera setting, while

the other methods uses the same model for all cases.

Fig. 4 shows the denoised images of a scene captured

by Nikon D800 ISO=1600. (The results of DnCNN and

WNNM-1 are not shown here due to the limit of space.) We

can see that CBM3D, NI, NC and CC will either remain

noise or generate color artifacts, while TNRD, WNNM-

2 and WNNM-3 over-smooth the image. In addition, due

to treating each channel equally, both the denoised images

(Fig. 4(g) and Fig. 4(h)) by WNNM-2 and WNNM-3 have

chromatic aberration compared to the mean image (Fig.

4(j)). MC-WNNM results in much better visual quality than

other methods. More visual comparisons can be found in the

supplementary file.

Comparison on speed. We compare the average com-

putational time (second) of different methods (except CC),

which is shown in Table 2. All experiments are run under

the Matlab environment on a machine with 3.5GHz CPU

and 32GB RAM. The fastest result is highlighted in bold.

One can see that Neat Image (NI) is the fastest and costs

about 0.9 second, while the proposed MC-WNNM needs

202.9 seconds. Noted that CBM3D, TNRD, and NC are

implemented with compiled C++ mex-function and with
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Table 2. PSNR(dB) results and averaged computational time (s) of different methods on 15 cropped real noisy images used in [19].

Camera Settings CBM3D MLP TNRD DnCNN NI NC CC WNNM-1 WNNM-2 WNNM-3 MC-WNNM

Canon 5D
39.76 39.00 39.51 37.26 35.68 36.20 38.37 37.51 39.74 39.98 41.13

ISO = 3200

36.40 36.34 36.47 34.13 34.03 34.35 35.37 33.86 35.12 36.65 37.28

36.37 36.33 36.45 34.09 32.63 33.10 34.91 31.43 33.14 34.63 36.52

Nikon D600

34.18 34.70 34.79 33.62 31.78 32.28 34.98 33.46 35.08 35.08 35.53

ISO = 3200

35.07 36.20 36.37 34.48 35.16 35.34 35.95 36.09 36.42 36.84 37.02

37.13 39.33 39.49 35.41 39.98 40.51 41.15 39.86 40.78 39.24 39.56

Nikon D800

36.81 37.95 38.11 35.79 34.84 35.09 37.99 36.35 38.28 38.61 39.26

ISO = 1600

37.76 40.23 40.52 36.08 38.42 38.65 40.36 39.99 41.24 40.81 41.43

37.51 37.94 38.17 35.48 35.79 35.85 38.30 37.15 38.04 38.96 39.55

Nikon D800

35.05 37.55 37.69 34.08 38.36 38.56 39.01 38.60 39.93 37.97 38.91

ISO = 3200

34.07 35.91 35.90 33.70 35.53 35.76 36.75 36.04 37.32 37.30 37.41

34.42 38.15 38.21 33.31 40.05 40.59 39.06 39.73 41.52 38.68 39.39

Nikon D800

31.13 32.69 32.81 29.83 34.08 34.25 34.61 33.29 35.20 34.57 34.80

ISO = 6400

31.22 32.33 32.33 30.55 32.13 32.38 33.21 31.16 33.61 33.43 33.95

30.97 32.29 32.29 30.09 31.52 31.76 33.22 31.98 33.62 34.02 33.94

Average 35.19 36.46 36.61 33.86 35.33 35.65 36.88 35.77 37.27 37.12 37.71

Time 7.8 20.4 6.7 180.3 0.9 18.2 NA 689.1 465.3 198.6 202.9

(a) Noisy [19]: 35.71dB (b) CBM3D [1, 14]: 37.76dB (c) TNRD [11]: 40.52dB (d) NI [28]: 38.42dB (e) NC [25, 26]: 38.65dB

(f) CC [19]: 40.36dB (g) WNNM-2: 41.24dB (h) WNNM-3: 40.81dB (i) MC-WNNM: 41.43dB (j) Mean Image [19]

Figure 4. Denoised images of a region cropped from the real noisy image “Nikon D800 ISO=1600 2” [19] by different methods. The

estimated noise levels of R, G, and B channels are 1.3, 1.1, and 1.4, respectively. The images are better to be zoomed in on screen.

parallelization, while WNNM, MLP, DnCNN, and the pro-

posed MC-WNNM are implemented purely in Matlab.

5. Conclusion

The real noisy color images have different noise statistics

across the R, G, B channels due to digital camera pipelines

in CCD or CMOS sensors. This makes the real color image

denoising problem more challenging than grayscale image

denoising. In this paper, we proposed a novel multi-channel

(MC) denoising model to effectively exploit the redundancy

across color channels while differentiating their different

noise statistics. Specifically, we introduced a weight matrix

to the data term in the RGB channel concatenated weighted

nuclear norm minimization (WNNM) model, and the result-

ing MC-WNNM model can process adaptively the different

noise in RGB channels. We solved the MC-WNNM model

via an ADMM algorithm. Extensive experiments on syn-

thetic and real datasets demonstrated that the proposed MC-

WNNM method outperforms significantly the other com-

peting denoising methods.

The proposed MC-WNNM model can be extended in at

least two directions. Firstly, it is worthy to investigate new

weight matrix beyond the diagonal form, such as the cor-

relation form [33], to further improve the color image de-

noising performance. Secondly, the proposed MC-WNNM

model can be extended for hyperspectral image analysis,

which may contain hundreds of bands with complex noise

statistics.
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