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Abstract

We address the problem of activity detection in continu-

ous, untrimmed video streams. This is a difficult task that

requires extracting meaningful spatio-temporal features to

capture activities, accurately localizing the start and end

times of each activity. We introduce a new model, Re-

gion Convolutional 3D Network (R-C3D), which encodes

the video streams using a three-dimensional fully convolu-

tional network, then generates candidate temporal regions

containing activities, and finally classifies selected regions

into specific activities. Computation is saved due to the

sharing of convolutional features between the proposal and

the classification pipelines. The entire model is trained

end-to-end with jointly optimized localization and classifi-

cation losses. R-C3D is faster than existing methods (569

frames per second on a single Titan X Maxwell GPU) and

achieves state-of-the-art results on THUMOS’14. We fur-

ther demonstrate that our model is a general activity de-

tection framework that does not rely on assumptions about

particular dataset properties by evaluating our approach

on ActivityNet and Charades. Our code is available at

http://ai.bu.edu/r-c3d/

1. Introduction

Activity detection in continuous videos is a challenging

problem that requires not only recognizing, but also pre-

cisely localizing activities in time. Existing state-of-the-art

approaches address this task as detection by classification,

i.e. classifying temporal segments generated in the form of

sliding windows [13, 20, 24, 37] or via an external “pro-

posal” generation mechanism [10, 35]. These approaches

suffer from one or more of the following major drawbacks:

they do not learn deep representations in an end-to-end fash-

ion, but rather use hand-crafted features [33, 34], or deep

features like VGG [28], ResNet [8], C3D [32] etc., learned

separately on image/video classification tasks. Such off-

the-shelf representations may not be optimal for localiz-

ing activities in diverse video domains, resulting in inferior

performance. Furthermore, current methods’ dependence

Figure 1. We propose a fast end-to-end Region Convolutional

3D Network (R-C3D) for activity detection in continuous video

streams. The network encodes the frames with fully-convolutional

3D filters, proposes activity segments, then classifies and refines

them based on pooled features within their boundaries. Our model

improves both speed and accuracy compared to existing methods.

on external proposal generation or exhaustive sliding win-

dows leads to poor computational efficiency. Finally, the

sliding-window models cannot easily predict flexible activ-

ity boundaries.

In this paper, we propose an activity detection model

that addresses all of the above issues. Our Region Convo-

lutional 3D Network (R-C3D) is end-to-end trainable and

learns task-dependent convolutional features by jointly op-

timizing proposal generation and activity classification. In-

spired by the Faster R-CNN [21] object detection approach,

we compute fully-convolutional 3D ConvNet features and

propose temporal regions likely to contain activities, then

pool features within these 3D regions to predict activity

classes (Figure 1). The proposal generation stage filters out

many background segments and results in superior com-

putational efficiency compared to sliding window models.

Furthermore, proposals are predicted with respect to prede-

fined anchor segments and can be of arbitrary length, allow-

ing detection of flexible activity boundaries.

Convolutional Neural Network (CNN) features learned

end-to-end have been successfully used for activity recog-

nition [14, 27], particularly in 3D ConvNets (C3D [32]),
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which learn to capture spatio-temporal features. However,

unlike the traditional usage of 3D ConvNets [32] where

the input is short 16-frame video chunks, our method ap-

plies full convolution along the temporal dimension to en-

code as many frames as the GPU memory allows. Thus,

rich spatio-temporal features are automatically learned from

longer videos. These feature maps are shared between the

activity proposal and classification subnets to save compu-

tation time and jointly optimize features for both tasks.

Alternative activity detection approaches [4, 17, 18, 29,

39] use a recurrent neural network (RNN) to encode a se-

quence of frame or video chunk features (e.g. VGG [28],

C3D [32]) and predict the activity label at each time step.

However, these RNN methods can only model temporal fea-

tures at a fixed granularity (e.g. per-frame CNN features or

16-frame C3D features). In order to use the same classi-

fication network to classify variable length proposals into

specific activities, we extend 2D region of interest (RoI)

pooling to 3D which extracts a fixed-length feature repre-

sentation for these proposals. Thus, our model can utilize

video features at any temporal granularity. Furthermore,

some RNN-based detectors rely on direct regression to pre-

dict the temporal boundaries for each activity. As shown in

object detection [7, 31] and semantic segmentation [2], ob-

ject boundaries obtained using a regression-only framework

are inferior compared to “proposal based detection”.

We perform extensive comparisons of R-C3D to state-

of-the-art activity detection methods using three publicly

available benchmark datasets - THUMOS’14 [12], Activ-

ityNet [9] and Charades [26]. We achieve new state-of-the-

art results on THUMOS’14 and Charades, and improved

results on ActivityNet when using only C3D features.

To summarize, the main contributions of our paper are:

• an end-to-end activity detection model with combined

activity proposal and classification stages that can de-

tect arbitrary length activities;

• fast detection speeds (5x faster than current meth-

ods) achieved by sharing fully-convolutional C3D fea-

tures between the proposal generation and classifica-

tion parts of the network;

• extensive evaluations on three diverse activity detec-

tion datasets that demonstrate the general applicability

of our model.

2. Related Work

Activity Detection There is a long history of activity

recognition, or classifying trimmed video clips into fixed

set of categories [11, 15, 19, 27, 33, 42]. Activity detection

also needs to predict the start and end times of the activities

within untrimmed and long videos. Existing activity de-

tection approaches are dominated by models that use slid-

ing windows to generate segments and subsequently clas-

sify them with activity classifiers trained on multiple fea-

tures [13, 20, 24, 37]. Most of these methods have stage-

wise pipelines which are not trained end-to-end. Moreover,

the use of exhaustive sliding windows is computationally

inefficient and constrains the boundary of the detected ac-

tivities to some extent.

Recently, some approaches have bypassed the need for

exhaustive sliding window search to detect activities with

arbitrary lengths. [4, 17, 18, 29, 39] achieve this by mod-

eling the temporal evolution of activities using RNNs or

LSTMs networks and predicting an activity label at each

time step. The deep action proposal model [4] uses LSTM

to encode C3D features of every 16-frame video chunk,

and directly regresses and classifies activity segments with-

out the extra proposal generation stage. Compared to this

work, we avoid recurrent layers, encoding a large video

buffer with a fully-convolutional 3D ConvNet, and use 3D

RoI pooling to allow feature extraction at arbitrary pro-

posal granularity, achieving significantly higher accuracy

and speed. The method in [41] tries to capture motion

features at multiple resolutions by proposing a Pyramid of

Score Distribution Features. However their model is not

end-to-end trainable and relies on handcrafted features.

Aside from supervised activity detection, a recent

work [36] has addressed weakly supervised activity local-

ization from data labeled only with video level class la-

bels by learning attention weights on shot based or uni-

formly sampled proposals. The framework proposed in [22]

explores the uses of a language model and an activity

length model for detection. Spatio-temporal activity local-

ization [38, 40] have also been explored to some extent. We

only focus on supervised temporal activity localization.

Object Detection Activity detection in untrimmed

videos is closely related to object detection in images. The

inspiration for our work, Faster R-CNN [21], extends R-

CNN [7] and Fast R-CNN [6] object detection approaches,

incorporating RoI pooling and a region proposal network.

Compared to recent object detection models e.g., SSD [16]

and R-FCN [3], Faster R-CNN is a general and robust ob-

ject detection framework that has been deployed on differ-

ent datasets with little data augmentation effort. Like Faster

R-CNN, our R-C3D model is also designed with the goal

of easy deployment on varied activity detection datasets. It

avoids making certain assumptions based on unique char-

acteristics of a dataset, such as the UPC model for Activi-

tyNet [18] which assumes that each video contains a single

activity class. We show the effectiveness of our model on

three different types of activity detection datasets, the most

extensive evaluation to our knowledge.

3. Approach

We propose a Region Convolutional 3D Network (R-

C3D), a novel convolutional neural network for activity de-

tection in continuous video streams. The network, illus-
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Figure 2. R-C3D model architecture. The 3D ConvNet takes raw video frames as input and computes convolutional features. These are

input to the Proposal Subnet that proposes candidate activities of variable length along with confidence scores. The Classification Subnet

filters the proposals, pools fixed size features and then predicts activity labels along with refined segment boundaries.

trated in Figure 2, consists of three components: a shared

3D ConvNet feature extractor [32], a temporal proposal

stage, and an activity classification and refinement stage.

To enable efficient computation and end-to-end training,

the proposal and classification sub-networks share the same

C3D feature maps. The proposal subnet predicts variable

length temporal segments that potentially contain activities,

while the classification subnet classifies these proposals into

specific activity categories or background, and further re-

fines the proposal segment boundaries. A key innovation

is to extend the 2D RoI pooling in Faster R-CNN to 3D

RoI pooling which allows our model to extract features at

various resolutions for variable length proposals. Next, we

describe the shared video feature hierarchies in Sec. 3.1, the

temporal proposal subnet in Sec. 3.2 and the classification

subnet in Sec. 3.3. Sections 3.4 and 3.5 detail the optimiza-

tion strategy during training and testing respectively.

3.1. 3D Convolutional Feature Hierarchies

We use a 3D ConvNet to extract rich spatio-temporal

feature hierarchies from a given input video buffer. It has

been shown that both spatial and temporal features are im-

portant for representing videos, and a 3D ConvNet en-

codes rich spatial and temporal features in a hierarchical

manner. The input to our model is a sequence of RGB

video frames with dimension R
3×L×H×W . The architec-

ture of the 3D ConvNet is taken from the C3D architec-

ture proposed in [32]. However, unlike [32], the input to

our model is of variable length. We adopt the convolu-

tional layers (conv1a to conv5b) of C3D, so a feature

map Cconv5b ∈ R
512×L

8
×

H

16
×

W

16 (512 is the channel dimen-

sion of the layer conv5b) is produced as the output of this

subnetwork. We use Cconv5b activations as the shared input

to the proposal and classification subnets. The height (H)

and width (W ) of the frames are taken as 112 each follow-

ing [32]. The number of frames L can be arbitrary and is

only limited by memory.

3.2. Temporal Proposal Subnet

To allow the model to predict variable length proposals,

we incorporate anchor segments into the temporal proposal

sub-network. The subnet predicts potential proposal seg-

ments with respect to anchor segments and a binary label

indicating whether the predicted proposal contains an ac-

tivity or not. The anchor segments are pre-defined multi-

scale windows centered at L/8 uniformly distributed tem-

poral locations. Each temporal location specifies K anchor

segments, each at a different fixed scale. Thus, the total

number of anchor segments is (L/8) ∗K. The same set of

K anchor segments exists in different temporal locations,

which ensures that the proposal prediction is temporally in-

variant. The anchors serve as reference activity segments

for proposals at each temporal location, where the maxi-

mum number of scales K is dataset dependent.

To obtain features at each temporal location for predict-

ing proposals with respect to these anchor segments, we

first add a 3D convolutional filter with kernel size 3×3×3
on top of Cconv5b to extend the temporal receptive field

for the temporal proposal subnet. Then, we downsample

the spatial dimensions (from H
16 ×

W
16 to 1×1) to produce

a temporal only feature map Ctpn ∈ R
512×L

8
×1×1 by ap-

plying a 3D max-pooling filter with kernel size 1× H
16×

W
16 .

The 512-dimensional feature vector at each temporal loca-

tion in Ctpn is used to predict a relative offset {δci, δli} to

the center location and the length of each anchor segment

{ci, li}, i ∈ {1, · · · ,K}. It also predicts the binary scores

for each proposal being an activity or background. The pro-

posal offsets and scores are predicted by adding two 1×1×1
convolutional layers on top of Ctpn.

Training: For training, we need to assign positive/negative

labels to the anchor segments. Following the standard prac-

tice in object detection [21], we choose a positive label if

the anchor segment 1) overlaps with some ground-truth ac-

tivity with Intersection-over-Union (IoU) higher than 0.7, or

2) has the highest IoU overlap with some ground-truth ac-

tivity. If the anchor has IoU overlap lower than 0.3 with all

ground-truth activities, then it is given a negative label. All

others are held out from training. For proposal regression,

ground truth activity segments are transformed with respect

to nearby anchor segments using the coordinate transfor-

mations described in Sec. 3.4. We sample balanced batches

with a positive/negative ratio of 1:1.

3.3. Activity Classification Subnet

The activity classification stage has three main functions:

1) selecting proposal segments from the previous stage, 2)
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three-dimensional region of interest (3D RoI) pooling to ex-

tract fixed-size features for selected proposals, and 3) activ-

ity classification and boundary regression for the selected

proposals based on the pooled features.

Some activity proposals generated by the proposal sub-

net highly overlap with each other and some have a low pro-

posal score indicating low confidence. Following the stan-

dard practice in object detection [5, 21] and activity detec-

tion [24, 39], we employ a greedy Non-Maximum Suppres-

sion (NMS) strategy to eliminate highly overlapping and

low confidence proposals. The NMS threshold is set as 0.7.

The selected proposals can be of arbitrary length. How-

ever we need to extract fixed-size features for each of them

in order to use fully connected layers for further activity

classification and regression. We design a 3D RoI pool-

ing layer to extract the fixed-size volume features for each

variable-length proposal from the shared convolutional fea-

tures Cconv5b ∈ R
512×(L/8)×7×7 (shared with the temporal

proposal subnet). Specifically, in 3D RoI pooling, an input

feature volume of size, say, l×h×w is divided into ls×hs×ws

sub-volumes each with approximate size l
ls
× h

hs

× w
ws

, and

then max pooling is performed inside each sub-volume. In

our case, suppose a proposal has the feature volume of

lp×7×7 in Cconv5b, then this feature volume will be di-

vided into 1×4×4 grids and max pooled inside each grid.

Thus, proposals of arbitrary lengths give rise to output vol-

ume features of the same size 512×1×4×4.

The output of the 3D RoI pooling is fed to a series of two

fully connected layers. Here, the proposals are classified to

activity categories by a classification layer and the refined

start-end times for these proposals are given by a regression

layer. The classification and regression layers are also two

separate fully connected layers and for both of them the in-

put comes from the aforementioned fully connected layers

(after the 3D RoI pooling layer).

Training: We need to assign an activity label to each pro-

posal for training the classifier subnet. An activity label is

assigned if the proposal has the highest IoU overlap with a

ground-truth activity, and at the same time, the IoU over-

lap is greater than 0.5. A background label (no activity) is

assigned to proposals with IoU overlap lower than 0.5 with

all ground-truth activities. Training batches are chosen with

positive/negative ratio of 1:3.

3.4. Optimization

We train the network by optimizing both the classifica-
tion and regression tasks jointly for the two subnets. The
softmax loss function is used for classification, and smooth
L1 loss function [6] is used for regression. Specifically, the
objective function is given by:

Loss =
1

Ncls

∑

i

Lcls(ai, a
∗

i ) + λ
1

Nreg

∑

i

a
∗

iLreg(ti, t
∗

i ) (1)

where Ncls and Nreg stand for batch size and the number of

anchor/proposal segments, λ is the loss trade-off parameter

and is set to a value 1. i is the anchor/proposal segments

index in a batch, ai is the predicted probability of the pro-

posal or activities, a∗i is the ground truth, ti = {δĉi, δl̂i}
represents predicted relative offset to anchor segments or

proposals. t∗i = {δci, δli} represents the coordinate trans-

formation of ground truth segments to anchor segments or

proposals. The coordinate transformations are computed as

follows:
{

δci = (c∗i − ci)/li

δli = log(l∗i /li)
(2)

where ci and li are the center location and the length of

anchor segments or proposals while c∗i and l∗i denote the

same for the ground truth activity segments.

In our R-C3D model, the above loss function is applied

for both the temporal proposal subnet and the activity clas-

sification subnet. In the proposal subnet, the binary classi-

fication loss Lcls predicts whether the proposal contains an

activity or not, and the regression loss Lreg optimizes the

relative displacement between proposals and ground truths.

In the proposal subnet the losses are activity class agnostic.

For the activity classification subnet, the multiclass classi-

fication loss Lcls predicts the specific activity class for the

proposal, and the number of classes are the number of ac-

tivities plus one for the background. The regression loss

Lreg optimizes the relative displacement between activities

and ground truths. All four losses for the two subnets are

optimized jointly.

3.5. Prediction

Activity prediction in R-C3D consists of two steps. First,

the proposal subnet generates candidate proposals and pre-

dicts the start-end time offsets as well as proposal score for

each. Then the proposals are refined via NMS with thresh-

old value 0.7. After NMS, the selected proposals are fed to

the classification network to be classified into specific ac-

tivity classes, and the activity boundaries of the predicted

proposals are further refined by the regression layer. The

boundary prediction in both proposal subnet and classifica-

tion subnet is in the form of relative displacement of center

point and length of segments. In order to get the start time

and end time of the predicted proposals or activities, inverse

coordinate transformation to Equation 2 is performed.

R-C3D accepts variable length input videos. However,

to take advantage of the vectorized implementation in fast

deep learning libraries, we pad the last few frames of short

videos with last frame, and break long videos into buffers

(limited by memory only). NMS at a lower threshold (0.1

less than the mAP evaluation threshold) is applied to the

predicted activities to get the final activity predictions.
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Table 1. Activity detection results on THUMOS’14 (in percent-

age). mAP at different IoU thresholds α are reported. The top

three performers on the THUMOS’14 challenge leaderboard and

other results reported in existing papers are shown.

α

0.1 0.2 0.3 0.4 0.5

Karaman et al. [13] 4.6 3.4 2.1 1.4 0.9

Wang et al. [37] 18.2 17.0 14.0 11.7 8.3

Oneata et al. [20] 36.6 33.6 27.0 20.8 14.4

Heilbron et al. [10] - - - - 13.5

Escorcia et al. [4] - - - - 13.9

Richard et al. [22] 39.7 35.7 30.0 23.2 15.2

Yeung et al. [39] 48.9 44.0 36.0 26.4 17.1

Yuan et al. [41] 51.4 42.6 33.6 26.1 18.8

Shou et al. [24] 47.7 43.5 36.3 28.7 19.0

Shou et al. [23] - - 40.1 29.4 23.3

R-C3D (our one-way buffer) 51.6 49.2 42.8 33.4 27.0

R-C3D (our two-way buffer) 54.5 51.5 44.8 35.6 28.9

4. Experiments

We evaluate R-C3D on three large-scale activity detec-

tion datasets - THUMOS’14 [12], Charades [26] and Activ-

ityNet [9]. Sections 4.1, 4.2, 4.3 provide the experimen-

tal details and evaluation results on these three datasets.

Results are shown in terms of mean Average Precision -

mAP@α where α denotes different Intersection over Union

(IoU) thresholds, as is the common practice in the litera-

ture. Section 4.4 provides the detection speed comparison

with state-of-the-art methods.

4.1. Experiments on THUMOS’14

THUMOS’14 activity detection dataset contains over 24

hours of video from 20 different sport activities. The train-

ing set contains 2765 trimmed videos while the validation

and the test sets contain 200 and 213 untrimmed videos re-

spectively. This dataset is particularly challenging as it con-

sists of very long videos (up to a few hundreds of seconds)

with multiple activity instances of very small duration (up

to few tens of seconds). Most videos contain multiple ac-

tivity instances of the same activity class. In addition, some

videos contain activity segments from different classes.

Experimental Setup: We divide 200 untrimmed videos

from the validation set into 180 training and 20 held out

videos to get the best hyperparameter setting. All 200

videos are used as the training set and the final results are

reported on 213 test videos. Since the GPU memory is lim-

ited, we first create a buffer of 768 frames at 25 frames

per second (fps) which means approximately 30 seconds of

video. Our choice is motivated by the fact that 99.5% of

all activity segments in the validation set (used here as the

training set) are less than 30 seconds long. These buffers of

frames act as inputs to R-C3D . We can create the buffer by

sliding from the beginning of the video to the end, denoted

as the ‘one-way buffer’. An additional pass from the end of

the video to the beginning is used to increase the amount of

Table 2. Per-class AP at IoU threshold α = 0.5 on THUMOS’14

(in percentage).

[20] [39] [24] R-C3D (ours)

Baseball Pitch 8.6 14.6 14.9 26.1

Basketball Dunk 1.0 6.3 20.1 54.0

Billiards 2.6 9.4 7.6 8.3

Clean and Jerk 13.3 42.8 24.8 27.9

Cliff Diving 17.7 15.6 27.5 49.2

Cricket Bowling 9.5 10.8 15.7 30.6

Cricket Shot 2.6 3.5 13.8 10.9

Diving 4.6 10.8 17.6 26.2

Frisbee Catch 1.2 10.4 15.3 20.1

Golf Swing 22.6 13.8 18.2 16.1

Hammer Throw 34.7 28.9 19.1 43.2

High Jump 17.6 33.3 20.0 30.9

Javelin Throw 22.0 20.4 18.2 47.0

Long Jump 47.6 39.0 34.8 57.4

Pole Vault 19.6 16.3 32.1 42.7

Shotput 11.9 16.6 12.1 19.4

Soccer Penalty 8.7 8.3 19.2 15.8

Tennis Swing 3.0 5.6 19.3 16.6

Throw Discus 36.2 29.5 24.4 29.2

Volleyball Spiking 1.4 5.2 4.6 5.6

mAP@0.5 14.4 17.1 19.0 28.9

training data, denoted as the ‘two-way buffer’. We initialize

the 3D ConvNet part of our model with C3D weights trained

on Sports-1M and finetuned on UCF101 released by the au-

thors in [32]. We allow all the layers of R-C3D to be trained

on THUMOS’14 with a fixed learning rate of 0.0001.

The number of anchor segments K chosen for this

dataset is 10 with specific scale values [2, 4, 5, 6, 8, 9, 10,

12, 14, 16]. The values are chosen according to the distri-

bution of the activity durations in the training set. At 25 fps

and temporal pooling factor of 8 (Ctpn downsamples the

input by 8 temporally), the anchor segments correspond to

segments of duration between 0.64 and 5.12 seconds1. Note

that, the predicted proposals or activities are relative to the

anchor segments but not limited to the anchor boundaries,

enabling our model to detect variable-length activities.

Results: As a sanity check, we first evaluate the perfor-

mance of the temporal proposal subnet.A predicted pro-

posal is marked correct if its IoU with a ground truth ac-

tivity is more than 0.7, otherwise it is considered incorrect.

With this binary setting, precision and recall values of the

temporal proposal subnet are 85% and 83% respectively.

In Table 1, we present a comparative evaluation of the ac-

tivity detection performance of R-C3D with existing state-

of-the-art approaches in terms of mAP at IoU thresholds

0.1-0.5 (denoted as α). For both the one-way buffer setting

and the two-way buffer setting we achieve new state-of-the-

art for all five α values. In the one-way setting, mAP@0.5

is 27.0% which is an 3.7% absolute improvement from

the state-of-the-art. The two-way buffer setting further

1
2 ∗ 8/25 = 0.64 and 16 ∗ 8/25 = 5.12
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increases the mAP values at all the IoU thresholds with

mAP@0.5 reaching as far as 28.9%. Our model compre-

hensively outperforms the current state-of-the-art by a large

margin (28.9% compared to 23.3% as reported in [23]).

The Average Precision (AP) for each class in THU-

MOS’14 at IoU threshold 0.5 for the two-way buffer setting

is shown in Table 2. R-C3D outperforms the all the meth-

ods in most classes and shows significant improvement (by

more than 20% absolute AP over the next best) for activities

e.g., Basketball Dunk, Cliff Diving, and Javelin Throw. For

some of the activities, our method is only second to the best

performing ones by a very small margin (e.g., Billiards or

Cricket Shot). Figure 3(a) shows some representative qual-

itative results from two videos in this dataset.

4.2. Experiments on ActivityNet

The ActivityNet [9] dataset consists of untrimmed

videos and is released in three versions. We use the latest

release (1.3) which has 10024, 4926 and 5044 videos con-

taining 200 different types of activities in the train, valida-

tion and test sets respectively. Most videos contain activity

instances of a single class covering a great deal of the video.

Compared to THUMOS’14, this is a large-scale dataset both

in terms of the number of activities involved and the amount

of video. Researchers have taken part in the ActivityNet

challenge [1] held on this dataset. The performances of the

participating teams are evaluated on test videos for which

the ground truth annotations are not public. In addition to

evaluating on the validation set, we show our performance

on the test set after evaluating it on the challenge server.

Experimental Setup: Similar to THUMOS’14, the length

of the input buffer is set to 768 but, as the videos are long,

we sample frames at 3 fps to fit it in the GPU memory. This

makes the duration of the buffer approximately 256 seconds

covering over 99.99% training activities. The considerably

long activity durations prompt us to set the number of an-

chor segments K to be as high as 20. Specifically, we chose

the following scales - [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16,

20, 24, 28, 32, 40, 48, 56, 64]. Thus the shortest and the

longest anchor segments are of durations 2.7 and 170 sec-

onds respectively covering 95.6% training activities.

Considering the vast domain difference of the activi-

ties between Sports-1M and ActivityNet, we finetune the

Sports-1M pretrained 3D ConvNet model [32] with the

training videos of ActivityNet. We initialize the 3D Con-

vNet with these finetuned weights. AcitivityNet being a

large scale dataset, the training takes more epochs. As a

speed-efficiency trade-off, we freeze the first two convolu-

tional layers in our model during training. The learning rate

is kept fixed at 10−4 for first 10 epochs and is decreased to

10−5 for the last 5 epochs. Based on the improved results

on the THUMOS’14, we choose the two-way buffer setting

with horizontal flipping of frames for data augmentation.

Table 3. Detection results on ActivityNet in terms of mAP@0.5

(in percentage). The top half of the table shows performance from

methods using additional handcrafted features while the bottom

half shows approaches using deep features only (including ours).

Results for [29] are taken from [1]

train data validation test

G. Singh et. al. [30] train 34.5 36.4

B. Singh et. al. [29] train+val - 28.8

UPC [18] train 22.5 22.3

R-C3D (ours) train 26.8 26.8

R-C3D (ours) train+val - 28.4

Results: In Table 3 we show the performance of R-C3D

and compare with existing published approaches. Results

are shown for two different settings. In the first setting,

only the training set is used for training and the perfor-

mance is shown for either the validation or test data or both.

In the second setting, training is done on both training and

validation sets while the performance is shown on the test

set. The table shows that the proposed method does achieve

a performance better than methods not using handcrafted

features e.g., UPC [18]. UPC is the most fair compari-

son as it also uses only C3D features. However, it relies

on a strong assumption that each video in ActivityNet just

contains one activity class. Our approach obtains an im-

provement of 4.3% on the validation set and 4.5% on the

test set over UPC [18] in terms of mAP@0.5 without any

such strong assumptions. When both training and validation

sets are used for training, the performance improves further

by 1.6%. The ActivityNet Challenge in 2017 introduced a

new evaluation metric where mAP at 10 evenly distributed

thresholds between 0.5 and 0.95 are averaged to get the av-

erage mAP. Using only training data to train R-C3D, the

average mAP for the validation and test set are 12.7% and

13.1% respectively. On the other hand, if both training and

validation data is used during training, the average mAP for

the test set increases to 16.7% showing the benefit of our

end-to-end model when more data is available for training.

R-C3D falls slightly behind [29] which uses LSTM

based tracking and performs activity prediction using deep

features as well as optical flow features from the tracked

trajectories. The approach in [30] also uses handcrafted

motion features like MBH on top of inception and C3D

features in addition to dynamic programing based post pro-

cessing. However, the heavy use of an ensemble of hand-

engineered features and dataset dependent heuristics not

only stops these methods from learning in an end-to-end

fashion but makes them less general across datasets. Unlike

these methods, R-C3D is trainable completely end-to-end

and is easily extensible to other datasets with little param-

eter tuning, providing better generalization performance.

Our method is also capable of using hand engineered fea-

tures with a possible boost to performance, and we keep
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Table 4. Activity detection results on Charades (in percentage).

We report the results using the same evaluation metric as in [25].

mAP

standard post-process

Random [25] 4.2 4.2

RGB [25] 7.7 8.8

Two-Stream [25] 7.7 10.0

Two-Stream+LSTM [25] 8.3 8.8

Sigurdsson et al. [25] 9.6 12.1

R-C3D (ours) 12.4 12.7

this as a future task. Figure 3(b) shows some representative

qualitative results from this dataset.

4.3. Experiments on Charades

Charades [26] is a recently introduced dataset for activ-

ity classification and detection. The activity detection task

involves daily life activities from 157 classes. The dataset

consists of 7985 train and 1863 test videos. The videos are

recorded by Amazon Mechanical Turk users based on pro-

vided scripts. Apart from low illumination, diversity and

casual nature of the videos containing day-to-day activities,

an additional challenge of this dataset is the abundance of

overlapping activities, sometimes multiple activities having

exactly the same start and end times (typical examples in-

clude pairs of activities like ‘holding a phone’ and ‘playing

with a phone’ or ‘holding a towel’ and ‘tidying up a towel’).

Experimental Setup: For this dataset we sample frames at

5 fps, and the input buffer is set to contain 768 frames. This

makes the duration of the buffer approximately 154 seconds

covering all the ground truth activity segments in Charades

train set. As the activity segments for this dataset are longer,

we choose the number of anchor segments K to be 18 with

specific scale values [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20,

24, 28, 32, 40, 48]. So the shortest anchor segment has a

duration of 1.6 seconds and the longest anchor segment has

a duration of 76.8 seconds. Over 99.96% of the activities

in the training set is under 76.8 seconds. For this dataset

we, additionally, explored slightly different settings of the

anchor segment scales, but found that our model is not very

sensitive to this hyperparameter.

We first finetune the Sports-1M pretrained C3D

model [32] on the Charades training set at the same 5 fps

and initialize the 3D ConvNet part of our model with these

finetuned weights. Next, we train R-C3D end-to-end on

Charades by freezing the first two convolutional layers in

order to accelerate training. The learning rate is kept fixed at

0.0001 for the first 10 epochs and then decreased to 0.00001

for 5 further epochs. We augment the data by following the

two-way buffer setting and horizontal flipping of frames.

Results: Table 4 provides a comparative evaluation of

the proposed model with various baseline models reported

in [25]. This approach [25] trains a CRF based video clas-

sification model (asynchronous temporal fields) and eval-

uates the prediction performance on 25 equidistant frames

Table 5. Activity detection speed during inference.

FPS

S-CNN [24] 60

DAP [4] 134.1

R-C3D (ours on Titan X Maxwell) 569

R-C3D (ours on Titan X Pascal) 1030

by making a multi-label prediction for each of these frames.

The activity localization result is reported in terms of mAP

metric on these frames. For a fair comparison, we map

our activity segment prediction to 25 equidistant frames and

evaluate using the same mAP evaluation metric. A second

evaluation strategy proposed in this work relies on a post-

processing stage where the frame level predictions are aver-

aged across 20 frames leading to more spatial consistency.

As shown in the Table 4, our model outperforms the asyn-

chronous temporal fields model proposed in [25] as well as

the different baselines reported in the same paper. While the

improvement over the standard method is as high as 2.8%,

the improvement after the post-processing is not as high.

One possible reason could be that our end-to-end fully con-

volutional model captures the spatial consistency implicitly

without requiring any manually-designed postprocessing.

Following the standard practice we also evaluated our

model in terms of mAP@0.5 which comes out to be 9.3%.

The performance is not at par with other datasets presum-

ably because of the inherent challenges involved in Cha-

rades e.g., the low illumination indoor scenes or the multi-

label nature of the data. Initialization with a better C3D

classification model trained on indoor videos with these

challenging conditions may further boost the performance.

Figure 3(c) shows some representative qualitative results

from one video in this dataset.

One of the major challenges of this dataset is the pres-

ence of a large number of temporally overlapping activities.

The results show that our model is capable of handling such

scenarios. This is achieved by the ability of the proposal

subnet to produce possibly overlapping activity proposals

and is further facilitated by region offset regression.

4.4. Activity Detection Speed

In this section, we compare detection speed of our model

with two other state-of-the-art methods. The comparison

results are shown in Table 5. S-CNN [24] uses a time-

consuming sliding window strategy and predicts at 60 fps.

DAP [4] incorporates a proposal prediction step on top of

LSTM and predicts at 134.1 fps. R-C3D constructs the pro-

posal and classification pipeline in an end-to-end fashion

and these two stages share the features making it signifi-

cantly faster. The speed of execution is 569 fps on a single

Titan-X (Maxwell) GPU for the proposal and classification

stages together. On the upgraded Titan-X (Pascal) GPU, our

inference speed reaches even higher (1030 fps). One of the

reasons of the speedup of R-C3D over DAP may come from
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Ours

(a) THUMOS’14

Canoeing (0s, 7.6s)

Canoeing (0s, 43.8s, 0.99)

Canoeing    (11.3s, 46.2s)

Clean and Jerk    (2.7s, 16.0s)

Clean and Jerk    (2.5s, 14.4s, 0.80)

GT

Ours

GT

Ours
Canoeing (0s, 7s, 0.76) Canoeing (27.7s, 62.6s, 0.90)

(b) ActivityNet

Holding a book (0.6s, 36.0s, 0.48)

Opening a book (0s, 3.2s, 0.48)

Opening a book (0.0s, 3.7s)

Holding a book (0.0s, 39.7s)

Watching/Reading/Looking at a book (0.0s, 36.3s)

Opening a door (35.0s, 41.1s)

Closing a book (32.3s, 37.3s)

Walking through a doorway (37.1s, 41.6s)

Grasping onto a doorknob (34.6s, 41.6s)

Watching/Reading/Looking at a book (9.2s, 36.9s, 0.46)

GT

Ours

Opening a book (18.4s, 28.7s, 0.41) Closing a book (31.5s, 36.1s, 0.32)

Walking through a doorway

(37.7s, 42.4s, 0.32)

(c) Charades

Figure 3. Qualitative visualization of the predicted activities by R-C3D (best viewed in color). Figure (a) and (b) show results for two

videos each in THUMOS’14 and ActivityNet. (c) shows the result for one video from Charades. Groundtruth activity segments are marked

in black. Predicted activity segments are marked in green for correct predictions and in red for wrong ones. Predicted activities with IoU

more than 0.5 are considered as correct. Corresponding start-end times and confidence score are shown inside brackets.

the fact that the LSTM recurrent architecture in DAP takes

time to unroll, while R-C3D directly accepts a wide range

of frames as input and the convolutional features are shared

by the proposal and classification subnets.

5. Conclusion

We introduce R-C3D, the first end-to-end temporal pro-

posal classification network for activity detection. We eval-

uate our approach on three large-scale data sets with very

diverse characteristics, and demonstrate that it can detect

activities faster and more accurately than existing models

based on 3D Convnets. Additional features can be incorpo-

rated into R-C3D to further boost the activity detection re-

sult. One future direction may be to integrate R-C3D with

hand-engineered motion features for improved activity pre-

diction without sacrificing speed.
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