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Abstract

The complete plenoptic function records radiance of rays

from every location, at every angle, for every wavelength

and at every time. The signal is multi-dimensional and has

long relied on multi-modal sensing such as hybrid light field

camera arrays. In this paper, we present a single cam-

era hyperspectral light field imaging solution that we call

Snapshot Plenoptic Imager (SPI). SPI uses spectral coded

catadioptric mirror arrays for simultaneously acquiring the

spatial, angular and spectral dimensions. We further apply

a learning-based approach to improve the spectral resolu-

tion from very few measurements. Specifically, we demon-

strate and then employ a new spectral sparsity prior that

allows the hyperspectral profiles to be sparsely represented

under a pre-trained dictionary. Comprehensive experi-

ments on synthetic and real data show that our technique

is effective, reliable, and accurate. In particular, we are

able to produce the first wide FoV multi-spectral light field

database.

1. Introduction

The complete plenoptic function records radiance of rays

from every location, at every angle, for every wavelength

and at every time. The function hence is 6D: 2D in position

(spatial), 2D in direction (angular), 1D in spectrum (spec-

tral), and 1D in time (temporal). Existing techniques have

been focused on reconstructing a subset of these dimen-

sions: a static camera for spatial, a video camera for spatial

and temporal, a light field camera for spatial and angular,

and imaging spectrometer for spatial and spectral. Simul-

taneously capturing multiple dimensions of the plenoptic

function is challenging and successful solutions have gen-

erally adopted a hybrid sensing approach: cameras of dif-

ferent modalities are integrated and tailored algorithms are

then employed for fusing different dimensions.

A notable example is the multispectral light field cam-

Figure 1. Our Snapshot Plenoptic Imager (SPI) combines a single

DSLR camera with an array of spectral coded catadioptric mirrors.

era array[13] where each camera is equipped with a specific

band-pass filter and image warping is used to combine the

spatial-angular and the spectral dimensions. Such a system

can efficiently capture high quality plenopic function but

the solution is cumbersome and expensive. Most recently,

[26] constructed a hybrid system composed of a commer-

cial light field camera (Lytro) and a coded aperture spectral

imager (CASSI). This imaging system is much smaller than

camera array solution in size and potentially portable but it

requires complex optical configuration and extremely accu-

rate calibration. In this paper, we present a novel snapshot

plenoptic imaging solution by using only a single camera.

Instead of constructing a hybrid sensor, we exploit using

catadioptric mirror arrays for simultaneously acquiring the

spatial, angular and spectral dimensions. We call Snapshot

Plenoptic Imager or SPI.

Existing catadioptric systems combine cameras with

curved mirrors and have shown promising results in broad

applications, ranging from panoramic imaging [2, 17], wide

FOV light field imaging and rendering[24] to robust volu-

metric reconstruction[9]. Our SPI modifies existing cata-

985



Figure 2. The SPI system samples the plenoptic function in different dimensions and reconstructs the signal using a pre-trained hyperspec-

tral dictionary.

dioptric mirror arrays by coating each mirror with a differ-

ent spectral filter. The spectral-coded catadioptric mirror

array in essence acquires compressively sensed plenoptic

function. We apply multi-perspective image registration for

aligning individual spectral image on the catadioptric mir-

ror. Figure 1 shows the configuration of our SPI prototype.

Snapshot hyperspectral imaging has long suffered from

the trade-off between spatial and spectral resolution. Typi-

cal snapshop spectral imager, such as tomographic imaging

spectrometer, use diffraction grating to disperse the trans-

mitted light onto the detector. Higher order dispersion pat-

terns provide dense spectral samples but significantly de-

crease spatial resolution. We hence further apply a learning-

based approach to circunvent this limitation. Specifically,

we demonstrate and then employ a new spectral sparsity

prior that allows the hyperspectral profiles to be sparsely

represented under a pre-trained dictionary. The dictionary

is obtained from publicly available hyperspectral image

database and we reconstruct the signal under the sparsity

prior. Figure 2 shows the pipeline of proposed SPI system.

We evaluate our solution on both synthetic data and real

indoor scenes. Specifically, we generate simulated virtual

SPI images as well as use the hyperspectral image bench-

mark [28]. Quantitative evaluations show that our technique

achieves very high accuracy in reconstruction. In particular,

since our catadioptric mirror array provides equal-baselined

viewpoints, we are able to produce the first wide hyperspec-

tral light field database.

2. Related Work

Hyperspectral Imaging. Hyperspectral imaging pro-

vides densely sampled spectral signals and benefits high

quality remote sensing [12], with a wide range of ap-

plications in agriculture, military, astronomy, surveillance

and etc. [3, 6, 8, 7]. Traditional hyperspectral cam-

eras and imaging spectrometers have very limited tempo-

ral resolution because they record scene reflectance in a

scanning manner over either spatial or spectral domain.

Non-scanning methods like computed tomographic imag-

ing spectrometer measure a 2D projection of the 3D dat-

acube but suffer from low spatial resolution. To circumvent

these limitations, computational methods and spectral pri-

ors are proposed. Recent studies in coded aperture imag-

ing have boosted snapshot spectral imaging by encoding

3D datacube with a coded mask on aperture plane and re-

construct spectral information computationally. To recover

scene spectra from a single color image, Brown et al. [21]

introduced a new strategy of learning a non-linear radial

function network between multispectral images and single

RGB images. They further managed to recover both scene

reflectance and illumination spectra. Similar work of Arad

et al. [1] recovered scene spectra from RGB images by ex-

ploring spectral sparsity. Certain methods trying to retrieve

spectra from RGB inputs can not handle metamerism well,

meaning different spectral power distributions can have the

same RGB response.

Light Field Imaging. Recently there has been an emerg-

ing trend of light field photography in both industry and

consumer market. By acquiring spatial and angular dimen-

sions of plenoptic function, light field cameras provides

novel functionalities including depth estimation, scene re-

covery, digital refocusing, dynamic depth-of-field and view

synthesis. To acquire angualr variation, micro-lens array
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has been widely used in light field imaging [22]. Off-the-

shelf light field cameras (Lytro and Raytrix) both place a

lens array above the sensor to record directional rays but

lead to low spatial resoltuion. To improve spatial resolution,

Veeraraghavan [25] applied coded mask instead of lens-

array on the optical path to sample the 4D plenoptic func-

tion in a different pattern. Most recently, Li and Ye [19, 29]

acquired light field by non-perspective cameras using rota-

tional X-slits lenses without sacrificing spatial resolution.

This novel sampling strategy provides potential advantages

on stereo matching, volumetric reconstruction and refocus-

ing effects. Our SPI system exploits spectral-coded cata-

dioptric mirror array to record different views and different

bands in a single shot, thus achieving 5D plenoptic imaging.

Sparse Representation. Research in sparse representa-

tion has produced impressive improvement in image pro-

cessing, including image de-noising, restoration and single

image super-resolution. In these tasks, the aim is to find

a compact over-complete dictionary from a given bunch of

training data so that any natural image can be a sparse com-

bination of atoms with respect to the dictionary. To super-

resolve a single image, Yang et al. [27] jointly learned cou-

pled dictionaries for high resolution image patches and low

resolution ones. In this learning strategy, high resolution

image patch and its corresponding low resolution one are

forced to have the same sparse decomposition in two dictio-

naries. Inspired by their work, we devise a similar learning

method to recover hyperspectral signals from undersampled

measurements.

Catadioptric Imaging. Catadioptric imaging systems

combine lenses with curved reflective surfaces to capture

a wide view of world with a single sensor and have been

broadly used in panoramic imaging tasks including surveil-

lance, autonomous vehicles and immersive virtual reality

content generation [17]. Baker and Nayar [2] presented a

complete and detailed class of single viewpoint catadiop-

tric imaging configurations. To handle non-single view-

point catadioptric systems and complex reflection surfaces,

Yu [30] unified different camera models into a general and

linear representation. Catadioptric imaging system is also

capable of light field acquisition. Levoy [18] aimed a cam-

era at a planar mirror array to capture light fields and sim-

ulated wide aperture photography. Taguchi [24] proposed

geometric modeling for non-single viewpoint catadioptric

cameras and used a spherical mirror array for wide field-of-

view light field acquisition. Our work combines catadiop-

tric system with hyperspectral sensing for the first time to

our knowledge. Our SPI system can provide high spatial-

spectral resolution hyperspectral images.

3. Spectral Sparsity Prior

In this paper, we describe our exploitation of the spectral

sparsity of natural hyperspectral images. We first experi-

mentally prove that hyperspectral signals can be sparsely

represented in an over-complete dictionary by exploiting a

large number of publicly available spectral image datasets.

Then we designed a spectral sampling strategy to compres-

sively measure scene spectra. Finally, the hyperspectral dat-

acube was recovered via sparse decomposition.

Figure 3. We sparsely represent hyperspectral signals using an

over-complete dictionary.

Let h be an M-dimensional hyperspectral signal(spectral

power distribution). The spectral sparsity prior says: given

a pre-trained over-complete dictionary Dhs, where Dhs ∈
R

M∗N , arbitrary hyperspectral signal h can be a product of

the dictionary Dhs and a coefficient vector β, where β ∈
R

N , has very few non-zero elements as shown in Figure 3.

h = Dhs · β, ‖β‖0 ≪ N (1)

Given a training set: h1, h2, ..., an over-complete hyper-

spectral dictionary Dhs is learned by minimizing l0 of β and

residual error. Since l0 norm minimization is well-known

to be NP-hard, Donoho [10] mathematically proved that the

ill-posed problem can be efficiently solved by l1 norm min-

imization if the coefficient vector β is sufficiently sparse.

That gives:

Dhs = argmin
D

1

n

n∑

i=1

1

2
‖hi −Dβi‖

2

2
+ λ‖βi‖1 (2)

where λ is a balance term to adjust sparsity and residual

error. The optimization in 2 is solved by applying the online

dictionary learning (ODL) algorithm in [20].

To verity the spectral sparsity prior, we tested on

two publicly available hyperspectral datasets with differ-

ent scales. First on a multispectral image dataset from

Columbia University [28] (31 bands), and second on a
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hyperspectral dataset from ImageVal (396 bands). These

databases contain a large number of indoor scenes and ob-

jects of various material under CIE standard illumination.

In both datasets, we learn a compact over-complete hyper-

spectral dictionary Dhs containing 150 and 1000 spectral

atoms respectively. To verify the validity of the dictionary

and the sparse prior, we found the sparsest solution β̂ using

the algorithm in [11].

β̂ = argmin
β

1

2
‖h−Dhs · β‖

2

2
s.t. ‖β‖1 < k (3)

Figure 4 illustrates Peak Signal-Noise Ratio (PSNR) of re-

covered hyperspectral images under different parameters k

and at different wavelengths. Since hyperspectral signals

Figure 4. Band-wise Peak Signal-Noise Ratio (PSNR) under dif-

ferent parameters k

are sparse under a well-trained dictionary, it is compressible

and can be compressively measured, then computationally

recovered. The theory of compressive sensing indicates that

sparse signals can be faithfully recovered with much less

measurements required by the Shannon-Nyquist sampling

theorem. Let S denote the sampling matrix, S ∈ R
K∗M ,the

measurement vector m can be formulated as:

m = S · h = S ·Dhs · β = Ms · β (4)

Ms is the measuring matrix Ms ∈ R
K∗N ,K ≪ N of

sparse signal β. In order to faithfully retrieve the sparse

signal, measuring matrix Ms should satisfy the Restricted

Isometry Property: for k-sparse signals, arbitrary 2k col-

umn vectors in Ms should be linearly independent. We

solved the underdetermined linear equation 4 using the al-

gorithm in [11]:

β̂ = argmin
β

1

2
‖m−Ms · β‖

2

2
+ λ‖β‖1 (5)

In our work, we adopted a strategy of co-training two

dictionaries: hyperspectral dictionary Dhs and undersam-

pled dictionary Dus. To efficiently train tow dictionaries,

we coupled Dhs and Dus together to form a compound dic-

tionary D∗:

D∗ =

(
Dhs

Dus

)

h
′

i =

(
h

δ · S · h

)

(6)

where δ is a balance term and simply set to be 1 in our

experiments. D∗ is learned from a training set of n samples

by solving a similar optimization task as 2:

D∗ = argmin
D

′

1

n

n∑

i=1

1

2
‖h

′

i −D
′

βi‖
2

2
+ λ‖βi‖1 (7)

We combined two dictionaries together in the training stage

which forced the hyperspectral signal and its corresponding

undersampled vector to have the same sparse coefficients

with respect to the dictionaries. The undersampled dictio-

nary Dus was used to find sparse coefficients β̂. Then the

hyperspectral signal h was recovered by h = Dhs · β̂.

4. Snapshot Plenoptic Imager

We constructed a SPI system for 5D light field acquisi-

tion. The SPI consists of a catadioptirc mirror array coated

with different spectral filters. The spectral coating imple-

ments the idea of compressively spectral sensing discussed

in Section 3.

4.1. Spectral Coded Catadioptric Mirror Array

Catadioptric cameras are widely used for wide field-of-

view imaging. We couple spectral and angular dimension

together to simultaneously capture 5D plenoptic functions

in a single snapshot. The proposed configuration consists

of L2 curved mirrors in a L × L array and a single DSLR

camera. We physically implemented the sampling matrix

S by combining the Bayer filter array and spectral coat-

ing. Bayer filter arrays are broad bandpass filters that pro-

vide the simplest spectral samples. To faithfully measure

hyperspectral signals, the spectral coded catadioptric mir-

rors first encode scene spectra, giving L2 spectral measure-

ments of the scene. Then Bayer filters further modulate

spectral measurements into 3L2 values. Denote spectral re-

flectance function of catadioptric mirrors as column vectors

R1(λ), R2(λ), ...RL2(λ), and Bayer filters’ quantum effi-

ciency as BR(λ), BG(λ), BB(λ), the sampling matrix S in
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section 3 is given:

S =




















BR(λmin) ·R1(λmin) · · ·BR(λmax) ·R1(λmax)
...

BR(λmin) ·RL2(λmin) · · ·BR(λmax) ·RL2(λmax)
BG(λmin) ·R1(λmin) · · ·BG(λmax) ·R1(λmax)

...

BG(λmin) ·RL2(λmin) · · ·BG(λmax) ·RL2(λmax)
BB(λmin) ·R1(λmin) · · ·BB(λmax) ·R1(λmax)

...

BB(λmin) ·RL2(λmin) · · ·BB(λmax) ·RL2(λmax)




















(8)

We extracted raw data from the DSLR to keep spectral fi-

delity from on-board post-capture processing, like white

balance and non-linear normalization. Figure 5 plots spec-

tral reflectance functions of catadioptric mirrors and Bayer

filter array’s quantum efficiency of the sensor used in our

experiment (Canon 5D MarkIII).

Figure 5. Quantum efficiency of Bayer filters (left) and spectral

reflectance functions of catadioptric mirrors (right).

Captured subviews present non-singleview projections

of the scene from equal-baselined viewpoints. We repro-

jected distorted views using geometric modeling in [24].

Consider the setup in Figure 6: a spherical mirror of ra-

dius r is located at the origin and a perspective camera aims

at the sphere at a distance l. A ray of incident angle θi is re-

flected by the spherical surface with the angle of reflectance

θr. In 3D free space, all incident rays with the same θi can

be reprojected to a bundle of rays with θ
′

i by a virtual cam-

era placed at l
′

on the axis. Due to the fact that the camera

is very far away from the mirrors: l ≫ r, so the virtual

camera position is approximately constant within a desired

field-of-view.

tan θi(l − r sin γ) = r · cos γ (9)

where γ is the direction of surface normal. For any given

Figure 6. Reprojection geometry of catadioptric mirror array.

θi, we have:

γ = arcsin(
l tan2 θi +

√

r2 tan4 θi − l2 tan2 θi + r2

r(1 + tan2 θi)
)

(10)

Further using the law of reflection, the equivalent incident

angle θ
′

i and L
′

can be obtained as follows:

θ
′

i = (
π

2
−γ)+θr = (

π

2
−γ)+(

π

2
−γ+θi) = θi−2γ+π

(11)

l
′

= r sin γ −
r cos γ

tan θ
′

i

(12)

To correct distortion in catadioptric imaging, we performed

a ray-wise re-projection to a virtual focal plane using Eqn.

11 and 12. In Figure 7, we compare our re-projected image

with ground truth. To keep the FoV constant, both images

were rendered in POV-RAY. There is noticeable resolution

loss in the corrected image due to decreasing angular sam-

pling in the catadioptric imaging system.

Figure 7. Perspectively corrected SPI images: a simulated SPI im-

age (a), the groundtruth perspective views (b) and (d), and our

perspectively corrected results (c) and (e).

The model of a single catadioptric mirror can be ex-

tended to a mirror array due to its rotational symmetry. Note

that l is not constant for all mirrors in a planar array config-

uration.
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4.2. Reconstruction

To reconstruct 5D data from corrected sub-views, we

first conduct an image registration process. Because each

catadioptric mirror is coated with different spectral filters,

the sub-views share no intensity consistency. Figure 8

shows epipolar images extracted from regular light fields

and SPI. It is apparent that a single scene point shows dif-

ferent spectral responses in different viewpoints.

Figure 8. Epipolar images (EPI) from regular light fields (top) and

SPI (bottom). Intensity inconsistencies can lead to unreliable ten-

sor (depth) estimation.

Traditional stereo matching methods cannot handle

cross-spectrum image registration due to inconsistent in-

tensity. To register cross-spectrum images, We adopt the

Robust Selective Normalized Cross Correlation (RSNCC)

for reliable feature matching [23]. We then recovered a

depth map by minimizing a modified energy function via

α-expansion graph cuts [5, 15, 4, 14]. Finally, we restored

the hyperspectral dimensions via sparse reconstruction as

discussed in section 3

Apart from using the cross-spectrum correspondence, we

further employ depth-from-defocus methods by fusing a hy-

perspectral focal stack. We generate a focal stack I1, I2 · · ·
by refocusing the hyperspectral light field at a serial of

depths. We then compute a patch-wise refocusing metric

ξrf as:

ξrf (d, p) = −
M [Id(d, p)]

∑

i∈U
M [Id(d, i)]

(13)

where d is target depth, U is a patch centered at p, and M(I)
represents gradient magnitude.

We modify traditional energy function ξ(d, p) in stereo

matching by :

ξ(d, p) = α · ξRSNCC(d, p) + β · ξrf (d, p)
︸ ︷︷ ︸

dataterm

+ P (d, p)
︸ ︷︷ ︸

smooth penalty

(14)

where ξRSNCC indicates the RSNCC correspondence met-

ric, and α, β are weighting terms. The depth map can be

solved by minimizing the given energy function:

Dmap(p) = argmin
d

∑

ξ(d, p) (15)

We solved the optimization with α-expansion graph cuts.

For more information of the RSNCC correspondence and

graph cuts, please refer [23, 5, 15, 4, 14]

5. Experimental Results

Hardware Implementation. The SPI prototype consists

of 9 spectral coded catadioptric mirrors in a 3 × 3 ar-

ray. The reflectance functions of individual mirrors are pro-

vided in Figure 5. We used off-the-shelf Canon DSLR (5D

MarkIII with EF 75-300mm lens) to capture raw SPI im-

ages 2 meters away from the mirror array. Raw SPI im-

ages have a spatial resolution of 4000 × 6000. All cata-

dioptric mirrors have the identical radius of 3.25cm and the

baseline between two neighbouring mirrors is 7cm. Per-

spectively corrected sub-views have a lower spatial res-

olution of 1000 × 1000 and a wide FoV of 90◦. The

learning-based algorithm further recovers 31 bands, giving

the final reconstructed 5D plenoptic function a resolution of

1000× 1000× 3× 3× 31.

Spectra Recovery. To quantitatively evaluate spectral ef-

ficiency and accuracy of our SPI system, we first simu-

lated SPI images from a benchmark hyperspectral image

database[28]. Then we reconstructed hyperspectral dat-

acubes (31 bands) from SPI images. We compared our re-

construction results with ground truth by calculating band-

wise Root Mean Square Error (RMSE) over the visible

spectra (from 400nm to 700nm).Table 1 shows the per-

formance of the SPI system in different scenes. Figure 9

illustrates a recovered datacube (view in RGB) from simu-

lated SPI image and spectral profiles of randomly extracted

scene points. The recovered hyperspectral signals provide

high spectral fidelity.

As shown in table 1 and 9, the recovered hyperspectral

datacube has less confidence in near infra-red and ultra-

violet spectra. The bottom right spectral profile in Figure

9 deviates from ground truth when it reaches near infra-red

spectrum. These failure cases tend to happen in insensitive

spectra of the detector. Commercial CCD and CMOS sen-

sors for color imaging have low quantum efficiency when

wavelength comes to > 680nm or < 420nm. To pre-

vent these failures from happening, it is recommended to

use sensors with a wide and plane spectral response.
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Table 1. Band-wise RMSE (8 bit spectral images)

400nm 450nm 500nm 550nm 600nm 650nm 700nm

Toys 28.1 2.2 2.0 1.4 3.1 5.1 25.4

Food 10.5 3.0 2.9 1.7 2.6 7.2 20.0

Sliced lemon 8.4 1.1 1.2 0.8 2.4 2.8 9.6

Feather 16.0 2.5 4.0 1.7 4.6 7.3 18.2

Flower 6.4 0.7 1.2 0.6 1.3 2.9 20.1

Painting 9.8 2.0 2.7 1.1 3.0 3.5 14.1

Figure 9. Recovered datacube from simulated SPI image and spectral profiles of randomly chosen scene points.

Figure 10. (a) simulated SPI image (viewed in RGB), (b) the

ground truth depth map, (c) our recovered depth map, (d) SSD

result, (e) NCC result, (f) the error map.

Hyperspectral Light Fields. Typical applications of light

field techniques are depth estimation and dynamic refo-

cusing. Simulations and experiments on real scenes have

demonstrated that our SPI camera is capable of providing

high quality depth maps and unique spectral refocusing ef-

fects.

Figure 10 shows our recovered depth map of rendered

hyperspectral light fields. Simulated hyperspectral light

fields and ground truth depth map are rendered in POV-RAY

Figure 11. Real scenes captured by our SPI system of indoor (top

row) and outdoor (bottom row). (a) raw SPI images, (b) perspec-

tively corrected views, (c) our depth estimation results, (d) SSD

stereo matching results, (e) NCC stereo matching results.

with spatial resolution 600 × 800 and 11 depth layers. We

compared our depth estimation with depth maps generated

from popular stereo matching methods (SSD, NCC). Tradi-

tional stereo algorithms failed to recover depth information

from cross-spectrum images due to intensity inconsistency

while our reconstruction method handles hyperspectral light

fields well and provides high quality depth estimation with

little artifacts. Figure 11 shows two real scenes captured

with our SPI system. Comparison with stereo matching

results demonstrate that the proposed algorithm faithfully

retrieves depth information which benefits geometry recon-
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Figure 12. Spectral refocusing effects: Top row: refocusing at 550 nm. Bottom row: refocusing at 650 nm.

struction, semantic segmentation and etc.

The dynamic depth-of-field effect demonstrates the va-

lidity of our SPI technique. In Figure 12, we show spectral

refocusing effects in a real indoor scene. We refocused the

reconstructed 5D plenoptic function at 4 depth layers and at

550nm and 660nm respectively. The unique spectral refo-

cusing effects have potential in computer vision tasks e.g.

object detection and tracking.

6. Conclusion and future work

We have presented a Snapshot Plenoptic Imager (SPI)

capable of acquiring 5D light fields in a single shot. Our

system only uses a single DSLR camera and combines it

with an array of spectrally coded catadioptric mirrors. In a

snapshot, we are able to acquire plenoptic samples in spa-

tial, angular and spectral dimensions. We have devised ge-

ometric correction technique to address image distortions

and presented a learning based method to reconstruct the

complete plenoptic function.

Our approach is the first single-shot plenoptic function

imaging solution. In theory, it can be directly applied to

also acquire the temporal dimension, e.g. by using a high

resolution video camera. In reality, the effective resolution

and image quality of commodity video cameras will lead

to low image quality (resolution, signal-to-noise ratio, etc.)

and hence poor image registration. One possible solution

is to interleave the capture of video and static images. A

high resolution static image can compensate for low qual-

ity video frames by using learning-based image denoising

and super-resolution. Our solution can also be potentially

combined with additional cameras to form a hybrid sensing

solution.

Our current system can only handle visible spectral

range. In the future, we plan to extend the range to ultra-

violet and near infra-red spectra. Krishnan et al. [16] has

previously shown that a commodity sensor can capture un-

der the two spectra, possibly with the help of auxiliary

flash. Finally, we expect broad applications of our system

in tasks such as object detection, material classification, and

spectral-aware relighting.
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