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Abstract

Image and video understanding enables better recon-
struction of the physical world. Existing methods focus
largely on geometry and visual appearance of the recon-
structed scene. In this paper, we extend the frontier in im-
age understanding and present a method to recover the ma-
terial properties of cloth from a video. Previous cloth ma-
terial recovery methods often require markers or complex
experimental set-up to acquire physical properties, or are
limited to certain types of images or videos. Our approach
takes advantages of the appearance changes of the moving
cloth to infer its physical properties. To extract information
about the cloth, our method characterizes both the motion
and the visual appearance of the cloth geometry. We ap-
ply the Convolutional Neural Network (CNN) and the Long
Short Term Memory (LSTM) neural network to material re-
covery of cloth from videos. We also exploit simulated data
to help statistical learning of mapping between the visual
appearance and material type of the cloth. The effectiveness
of our method is demonstrated via validation using both the
simulated datasets and the real-life recorded videos.

1. Introduction

Recent advances in virtual reality (VR) make it possi-
ble to recreate a vivid virtual world that can be captured as
a collection of images or a video sequence. Better under-
standing of the physical scene can further assist in the vir-
tual reconstruction of the real world by incorporating more
realistic motion and physical interaction of virtual objects.
With the introduction of the deep neural network and ad-
vances in image understanding, object detection and recog-
nition have achieved an unprecedented level of accuracy.
Capturing the physical properties of the objects in the envi-
ronment can further provide a more realistic human-scene
interaction. For example, in a virtual try-on system for
clothing, it is critical to use material properties that cor-
rectly reflect the garment behavior; physical recreation of
the fabric not only gives a compelling visual simulacrum
of the cloth, but also affects how the garment feels and fits

(b) ()
Figure 1. Learning-based cloth material prediction and ma-
terial cloning results. (a) learning samples generated using the
state-of-art physically-based cloth simulator Arcsim[38] (b) exam-
ple real-life cloth motion videos presented in[6] (c) simulated skirt
with the material type predicted from the real-life video in (b) us-
ing the learned model from samples presented in (a).

on the body. In this paper, we propose a novel method of
extracting physical information from videos in a way analo-
gous to how humans perceive physical systems in an image
or a video using “mental simulations” [11].

The key intuition behind our method is that the visual

appearance of a piece of moving cloth encodes the intrin-
sic material characteristics. We use the parameters of the
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Figure 2. An overview of our method. Our cloth material recovery method learns an appearance-to-material mapping model from a set of
synthetic training samples. With the learned mapping model, we perform material-type prediction given a recorded video of cloth motion.

material model to represent the cloth’s material properties
for the recorded fabrics. We adopt the cloth material model
proposed by Wang et. al. [51], which encodes the stretch-
ing and the bending of the cloth. To quantify the parameter
space, we first find a parameter sub-space which discretizes
the cloth material type into 54 classes. Each class defines a
range of the stretching and bending parameters in the origi-
nal continuous parameter space. To recover these stretching
and bending parameters from the target video, we use ma-
chine learning to define the mapping between the “visual
features” and the physics properties.

The visual features we use consist of the RGB informa-
tion of each frame of the video. We assume that the videos
are taken in controlled lighting conditions. Furthermore,
we take advantages of simulated data from high-fidelity,
physically-based cloth simulator to generate a very large set
of videos that would be either difficult to obtain or too time-
consuming and tedious to capture. With the recovered and
tracked moving cloth, we can create a virtual world that uses
fabrics with physical properties similar to those of the actual
fabrics items in the captured video. The key contributions
of this work are: a deep neural network based parameter-
learning algorithm and the application of physically-based
simulated data of cloth visual-to-material learning. Our
dataset as well as the code are available online'.

2. Related Work

Material Understanding: One of the fundamental
problems in computer vision is image and video under-
standing. It includes the key processes, such as object seg-
mentation [24, 39, 12, 21, 40, 35], object detection [42, 5,
20, 15, 49, 23], object recognition [18, 34, 60, 1, 46, 43],
scene understanding [ 10, 50], human activities and behavior
understanding [45, 44, 47], traffic pattern analysis [19, 59],
and surface material recognition [14, 3].

Our proposed cloth material understanding is one sub-
process of image/video understanding. More recently,
“physical scene understanding,” which focuses on under-
standing the intrinsic properties of moving objects [2, 52]
has emerged as the next frontier of scene understanding. It
is known that human brain can perceive dynamic systems

http://gamma.cs.unc.edu/VideoCloth

in an image or a video. Inspired by human cognition, our
method presents a computational framework that perceives
the material properties of cloth in ways similar to how hu-
mans perceive dynamical systems in the physical world.

Deep Neural Network for Temporal Pattern Learn-
ing: With the advance in the artificial intelligence area,
the deep neural network has been used for a vast num-
ber of tasks, especially the use of the recurrent neural net-
work in the temporal sequence pattern learning tasks such
as activity recognition [17, 27] and video captioning [58].
Our proposed neural network structure is inspired by the
LRCN [17].

Use of Synthetic Data-set: The time and the energy
needed to label captured data means that there is a lim-
ited amount of real-world data for training deep neural net-
works. Increasingly, researchers are starting to explore the
use of synthetic databases to assist a variety of computer vi-
sion tasks. For example, Chen et.al. [8] proposed a synthetic
human-body data-set to help with 3D pose estimation; Ke-
skin et.al. [29] make use of synthetic hand images to train
a hand-pose estimator; and many synthetic pedestrian data-
sets [25, 9] have been generated to study computer detection
of humans in real-life images/videos.

Recovery of Physical Properties: Recovering the phys-
ical properties of a dynamical system has been a challeng-
ing problem across computer graphics, medical imaging,
robotics, and computer vision for decades. And recovering
physical properties of dynamical systems has become espe-
cially important with the rise of interest in VR research; the
recovered physics properties from a real-life scene can be
used in a virtual world or a synthetic environment to recre-
ate a realistic animation of the given dynamical system. For
example, in medical image analysis, accurately recreating
the physical properties of patient tissues in virtual systems
can increase diagnostic accuracy for certain kinds of dis-
eases [54, 55, 53].

Previous methods of recovering physical properties can
be classified into to three key categories: measurement-
based methods [48, 36, 51], which estimate the physi-
cal properties by sampling various physical quantities of
the dynamical system; statistically based methods [56,
6, 13], which learn the physical properties by observing
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the statistical parameters of the observed data; and itera-
tive simulation-optimization techniques [4, 54, 57, 33, 37],
which recover physical properties by simultaneously simu-
lating the dynamical phenomena and identifying its physi-
cal properties. Our method is a hybrid of these three meth-
ods. We take advantage of simulations of the dynamical
phenomenon for more robust prior computations, and use
the statistical method to better learn the intrinsic parameters
characterizing the dynamical system, i.e. the moving cloth,
in this paper.

Cloth Simulation: Simulation of cloth and garments
has been extensively studied in computer graphics [7, 22,

]. Methods for cloth simulation can be divided into two
classes: one focuses on the accuracy of the simulation, and
the other tackles the problem of real-time performance [30].
This work takes advantage of the state-of-art cloth simula-
tor, ArcSim [38], which has a high degree of accuracy and
visual fidelity.

3. Overview of Our Method

In this section we give a formal definition of the problem.

Problem Statement: Given a sequence of RGB images
V = {0,Q,...,0Qn}, determine the type of material of
the recorded cloth.

Figure 2 presents an overview of our approach. To con-
strain both our input and solution space, we first find the
suitable material and the motion sub-space that can best
represent the cloth material and motion in real life. Then,
we exploit physically based cloth simulations to generate
a much larger number of data samples within these sub-
spaces that would otherwise be difficult or time-consuming
to capture. The “appearance feature” of the cloth is repre-
sented by the pixel I.45. With the data samples, we combine
the image signal feature extraction method, Convolutional
Neural Network (CNN), with the temporal sequence learn-
ing method, Long Short Term Memory (LSTM), to learn
the mapping from visual “appearance” to “material”. We
list the notations used throughout the paper in Table. 1.

Table 1. Notations and definition of our method.

NOTATION DEFINITION

Vv input sequence of images

N input sequence length

L RGB channels of the pixel I

v output of the CNN

w weights to be learned in the neural network
M cloth 3D triangle mesh

P material parameter sub-space

(p, k) (stretching,bending) parameter in the sub-space

In the following sections, we present details of how our
method learns the mapping between the visual appearance
of cloth and its physical properties, and information on the
generation of synthetic data-sets.

4. Visual, Material and Motion Representation

We first describe the visual appearance feature represen-
tation, material parameter space discretization and the mo-
tion sub-space of cloth.

4.1. Appearance Representation

We use the convoluted RGB color (I,.4;) in the video as
the appearance representation. We apply 5 layers of Con-
volutional Neural Network (CNN) to the RGB channels to
extract both low and high-level visual features.

V(I g) = WICNN(L,4)] + b, 1)

with W as the weights and b as the bias to be learned. The
output of the final fully connected layer (fc6 layer) is the
input to the LSTM as the appearance encoding.

4.2. Material Representation

Before we introduce our material representation, we first
describe the material model we applied in our physically-
based cloth simulator. Instead of using the types of man-
ufacturing material of fabric from the physical world, we
use the parameters of the material model of the physically-
based simulator as the basis for representing the types of
fabric material. Manufacturing fabric material, such as cot-
ton, polyester, and linen, alone does not sufficiently define
the material of the cloth. Other factors, such as the weaving
patterns and thread count, also affect the material properties
of a piece of cloth. Furthermore, since the driving appli-
cation of this work is virtual try-on for e-commerce, our
goal is to automatically determine the set of material pa-
rameters required for the physics-based cloth simulator that
would reproduce the cloth dynamics observed in the video.
The material model in the physically-based cloth simulator
defines the cloth behavior under different external forces.
The parameters of the material model thus appropriately de-
fines the material type of the cloth under simulation. There-
fore, we use the parameters of the material model of the
physically-based cloth simulator to represent the types of
fabric material in this paper.

4.2.1 Material Model

The choice of material models defines the number of mate-
rial types that can be approximated using a physically based
simulator. In this paper, we use a cloth material model pro-
posed by Wang et al. [51], which can be used to model most
of the cloth materials in the real world.

A material model, in general, defines the relation be-
tween the stress o and the strain €. The cloth material
consists of two sub-models, stretching and bending models.
The stretching model describes how much the cloth would
stretch, when subject to a certain amount of planar external
forces. Similarly, the bending model defines how much the
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cloth would bend, when subject to out-of-plane forces. A
linear stress-strain relation can be expressed using a con-
stant stiffness tensor matrix C as: o = Ce. To better ap-
proximate the stretching physics of a piece of cloth, Wang
et al. [51] proposed a stiffness tensor matrix that is not con-
stant but depends on the in-plane-strain tensor C(g). We
refer readers to our supplementary file for detailed explana-
tion on this material model.

4.2.2 Parameter Space Discretization

In the cloth material model [51], there are 24 and 15 vari-
ables in stretching and bending models. This continuous
space makes this problem intractable. And individual value
of these 24 or 15 variables does not lead to visually percep-
tible impact. The magnitude of all variables, instead, pro-
duces visually perceptible simulation result. To constrain
our input/solution space, we discretize the original material
parameter space and choose the “quantized” parameter sub-
space as our material parameter sub-space. Our output will
be in this sub-space. To discretize the continuous material
parameter space, we choose one of the material presented
in the paper [51], called “camel-ponte-roma”, as the basis.
The material sub-space is constructed by multiplying this
material basis with a positive coefficient. We further quan-
tize the coefficients in continuous space to a discrete set of
numbers. The size of this discrete set of numbers is the
number of material types we used to represent the cloth ma-
terial in real life. Using this mechanism, we discretized both
the stretching and the bending parameter space.

To construct an optimal material parameter sub-space P,
optimal in the sense that the size of the coefficient set is
minimized and the number of different real-life cloth mate-
rials that can be represented is maximized, we first conduct
a material parameter sensitivity analysis. The material pa-
rameter sensitivity analysis examines the sensitivity of the
material parameters x with respect to the amount of defor-
mation D (k). The sensitivity is measured as: 81;’(:), which
is the slope of the curve shown in Fig. 3. For the stretching
parameter p analysis, we hang a piece of cloth and measure
the maximum amount of stretching D(M) as in the length
changes, when subjected to gravity. And, for bending pa-
rameter k sensitivity analysis, we fold a piece of cloth and
keep track with the maximum curvature C'(M). The maxi-
mum amount of stretching D (M) and the maximum curva-
ture C' (M) are measured from the 3D mesh M as follows:

D(M) :{Illeagllufuol\, (2)

|leo||arccos(ny - na)
C(M) = max , @3
( ) f1,f2€F, fiNfa=eq A+ Ay 3)
where M = V| F| E is the 3D triangle mesh, which has a
vertex set V, a face set F' and an edge set F, of the cloth, u

is a vertex of the cloth’s mesh M and uy is position of that
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Figure 3. Stretching and bending parameters sensitivity anal-
ysis results. (best view in color) The x-axis is the reciprocal of
parameter ratios to the basis material. The reciprocal of stretch-
ing ratio for the “camel-ponte-roma” material is 1. The y-axis is
the maximum amount of deformation of the cloth, i.e., maximum
amount of stretching or maximum curvature, respectively. We use
the vertical lines with different colors to represent the 10 types of
materials presented in [51]. The jittering in the bottom figure is
due to the adaptive remeshing.

vertex in rest configuration, f1, fo are two adjacent faces
with shared edge eq, ni, ns are their normals and A, A,
are the area of those two faces.

The analysis results are shown in Fig. 3. The slope of the
sensitivity curve (light blue) in Fig. 3 is positively related
to how sensitive the cloth deformation/curvature is with re-
spect to the stretching/bending coefficient. The jittering in
the bending parameter sensitivity analysis is due to the re-
meshing scheme. We further divide the x-axis in Fig. 3 into
a set of segments based on the slope of the sensitivity curve.
We divide the x-axis into more discrete sets when the slope
of the sensitivity curve is large and vice versa. The discrete
set segments of the x-axis are the stretching/bending coef-
ficients set. Based on our analysis, the stretching parame-
ter sub-space is Ps = {0.5,1,2,3,10,20} and the bending
parameter sub-space is P, = {0.5,1,2,3,4,5,10,15,20}.
Combining the two sub-spaces P = {(p,k)|p € Ps, k €
Py}, our discretized sub-space can represent 54 types of
material.
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Table 2. Material parameter sub-space validation. The floating
point numbers show the estimated stretching/bending parameter
coefficients (p, l~c), while the numbers in the parenthesis are the
corresponding stretching/bending parameter (p, k) in our defined
subspace P.

Stretching | Bending
Material [51] Ratio lgatio
p(p) k(k)
ivory-rib-knit 1.3817(1) 2.3(2)
pink-ribbon-brown 2.9343(3) 12(10)
camel-ponte-roma 1(1) 0.52(0.5)
white-dots-on-blk | 15.8108(20) 3.5(4)
navy-sparkle-sweat | 0.5613(0.5) 1.7(2)
gray-interlock 1.0164(1) 1.6(2)
11oz-black-denim 3.6079(3) 3(3)
white-swim-solid 1.9126(2) 2.9(3)
tango-red-jet-set 1.9784(2) 1.9(2)
royal-target 22.2857(20) 19(20)

To prove the validity of our material parameter sub-
space, we illustrate that our material types have the ability to
represent some of the commonly encountered real-life fab-
ric material classes. We use the ten material types presented
in the paper [51] for the validation experiment. Firstly, we
estimate the parameters (the floating point numbers (p, /;)
in Table 2). And then we discretize them into our subspace
(the numbers in the parenthesis(p, k) in Table 2). As shown
in Table 2, our discretized material types can represent these
10 types of cloth with a limited amount of error.

4.3. Motion Sub-space

To further make our problem tractable, we constrain the
motion space of the cloth by controlling the external forces
of the cloth. Under controlled external forces, the cloth
moves in a motion sub-space. In addition, we need to make
sure that the motion subspace is spanned in a way to cap-
ture the relation between the motion and the material prop-
erties of the cloth. We choose two types of external forces:
constant-velocity wind blowing and fixed-size arm bending.
The constant-velocity wind blowing can stretch the cloth to
its maximum amount of stretching deformation, while the
fixed-size arm bending can bend the cloth to its highest cur-
vature.

S. Learning Method

In this section, we explain how to establish the mapping
between the visual appearance of a moving cloth and its
physical properties using deep neural network.

5.1. Deep Neural Network Structure

Design Rationale: We propose to combine CNN
with LSTM (similar to the LRCN [16] structure) for our
appearance-to-material learning (network structure shown
in Fig. 4). CNN is used to extract both low- and high-level

visual features. LSTM part of the network focuses on tem-
poral motion pattern learning. In the following sections, we
will briefly introduce our network structure.

I,—» D— —U
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s

Figure 4. Appearance-to-material learning method. We apply
CNN and LSTM (the original LRCN design presented in [16]) to
learn the mapping between appearance and material.

Material Type

LSTM Cell

|| ) Concatenate Op

fc6

PIN1 C2 P2N2 3 ca C5 |P5

Kernel Dim: 11x11x3 5x5x96 3x3x256  3x3x384 (3)(3)(384 9216x1x1
D Cnnvo\unon u Lavv:rl ED l.:;?rlv‘:e'spa(r::: U Ful va;;::ued
Figure 5. The five-layer CNN structure. The original design is
presented in [31]

Convolutional Neural Network for Hierarchical Vi-
sual Feature Learning: Convolutional neural network was
first proposed by LeCun et. al. [32] for digit recognition.
The basis of the convolutional neural network is the con-
volution operation. The convolution operation serves as a
filtering operation on an image. Layers of convolutional
neural network (CNN) with convolution kernels of different
dimensions extract features at various levels of details.

We applied a five-layer CNN (shown in Fig. 5) for its
ability in hierarchical visual feature selection. This part of
the network structure is similar to the AlexNet [31]. The
fifth convolution layer is followed by one fully connected
layer. The output of the fully connected layer (fc6) is the
input to each LSTM cell.

To demonstrate the effectiveness of our CNN design, we
visualize the activation of the fifth convolution layer (the
“conv5” layer). In Fig. 6, we overlay the real-life cloth mov-
ing images with the “conv5” layer activation which is visu-
alized using the “jet” color map. The model is trained with
our simulated wind-blowing data set. It is shown that we
successfully trained the neural network in paying attention
to the cloth area (highlighted in yellow-red) and the cloth
moving edges (highlighted in red) of real-life images.

Recurrent Neural Network for Sequential Pattern
Learning: A single image contains a limited amount of in-
formation concerning the physics properties of a piece of
cloth. But a video can be more powerful to demonstrate
how the physics properties, such as the material properties
of a piece of cloth, can affect its motions. To approximate
this mapping between the material properties of the cloth
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Figure 6. Learned CNN convS-layer activation visualization.
(best view in color) In 2nd and 4th rows, we overlay the conv5
layer activation using the “jet” color map with the original image
in 1st and 3rd rows. The columns are different frames, with the
frame number shown in the bottom left of each image. The model
is trained with simulated data set from the wind-blowing motion.

and its sequential movement, we apply the recurrent neural
network. Unlike the feed-forward neural network, the recur-
rent neural network has a feedback loop. The loop connects
the output of the current cell to the input of the cell at the
next step. The feedback loop act as the “memory” of the
recurrent neural network. With the “memory”, the recur-
rent neural network has the ability to gradually extract the
pattern of the input sequence.

Following the intuition behind the recurrent neural net-
work, we choose the LSTM [26] instead of the traditional
recurrent neural network architecture for its ability to deal
with vanishing/exploding gradient and fast convergence to
learn the pattern in temporal sequence of data.

6. Physics-based Synthetic Data-sets

To learn the mapping between the visual appearance of
a moving cloth and its material characteristics using a sta-
tistical method, we require a large number of data sam-
ples. Instead of using limited number of real-life recorded
videos of cloth moving, we use simulation data as training
samples. Our synthetic data generation exploits physically
based cloth simulation. This approach enables us to auto-
matically generate a large number of data samples in a short
amount of time without any manual recording or labeling.

In the following section, we will introduce our learning
data samples generation pipeline.

6.1. Data Generation

Our data generation pipeline (shown in Fig. 7) consists of
two steps: cloth simulation and image rendering. The cloth

Simulation
Settings

L 2

Render
Settings

Blender

Figure 7. Data generation pipeline. The pipeline consists of two
steps: cloth simulation and image rendering.

B [ TR 1 A I
Figure 8. Simulated data showcase. The first three rows are ex-
ample frames from our Wind-blowing data set with the cloth in
pose-1. The bottom two rows are example frames from our Wind-
blowing simulated data set with the cloth in pose-2 consisting of
two different types of material.

meshes are generated through physically based simulation
(ArcSim [38]). The cloth is subject to external forces such
as gravity, wind and arm bending. Those external forces
will drive the movement of the cloth. We vary the external
force magnitude, stretching and bending parameters to sim-
ulate a number of sequences of cloth motion. Since we dis-
cretize the magnitude of 24 and 15 variables of the stretch-
ing and bending model into 6 and 9 bins, we jitter around the
discretized values to generate the training dataset. For each
set of magnitude of external forces, stretching, bending pa-
rameters we generate a sequence of 3D cloth meshes. The
sequence is divided into sub-sequences as temporal training
samples. Then we render each frame of the 3D cloth meshes
to 2D images using Blender. The images are rendered under
controlled lighting conditions and camera settings. Instead
of rendering the cloth as uniform colored, for each sequence
of 3D mesh, we randomly assign them with a texture image.
We further composite the foreground cloth with a random
background image (as shown in Fig. 8) to make the scene
more complicated and to train the network to pay attention
to the cloth area (as shown in Fig. 6). Our background im-
ages are chosen from the indoor scene image dataset [41].
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7. Experiments

We implemented our method using the Caffe [28] deep
neural network framework. The training process takes
around 12 hours with a NVDIA-Titanx™ GPU. It takes up
to 40,000 iterations to converge.

7.1. Data Preparation

Our data set is generated using physically-based cloth
simulation. By changing the simulation parameters, we ob-
tain cloth with different material properties. We also ob-
served two key factors that can affect the learning process:
the remeshing scheme (adaptive vs. uniform resolution) and
the texture of the cloth. The remeshing scheme affects the
wrinkle formulation of the simulated cloth, while the tex-
ture affects the visual feature that the CNN can extract. For
each motion, remeshing scheme, and texture type, we gen-
erated 2,592 sequences of cloth motion, using the method
we introduced in Sec. 6.1. Among the 2,592 sequences,
2,106 of them were used for training and the rest 432 were
used for testing. Each sequence consists of 10 frames. We
tested our learned model on both the simulated data set and
the real-life videos.

7.2. Results

Our training data consists of two different types of mo-
tion: arm bending and wind blowing, with 54 material types
(by varying a combination of 6 bending and 9 stretching pa-
rameters).

7.2.1 Baseline Results

To validate our network structure, we constructed two base-
line tests. Our first baseline test excludes the sequential
pattern learning part (LSTM). We fine-tune the pre-trained
AlexNet [31] with all the frames (210,600 images) of our
training videos. Then we test our fine-tuned model on sim-
ulated data (43,200 images). Test results are shown in Ta-
ble 3. Our first baseline framework achieves 53.6% of ac-
curacy for predicting 54 classes of materials for arm bend-
ing motion and that of 56.9% for wind blowing motion
when testing on simulated data. For the second baseline,
we fix our CNN part of the network but train the LSTM
part. The second test aims to validate the effectiveness
of our CNN sub-network. This framework obtains 56.9%
of accuracy for predicting 54 classes of materials for arm
bending motion and that of 57.0% for wind blowing mo-
tion when testing on simulated data. As is shown in Ta-
ble 3 and Table 4, the accuracy for cloth material type
prediction from both simulated images/videos and real-life
images/videos for both baseline frameworks is lower than
our (CNN+LSTM) model. Our third baseline replace the
LSTM with vanilla RNN. When trained on simulated data
and tested on simulated data, the accuracy of the vanilla
RNN is about 20% lower. When tested on real-life videos,

the r-value is around 0.2 lower than our model (refer to sup-
plementary document).

Table 3. Testing results. The models are trained with the arm
bending motion and wind blowing motion. Then they are tested
on 432 simulated arm bending/wind blowing videos, where the
ground truth is known. Our method achieved up to 71.8% of accu-
racy for predicting 54 classes of materials for arm bending motion
and up to 66.7% for wind blowing motion.

Data Setting Method | pse-1 | Base2 | CNN+LSTM
Type ‘ Re-mesh ‘ Texture | RGB-I | RGB-V RGB-V
Grid 56.0 54.0 63.3
Adapt Color 529 50.2 66.0
Arm Rand 53.0 54.3 71.1
Unif-1 Rand1 54.0 56.8 62.9
Unif-2 Rand2 51.9 57 62.7
Unif-3 Rand3 53.6 56.9 71.8
Grid 50.4 48.0 63.4
Adapt Color 54.0 51.2 68.0
Wind . Rand 53.7 53.2 67.7
Unif-1 Rand1 53.6 53.3 64.7
Unif-2 Rand2 58.9 57.0 64.5
Unif-3 Rand3 56.9 53.0 66.7

7.2.2 Validation of Our Method

To validate our method, We first test the accuracy of the
model trained with only the simulated arm bending motion
for predicting material type of the arm bending videos. We
achieve up to 71.8% of accuracy for predicting from the 54
classes of material types when using only the three-channel
RGB video. The model that has the best accuracy is the one
trained with the texture randomly assigned and the mesh
uniformly remeshed three times. And the second best model
is the one trained with the adaptive remeshing scheme and
randomly assigned texture. The main reason behind this
is that the meshes that are uniformly remeshed three times
contain more details than the adaptive remeshed ones.

Next, we train the deep neural network with the wind
blowing motion data set and test the learned model on the
simulated wind blowing videos. The results are shown in
Table 3. Similar to the arm bending results, the best per-
forming model is the one that is trained with the texture
randomly assigned and the mesh uniformly remeshed three
times. We achieve up to 66.7% of accuracy for predicting
among 54 material types when using only the three-channel
RGB Video.

Finally, we test our learned model on 90 real-life
videos [6]. The 90 videos record the wind blowing motion
of 30 kinds of cloth with three different wind strength. We
correlate our predicted material type with both the ground
truth stiffness value and the ground truth density value. Our
material types are 54 discrete numbers range from 0 to 53.
The higher the number generally means the cloth is stiffer.
Among the models we trained, the one which is trained with
the wind blowing motion, uniformly remeshed three times,
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Table 4. Stiffness/density correlation r values for [6] vs. Ours
Our method outperforms both [6] and human perception, achiev-
ing the highest correlation value of 0.77 and 0.84 respectively
for stiffness and density, undergoing large motion due to stronger
wind (W3-video). W1, W2, W3 indicates different wind strength.
The larger the number, the stronger the wind.

Method \ Input | Stiffness | Density
Human [6] Image 0.48 0.45
Human [6] Video 0.73 0.83
AlexNet (baselinel) Image 0.04 0.06
preCNN+LSTM (baseline2) | 30 W3-Videos 0.12 0.13
CNN+LSTM (ours) 30 W1-Videos 0.47 0.55
CNN+LSTM (ours) 30 W2-Videos 0.43 0.62
CNN+LSTM (ours) 30 W3-Videos 0.50 0.64
K. Bouman et. al. [0] 23 W1-Videos 0.74 0.77
K. Bouman et. al. [0] 23 W2-Videos 0.67 0.85
K. Bouman et. al. [6] 23 W3-Videos 0.70 0.77
CNN+LSTM (ours) 23 W1-Videos 0.71 0.75
CNN+LSTM (ours) 23 W2-Videos 0.69 0.80
CNN+LSTM (ours) 23 W3-Videos 0.77 0.84

texture randomly assigned performs the best on both simu-
lated data according to Table 4.

The prediction from this model also correlates the best
with both the ground truth stiffness value and the ground
truth density value. We achieve up to 0.50 and 0.64, re-
spectively, as of the R value which is close to the one when
human predicting material from a single image presented
in [6] for the correlation test. Our experiment results also
show that our prediction results is sensitive to the cloth mo-
tion as the predicted material type correlate better with the
ground truth values as the strength of the wind increases.
The wind intensity (indicated as W1, W2, W3) affects the
prediction results by influencing motion of the cloth. Our
trained model performs best on videos taken with the max-
imum wind strength (W3) shown in Table 4. Further com-
parison analysis is given in the following section.

7.2.3 Comparison

In Table 4, we compare our method with the other cloth ma-
terial recovery methods [6] that addresses the same problem
as ours. Inspired by the feature selection proposed in [6],
we propose a more general feature extraction method based
on deep neural network. To make fair comparison with K.
Bouman et.al. [6], we also removed 7 videos which lack
of texture or of high specularity. After excluding those 7
videos, our correlation coefficient R value for predicting
cloth stiffness is 0.77 which is higher than those presented
in [6]. We demonstrated in experiments that our learned
model can predict material type from videos more accu-
rately than using features in [6] and human perception.

7.3. Application

We further demonstrate our proposed framework with
the application of “material cloning”. It is a 2-step process:
fist identify the material type from the video, then apply
the identified material type to physically-based cloth simu-

lation. With our trained deep neural network model, we can
predict the material type from a video recording the motion
of the cloth in a fairly small amount of time. The recovered
material type can be “cloned” on another piece of cloth or
a piece of garment as shown in Fig. 9. We refer readers to
our supplementary file for video demos.

Figure 9. Material cloning results. The first column are the input
cloth motion videos[6]. We predict the material type of the cloth
in these input videos and clone those material onto the skirt. The
simulated skirt are shown in the second column.

7.4. Discussion and Limitations

Our current learning samples are generated using physics
simulator. There are differences between the simulated data
and real-life recorded videos, due to the numerical errors
in the cloth simulation and also the quality of the ren-
dered images. Our experiments show great promise of our
learned model using data from simulator in predicting ma-
terial types of cloth in the real-life videos. With a more
accurate simulator and more photorealistic rendering, the
proposed framework can learn a better model from sampled
simulation data. The neural network structure can also be
further improved for cross-domain learning.

8. Conclusion and Future Work

We have presented a learning-based algorithm to recover
material properties from videos, using training datasets gen-
erated by physics simulators. Our learned model can re-
cover physical properties (e.g. fabric material) of the cloth
from a video. Our training videos contain only a single
piece of cloth and the recorded cloth is not interacting with
any other object. While this is not always the case in real-
world scenarios, this method provides new insights to a
challenging problem. A natural extension would be to learn
from videos of cloth directly interacting with the body, un-
der varying lighting conditions and partial occlusion.
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