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Abstract

We present a minimalistic but effective neural network

that computes dense facial correspondences in highly un-

constrained RGB images. Our network learns a per-

pixel flow and a matchability mask between 2D input pho-

tographs of a person and the projection of a textured 3D

face model. To train such a network, we generate a massive

dataset of synthetic faces with dense labels using renderings

of a morphable face model with variations in pose, expres-

sions, lighting, and occlusions. We found that a training

refinement using real photographs is required to drastically

improve the ability to handle real images. When combined

with a facial detection and 3D face fitting step, we show that

our approach outperforms the state-of-the-art face align-

ment methods in terms of accuracy and speed. By directly

estimating dense correspondences, we do not rely on the

full visibility of sparse facial landmarks and are not lim-

ited to the model space of regression-based approaches. We

also assess our method on video frames and demonstrate

successful per-frame processing under extreme pose vari-

ations, occlusions, and lighting conditions. Compared to

existing 3D facial tracking techniques, our fitting does not

rely on previous frames or frontal facial initialization and is

robust to imperfect face detections.

1. Introduction

By introducing 3D facial alignment techniques that can

process images in the wild, it is possible to improve the

performance of facial recognition methods [8, 44, 16, 24];

compelling 3D face models of a person can be generated

for gaming and virtual reality applications [7, 26, 37, 14,

50, 43]; and an accurate tracking model can be initial-
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ized for real-time facial performance capture and anima-

tion [52, 12, 55, 49]. Most of the techniques rely on a robust

detection of sparse facial landmarks (eyes, nose, lips, etc.)

and tend to perform best when most features are visible,

front-facing, and free from occlusions or challenging light-

ing conditions. In many applications, such as video facial

analytics or driver attention monitoring, these assumptions

do not hold since the subjects are recorded in a fully uncon-

strained environment.

With the recent advancement of deep learning tech-

niques, highly robust regression methods have emerged that

can successfully fit a 3D face model for extremely difficult

cases, such as side views of a face or occlusions by hair.

State-of-the-art methods are based on regression [68, 31]

and directly regress the shape parameters of a 3D morphable

model (3DMM) [7] and expression coefficients [13] from

an image using cascaded network structures. While achiev-

ing impressive accuracies on several challenging bench-

mark datasets, they still tend to perform poorly in extreme

real-case scenarios, as demonstrated in this paper. Not only

is such approach limited to variations defined by the face

model space, but its performance relies on a perfectly tight

facial bounding box detection. Despite significant progress,

even the cutting edge face detectors [25] cannot guarantee a

clean face localization and cropping for extreme images.

Instead of a regression method, we propose an alternative

deep learning approach that estimates dense pixel-wise cor-

respondences between the input image and a 3DMM model

along with a matchability mask, which defines which pix-

els belong to the face and have valid correspondences. We

perform dense correspondence estimation by predicting a

per-pixel 2D flow vector between the input image and a

synthetic rendering of a 3DMM. Once the correspondences

are established, we fit a 3DMM to the input using avail-

able correspondences. Compared to sparse landmark detec-

tion techniques, dense correspondences provide more ro-

bust constraints, since any part of the face can be used for
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matching, and our predicted matchability mask helps to dis-

tinguish non-visible parts of the face. Furthermore, our 2D

flow computation is less sensitive to clean bounding box

estimations during an initial face detection as oppose to ex-

isting regression approaches.

Inspired by the recent work of [66], we train a sim-

ple encoder-decoder network using synthetically generated

3DMMs with variations in pose, shape, appearance, and

lighting, and simulate occlusions using random box render-

ings. Since every face of the 3DMM have consistent mesh

topologies, the dense labels are automatically present. We

further refine the training using real photographs with cor-

responding face models obtained from the regression tech-

nique of [68], and predict the flow between the input image

and a statistical mean face. We show that by combining

our dense correspondence computation with a subsequent

face fitting step, we can perform comparably with the cur-

rent state-of-the-art face alignment techniques on difficult

images in terms of accuracy and are significantly faster on

public datasets. Furthermore, we demonstrate highly effec-

tive pose estimations and 3D face fittings on extremely chal-

lenging images and videos.

2. Related Work

2D Face Alignment. Facial alignment for images and

videos has attracted a lot of attention from the research

community due to its wide range of applications. 2D fa-

cial alignment approaches aim to localize a set of fiducial

points in the face. Classical approaches include the Ac-

tive Appearance Models (AAM) [17, 42, 51, 56] and Con-

strained Local Models (CLM) [19, 52, 2]. Another com-

mon approach is to learn regression functions that map

hand-crafted image features to 2D landmark positions di-

rectly [57, 59, 15, 3, 46, 32, 36, 60, 67]. With the recent

success of deep learning methods, several approaches have

replaced the use of hand-crafted features with a convolu-

tional neural network [53, 64, 63, 45]. While such purely

2D methods have shown impressive results especially for

frontal and non-occluded faces, modeling of occlusions has

been mostly avoided. More recent approaches [11, 29, 21,

61, 49] have attacked this problem by introducing occlusion

variation in the training data. Handling large pose varia-

tions under difficult illumination conditions, however, still

remains challenging for 2D methods. To handle large pose

variations, several approaches have proposed to use multi-

ple shape models for different views [18, 70, 62]. However,

due to the requirement to test all these possible views, such

methods are computationally very expensive.

3D Face Alignment. In the context of 3D facial align-

ment, earlier works have focused on optimization based

methods that minimize the difference between the input im-

age and the model appearance [7, 47]. As in the case of

2D facial alignment, an alternative approach is to regress

the parameters of a 3D face model based on image fea-

tures around landmark points [12, 28, 30]. More recent

methods have focused on performing this regression with

neural networks, specifically with cascaded [68, 31, 40] or

very deep network structures [1, 35]. While such methods

achieve impressive results on challenging datasets, the main

drawback is being limited to the shape space represented by

the utilized 3D morphable model. We present an alterna-

tive approach of predicting dense correspondences between

the input image and the face model, which can potentially

be propagated to any 3D morphable model with little effort.

We provide extensive comparisons between our alternative

approach and the recent 3D facial alignment methods and

show that our method outperforms both in terms of accu-

racy and speed (see Section 4).

Dense Correspondence Estimation. The problem of

dense correspondence estimation has been mainly inves-

tigated in the form of optical flow estimation for track-

ing purposes [23, 6, 4, 10]. To compute dense corre-

spondences between different scenes and different instances

of an object category, energy minimization approaches

that match hand-crafted features with additional smooth-

ness priors have been proposed [5, 39, 33, 9]. Such ap-

proaches have been further improved by either jointly solv-

ing for co-segmentation [54] or analyzing collections of im-

ages [65]. Last but not least, recent methods have explored

the power of neural networks for predicting dense optical

flow [58, 20, 27] and correspondences [66]. These methods

have shown impressive results that motivate us to explore

the power of predicting dense flow to tackle the problem of

3D facial alignment. [22] has also explored using dense cor-

respondences for the purpose of 3D facial landmark align-

ment. We show that dense correspondences provide robust

constraints for 3D face fitting under large pose and illumi-

nation conditions since they enable any part of the face to

be utilized for matching.

3. Proposed Method

3.1. Overview

Our approach takes a source image and outputs per-pixel

correspondences between the source image and a 3D mor-

phable model (3DMM). Since correspondences are well-

defined only on regions of the face that are visible in the

source image, we also output a matchability mask that pre-

dicts the probability of each correspondence being valid or

not. We perform dense correspondence estimation by pre-

dicting a per-pixel 2D flow between the source image and a

synthetic rendering of the 3DMM depicting a frontal mean

face. Both 2D flow and the matchability are predicted by a

convolutional neural network (Section 3.3). Valid 2D corre-

spondences are easily translated to 2D-3D correspondences

since each pixel in the synthetic rendering is directly asso-

ciated with the 3DMM. Such 2D-3D correspondences are

then used to guide the alignment of the 3DMM to the source

image (Section 3.4).This pipeline is illustrated in Figure 1.
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Figure 1. Given an input image with a detected face, we propose an encoder-decoder architecture that predicts Dense Facial Correspon-

dences between the input image and a 3D morphable face model. These correspondences are estimated as 2D flow between the input

image and a synthetic rendering of a frontal, mean face. We also predict a matchability mask which indicates which correspondences are

valid or not. Using such correspondences, we can perform 3D face alignment even in very challenging cases of large pose and illumination

variation.

We next discuss each stage in more detail.

3.2. 3D Morphable Model

We use the 3D morphable model (3DMM) proposed by

Blanz and Vetter [7]. Each 3D face, S, is represented as:

S = S̄ +Aidαid +Aexpαexp, (1)

where S̄ is the mean 3D face, Aid and Aexp are the basis for

the identity and the expression respectively. αid and αexp

denote the parameters for the identity and the expression

basis. Moreover, in order to project a 3D face S to a 2D

image we use perspective projection:

S2D = Πf (R(S̄ +Aidαid +Aexpαexp) + t), (2)

where Πf is the projection operator that depends on the fo-

cal length, f , and the principal point defined to be the center

of the image. R and t denote the rotation and the transla-

tion components of the pose. Thus, aligning the 3DMM

with an image is equivalent to finding the set of parame-

ters (f,R, t, αid, αexp) that minimizes an alignment error

as described in Section 3.4.

3.3. Dense Correspondence Prediction

Given a source image, Is, and a rendering of the 3DMM

showing a frontal, mean 3D face, which we call the target

image It, we propose a network architecture to predict a

per-pixel 2D flow from Is to It along with a matchability

mask. For each pixel location ps = (x, y) in Is, the 2D flow

Fs,t(x, y) = (∆x,∆y) maps ps to the location qt = (x +
∆x, y + ∆y) in It, predicting that ps and qt are semantic

correspondences. Since the 2D flow is well defined only

for parts of the face visible in Is and It, we also predict a

matchability score ms,t(ps) ∈ [0, 1], where ms,t(ps) = 1
if ps has a valid correspondence in It. We note that we first

perform face detection in the source image and predict the

flow on the cropped image based on the detection result. A

visualization of our network output can be seen in Figure 2

Figure 2. Sample visualizations of dense correspondences between

our input and our template image for two inputs. The first image is

the input. The second image is the matchability map that indicates

which pixels on the template are matchable. Note that we do not

explicitly segment out external occlusions and occluded areas are

also considered matchable as long as they reside in the face shape.

The two color maps on the right show the dense correspondence

between the two images. The holes found at the edges of the dense

correspondences in the third column indicate that the pixel cannot

be matched and does not have a flow to our frontal facing template.

Our network architecture for predicting the 2D flow and

the matchability generally follows the architecture recently

proposed by Zhou et al. [66]. Specifically, we use two en-

coder branches that take the source and target images as

input respectively. The output of these encoders are con-

catenated and provided as input to two decoder branches.

The flow decoder outputs a 2-channel feature map with the

same size as the source image, where the channels specify

the 2D flow (∆x,∆y) for each pixel. The matchability de-

coder, on the other hand, outputs a single channel feature

map with the same size as the source image representing

the probability of each pixel being matchable.

The encoders consist of 8 convolutional layers, each
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Figure 3. Our network architecture.

followed by a ReLU layer. Every second convolution

layer has a stride of 2 in order to decrease the spatial

dimension by half. Each decoder begins with four triplets

of convolution layers. In each triplet, the third layer is a

deconvolutional layer with a stride of 2. The first and third

layer of each triplet is followed by an ReLU layer. For the

flow decoder, the triplets are followed by three additional

convolutional layers with an ReLU in between. For the

matchability decoder, the triplets are followed by a single

convolutional layer and a softmax function that classifies

each pixel as matchable or not matchable. Details of the

network architecture can be seen in Figure 3.

Loss function. Given a source and a target image Is and It,

for each pixel (x, y) in Is we denote by F(x, y) and m(x, y)
the 2D flow and matchability predictions and their ground

truths by F̃(x, y) and m̃(x, y) respectively. We train the

network to minimize the following loss L(Is, It):

L(Is, It) =
∑

x,y

m̃(x, y)||F(x, y)− F̃(x, y)||2

+ λ
∑

x,y

LC(m(x, y), m̃(x, y)),

where LC denotes the cross-entropy loss and λ is a hyper-

parameter.

Training procedure In order to train the proposed network

architecture, we need access to images where ground truth

correspondences with a 3DMM are available. We use the

recently released large-pose 300W (300W-LP) dataset [68]

which provides the parameters of a 3DMM fitting each im-

age in the dataset. Given the pose and the 3DMM parame-

ters, we project the 3D face to the input image using Equa-

tion 2. For each pixel ps in the input image, we identify the

uv−coordinate of the 3DMM surface point that projects to

it. Then, we find the pixel qt in the rendering of the frontal,

mean face that has the most similar uv− coordinate. If the

distance between the uv−coordinates is less than a thresh-

old (0.015 in our experiments), we define a ground truth

correspondence between the pixel ps in the input image and

qt in the rendering of the frontal, mean template.

We observe that training the network from scratch di-

rectly by feeding “in-the-wild” real face images does not

converge. We assume this is due to the large appearance

variations as well as the noisy ground-truth annotations. To

overcome this challenge, we propose to use a large scale

synthetic data in a pre-training process where we learn

dense correspondences between random pairs of synthetic

faces. Specifically, using the 3DMM we generate random

pairs of synthetic renderings showing faces with varying

identity, expression, pose, lighting, and occlusion (see Fig-

ure 4). Since both images in the pair are generated from the

3DMM, we have direct access to perfect ground truth cor-

respondences and matchability masks. Note that although

our framework is robust to external occlusions and able to

detect self-occlusions in our matchability mask, we do not

explicitly segment out external occlusions such as in [49]

due to limitations in our training data. During this pre-

training stage, since we provide both of the encoders with

synthetic renderings we share their weights. After conver-

gence, the network accurately estimates dense correspon-

dences between two synthetic faces, even with extreme pose

and lighting.

We next fine-tune our network on the 300W-LP dataset 1.

We fix the input to the target encoder branch to be the

frontal, mean face rendering while the input to the source

branch are the real face images. Thus, in this stage the two

encoder branches no longer share weights.

Although the input to one of the encoder branches is

fixed, we note that this input branch is essential to our

framework. If we only use a one-encoder-branch network

architecture during the pre-training stage, training with syn-

thetic data may adversely lead to overfitting to the appear-

ance of our synthetic images. To address this, we have two

input branches take an image pair to predict the flow to

guide the network to learn the correspondences instead of

memorizing the appearance. We then fine-tune the network

with real data while keeping one input fixed. In our ex-

periments, we observed that the training does not converge

1300W-LP also contains synthetic faces, but with more realistic texture

and background compared with our synthetic faces.
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when discarding the constant branch since the task would

not align well to the pre-training setting. For this reason,

we keep a constant encoder branch in our final model.

3.4. 3DMM Alignment

Once our network is trained, during test time, given a sin-

gle input image we first predict dense correspondences and

the matchability mask with respect to the rendering of the

frontal, mean face template. We filter our correspondences

with low matchability scores and translate the remaining

correspondences to 2D-3D correspondences between the in-

put image and the 3DMM. We use such 2D-3D correspon-

dences to fit the 3DMM to the input image to further refine

our results.

Given a set of (pi, qi) correspondences where pi de-

notes a pixel in the input image and qi denotes its cor-

responding vertex in the 3DMM, we minimize the fol-

lowing energy function defined over the parameters X =
(f,R, t, αid, αexp):

E(X ) = Edata(X ) + Ereg(X ), (3)

Edata(X ) =
∑

i

wi‖p
i −Πf (RSqi + t)‖2,

Ereg(X ) = wid

∑

id,i

(
αid,i

σid,i

)2 + wexp

∑

exp,i

(
αexp,i

σexp,i

)2,

where Edata measures the error between the projected

3D face points and their corresponding 2D points and Ereg

is a statistical prior over the identity and the expression

blendshapes [50] and we set wid = 2.5 × 10−5, wexp =
1000. Sqi = (S̄ +Aidαid +Aexpαexp)qi denotes the posi-

tion of the vertex qi in the 3D face defined by the parameters

(αid, αexp). wi defines the weight of each correspondence

and all weights are initialized to be equal. We iteratively

solve for the parameters listed in Eq. 3 to minimize the L2

distance between the mesh's projected vertices and their es-

timated pixel location based on the dense correspondence

at each iteration. This standard formulation is also used in

many previous papers such as [55], [49], and [12]. Once the

parameters of the 3DMM that aligns best with the input im-

age are computed, we recover any missing correspondence

and refine our predictions.

4. Experiments
4.1. Training Data

Our network operates on images of size 128 × 128. We

train our network first on a large set of synthetic renderings

of a 3D morphable model. To generate these renderings, we

randomly sample different facial textures from the Chicago

face database [41], we sample the identity and expression

parameters as well as the rotation and translation from a

Gaussian distribution. We also randomly sample spheri-

cal harmonics values from a database of lighting environ-

ments and apply it to the face to generate a total of 200k

renderings on gray background. We also composite an ad-

ditional 200k renderings with random background images

downloaded from the COCO dataset [38](see Figure 4). We

use a total of 100k random pairs of source and target images

with gray background and 100k random pairs of source and

target images with real background for training. We use a

batch size of 12 and learning rate of 1e−4 for roughly 2

epochs. One epoch takes roughly 6 hours.

Once the network converges, we fine-tune it with the im-

ages from the 300W-LP dataset [68]. We also perturb im-

ages from the 300W-LP dataset with 2D image-plane scale,

translation, and rotation, and we also synthesize occlusions

by drawing rectangles similar to the method of [49]. An ex-

ample of the rectangles we synthesize to simulate occlusion

is seen in Figure 4 . We first train with a learning rate of

1e−4 for about two epochs and then drop the learning rate

by a factor of 10 and train for another epoch.

Figure 4. We train our network first on a large set of synthetic

data with variations in shape, expression, facial texture, and illu-

mination. We further composite some of these renderings with

real background images. We later synthesize occlusions onto real

background images as seen in the image on the far right.

4.2. Qualitative Evaluations

We evaluate the performance of our method both for

2D and 3D facial alignment on the recently released

AFLW2000 [68] dataset of challenging and large pose im-

ages and show qualitative results in Figure 5. We provide

comparisons with the recent methods that tackle the prob-

lem of face alignment under large pose variations [68, 31]

as well as state-of-the-art face trackers including Kazemi et

al. [32] and the TVS implementation of Saragih et al. [51].

Both of them have been widely deployed in the industry.

Furthermore, we demonstrate the performance of combin-

ing our method with 2D face alignment method by initializ-

ing the face tracker with our predictions of 2D facial land-

marks. We observe that our method is more robust to heavy

occlusions, large variations in illumination, translation, and

image-axis rotation. Our method can also serve as a better

starting point for 2D face alignment method such as Saragih

et al. [51] to significantly improve its performance.

We also report evaluations on extremely challenging im-

ages and video sequences captured in the wild in the sup-

plemental materials.

4.3. Quantitative Evaluation

In addition to qualitative results, we perform quantitative

evaluations by measuring the accuracy of the 2D facial land-

marks. Once a 3D face model is aligned to an input image

4727



ours-3D Zhu et al. - 3D Jourabloo et al. Kazemi et al. Saragih et al. oursZhu et al. Saragih et al.+ours

Figure 5. We provide visual 2D and 3D facial alignment results on the AFLW2000 dataset [68] using our method, the method of Zhu et

al. [68], Jourabloo et al. [31], Kazemi et al. [32], and Saragih et al. [51]. We also show the results obtained by [51] when initialized with

our predictions.

using the estimated dense correspondences, we can iden-

tify the 2D facial landmarks from the annotated vertices on

the 3D model. We then measure the normalized mean error

(NMS) [68] between the ground truth and predicted facial

landmarks.

We evaluate our method on several challenging datasets

such as the 68 landmarks on AFLW2000 [68], 21 landmarks

on AFLW [34], and 21 landmarks on AFLW-PIFA [30] 2.

Since we did not have much training data with real images,

we included images from the 300W Challenge dataset [48]

and their synthesized side views in our training set, so we

did not evaluate our method on this dataset. We compare

our performance to state-of-the-art face alignment methods

including Zhu et al. [68] and Jourabloo et al. [31].

In Table 3, we report our results on the visible land-

2On AFLW-PIFA, the ground-truth annotations have 34 landmarks. But

we are only clear about their definitions on a 3D face for 21 out of them.

Method 0 to 30 30 to 60 60 to 90

RCPR [11] 4.26 5.96 13.18

ESR [15] 5.60 6.70 12.67

SDM [60] 3.67 4.94 9.76

Zhu et al. [68] 3.78 4.54 7.93

Our Method 3.62 6.06 9.56

Table 1. Performance evaluation on AFLW2000 (68 landmarks):

we report the NMS for faces in small ([0, 30]), medium([30, 60]),
and large([60, 90]) pose with respect to the yaw angles. The top

two results in each category are highlighted in bold.

marks on the complete AFLW [34] along with the accuracy

achieved by Zhu et al. [68], which has been shown to out-

perform previous existing methods on this dataset.

In Table 1 we show our performance with NMS overall

of the ground truth 68 landmarks in AFLW2000. One is-

sue of this setting is that the exact locations of invisible and

contour landmarks is unclear [69] and subjective. More-
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over, their 2D projections may vary with different fitting

and projection methods. Zhu et al. [69] propose “landmark

marching” to address this problem. But still the definitions

of contour landmarks are arguable. In Figure 6, we observe

that a decent-quality fitting can have a high NMS due to the

subjective nature of the contour and invisible landmarks.

A strong motivation for detecting the contour and invisi-

ble landmarks is to help 3D face fitting. However, in our

method, we are able to get accurate 3D face fitting from

dense correspondences without relying on invisible land-

marks and the need of defining contour landmarks.

To better understand the performance of our method, we

exclude the contour and invisible landmarks and evaluate

the NMS over only the inner and visible landmarks. For

each face image, the ground-truth visibility of a landmark

can be obtained from its ground-truth 3D face provided in

the AFLW2000 dataset. We report our results in Table 2.

We observe that our method consistently achieves compara-

ble performance with the state-of-the-art for faces in small,

medium, and large pose.

Figure 6. The problem of evaluation against invisible and con-

tour landmarks: we show a typical large-pose face image in

AFLW2000 and its landmarks. On the left we show our 3D face

fitting result. On the right we show the projected landmarks of our

fitting are in green and ground truth landmarks are in blue. While

the fitting is decent, the NMS over 68 landmarks is as high as 9.53.

Pose (Yaw Angle) Zhu et al [68] Our Method

Small [0°-30°] 4.30 3.14

Medium [30°-60°] 4.41 3.84

Large [>60°] 6.68 5.53

All Images 4.60 3.58

Table 2. Performance evaluation on AFLW2000 for visible in-

ner landmarks: we report the NMS for faces in small ([0, 30]),
medium([30, 60]), large([60, 90]) pose with respect to the yaw an-

gles, and across all the images.

We also compare our method on the AFLW-PIFA [30]

dataset with another large-pose face alignment method from

Jourabloo et al. [31]. In Table 4, we see that our method

Pose (Yaw Angle) Zhu et al [68] Our Method

Small [0°-30°] 5.00 5.94

Medium [30°-60°] 5.06 6.48

Large [>60°] 6.74 7.96

Table 3. Performance evaluation on AFLW[68]. We report NMS

across all visible landmarks

Jourabloo et al. [31] Our Method

4.72 5.42

Table 4. Performance evaluation on AFLW-PIFA [31]. We report

NMS error across the original 21 AFLW landmarks.

Jourabloo et al. [31] Zhu et al. [68] Our Method

1666 75.7 9.35

Table 5. Comparisons of Runtimes in Milliseconds

again achieves comparable performance.

Additional quantitative evaluations of our 3D model fit-

ting and dense correspondences can be found in the supple-

mental materials.

4.4. Runtime

In addition to comparably robust and accurate face align-

ment, our method is one to several orders of magnitude

more efficient compared with other state-of-the-art meth-

ods on large pose face alignment. Our method takes only

a single iteration at test time, providing us with a large ad-

vantage in terms of efficiency. In Table 5, we summarize the

runtime speed of the competing methods for large pose face

alignment. Without an iterative process, it takes only 9ms

on an NVIDIA Titan X GPU for our network to estimate

the dense correspondences, which is one to several orders

of faster than others. A 3D face-fitting post-process would

take up to an additional 10 ms on the CPU, meaning that in

total our pipeline can obtain a 3D face-fitting from an input

image within 19 ms.

4.5. Limitations

We see in Figures 7 to 9 the limits of what our network

can achieve. Namely, with respect to side faces and occlu-

sion, we are robust enough to obtain good results when one

key feature (i.e. face, mouth, nose) disappears, but perfor-

mance drop as more features disappear due to extreme pose

or occlusion.

5. Discussion

We have presented an alternative deep learning solu-

tion for 3D facial fitting to some top performing regression

based techniques [68, 31]. Our experiments show that it

is possible to reliably estimate dense 2D facial correspon-

dences from RGB images by training a convolutional neu-

ral network with encoder-decoder architecture using a com-

bination of real photographs and synthetic renderings with

3DMM variations, perturbations, and simulated occlusions

and lighting.

With the same amount of real-world training data we are

28.5% more accurate on inner visible landmarks than Zhu

et al. [68] for the AFLW2000 dataset and 14.8% less ac-

curate to Jourabloo et al. [31] for the PIFA dataset. Gen-

erally our results can be considered comparable as other

methods outperform us in certain cases (e.g their fitting
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Figure 7. We observe a gradual decrease in performance for pose

estimation as the pose becomes more extreme and key features (i.e.

nose, eye, mouth) disappear. Our algorithm completely misses on

the fourth frame when the nose is completely occluded by the rest

of the face. The estimated yaw angle of the previous frame is 70°.

Figure 8. Like with pose, we can handle the disappearance of one

key feature, and performance gradually deteriorates until our al-

gorithm completely misses when an eye, nose, and mouth are all

occluded in the fourth frame.

Figure 9. We see that for a frontal face, we handle intense lighting

conditions both from artificial and natural light quite well. How-

ever, when extreme lighting is combined with large head pose, we

see our performance suffers significantly.

among side views and wide-open mouths are slightly more

accurate) while we outperform related works in other cases

(e.g. we are more robust to external occlusion, illumina-

tion, and image-axis rotation). However, our approach is

significantly faster (refer to Table 5) and shows increased

robustness on our real test cases, such as for facial track-

ing in the wild, where the facial detection bounding box is

not reliable and does not always provide a tight crop (see

supplemental materials).

When assessing the sparse landmark positions after a

3DMM fitting step, our approach is less accurate than some

cutting-edge landmark detectors such as TVS (commercial

variant of [51]) or [32], but we can handle extreme con-

ditions such as large poses, challenging lighting, and oc-

clusions. In addition to the robustness, our method is one

to several orders faster than other state-of-the-art large pose

face alignment methods, and is the only one that can be

real-time. Our experiments suggest that a reasonable de-

sign choice is to use our efficient and robust dense 2D flow

prediction as initialization for a refined and more accurate

sparse landmark detection step.

Though more efficient, our current training is limited to

facial shape and appearance variations from 3DMM and

photos provided by Zhu et al. [68], which indicates a sim-

ilar performance to existing regression approaches. Never-

theless, since we predict 2D flows directly, we are not lim-

ited to the model space of 3DMM, and could potentially

increase the dimensionality of variations, and include more

expressions, facial hair, and potentially non-realistic faces

such as drawings and cartoon characters. Hence, the full ca-

pabilities of our dense correspondence approach is not fully

leveraged, but new training data sources need to be investi-

gated.

Future Work. While we improve the state-of-the art in

terms of efficiency and robustness, the presented framework

is far from perfect. For example, although our matchability

mask is able to accurately detect self-occlusion, we do not

explicitly segment out external occlusions from the face re-

gion of the image due to limitations in our training data. Our

accuracy is also limited by the low resolution (128x128) of

the DNN input, and we would like to improve the resolution

and accuracy to eliminate any need for a refinement step.

Additionally, although we improve state-of-the-art in terms

of robustness, there are still cases such as the ones listed in

the Section 4.5 where our method fails, and we would like

to extend out method to address these limitations.

We could improve our framework by introducing more

training data with accurate face segmentation ground-truth,

and better ground-truth fitting of the whole head, especially

the back of the head and ears, would allow us to accurately

track faces with even more extreme poses where close to all

the sparse landmarks that are traditionally tracked in other

methods are hidden. We will plan to explore new direc-

tions to generate more training data with dense facial la-

bels using both computer graphics and machine learning

techniques. Recent advancements in generative adversar-

ial networks are promising areas for exploration. We could

also extend the framework to directly infer 3D positions,

eliminating the need to do post-hoc 3D fitting. If we can

accurately infer dense correspondences for shapes beyond

the space spanned by 3DMM, we could also model faces

with more details and capture facial hair and impact general

3D reconstruction techniques such as structure from motion

and multi-view stereo.
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