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Abstract

This paper addresses the problem of object-mask regis-

tration, which aligns a shape mask to a target object in-

stance. Prior work typically formulate the problem as an

object segmentation task with mask prior, which is chal-

lenging to solve. In this work, we take a transformation

based approach that predicts a 2D non-rigid spatial trans-

form and warps the shape mask onto the target object. In

particular, we propose a deep spatial transformer network

that learns free-form deformations (FFDs) to non-rigidly

warp the shape mask based on a multi-level dual mask fea-

ture pooling strategy. The FFD transforms are based on

B-splines and parameterized by the offsets of predefined

control points, which are differentiable. Therefore, we are

able to train the entire network in an end-to-end manner

based on L2 matching loss. We evaluate our FFD net-

work on a challenging object-mask alignment task, which

aims to refine a set of object segment proposals, and our

approach achieves the state-of-the-art performance on the

Cityscapes, the PASCAL VOC and the MSCOCO datasets.

1. Introduction

Aligning a shape mask to object instances is a commonly

used strategy in segmenting objects from background or

inferring shape deformation of individual objects, and has

wide applications in semantic instance segmentation [34],

object proposal generation [14] and visual object track-

ing [19], etc. While it can be viewed as a special case of

image registration problem [39], such object-mask align-

ment task is more challenging as the mask lacks internal

structure for finding the dense correspondence between the

target object and itself.

Most existing approaches address this problem by for-

mulating it as an object segmentation task, in which the

shape mask is used as an initialization, such as contour

matching [5], or an instance shape prior for binary object

segmentation [23, 31]. However, the resulting segmenta-

tion task is usually equally challenging, and does not pro-

Figure 1. An illustration of the object-mask alignment problem

and the transformation implemented by the deep free-form defor-

mation network.

vide shape alignment between mask and object.

An alternative, and sometimes more natural approach to

the object-mask alignment problem is to predict a 2D spa-

tial transformation that registers mask onto the target object,

as shown in Figure 1. Such a transformation-based strategy

has several advantages in practice. First, the problem of

predicting 2D transforms is typically simpler due to the fact

that the common transformation families, such as affine or

TPS [27], have fewer degrees of freedom and thus the out-

put of prediction lies in a lower dimensional space. Second,

for slightly mis-aligned mask and object, transforming bi-

nary masks is more efficient than recomputing the segmen-

tation or doing image registration. Finally, the predicted

transformation allows us to infer the detailed shape defor-

mation of an instance relative to its canonical shape mask.

In this paper, we propose a deep learning approach to

address the object-mask alignment problem. Given an in-

put image containing the target object and an initial mask,

our approach learns a non-rigid 2D transform that warps the

mask onto the target object. To achieve this, we design a

novel spatial transformer network that predicts a free-form

deformation (FFD) [33] transform and applies the non-rigid

transform to the input mask to generate a better alignment

between the mask and object.

Specifically, we build a deep convolutional neural net-

work consisting of two modules. The first module computes

the convolutional feature maps from the input image, and

extracts a feature representation of the image region cov-

ered by the mask. To encode the shape information of the

initial mask, and the image cues around object, we develop a

multi-level dual mask feature pooling method to capture the
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misalignment between the mask and object. Based on the

multi-level features, the second network module predicts a

FFD transform parameterized by the offsets of predefined

control points through regression. It then applies the B-

spline based FFD transform to the initial mask based on a

grid generator and a bilinear sampler, which produces the fi-

nal warped object mask.As these two network modules are

differentiable, we train the entire deformation network in an

end-to-end fashion using L2 matching loss.

We evaluate our FFD network on a challenging object-

mask alignment task, in which we aim to refine a set of

object segment proposals generated from state-of-the-art

methods. Our results show that we achieve sizable improve-

ments in Average Recall on the Cityscapes, the PASCAL

VOC and the MSCOCO datasets for different initial pro-

posal methods, which validates the efficacy of our deep FFD

network.

2. Related Work

Image registration is a long-standing problem in com-

puter vision and medical image analysis, which is typically

applied to two images and aims to find dense or sparse

correspondence between them based on similar local struc-

tures [39, 6]. The registration geometrically aligns two im-

ages (the reference and moving images), through gradually

minimizing the difference between the images [27, 1]. In

this work, however, we learn to predict the underlying de-

formations between a binary shape mask and its ground-

truth object region, which is more challenging than the stan-

dard image registration task.

Our work is inspired by the B-spline FFD model [25],

which is a powerful pool for modelling local and non-rigid

deformations. It has been widely used in medical image

registration [33] and shape registration [16]. The basic idea

of the FFD model is to deform an object by manipulating an

underlying mesh of control points. The control points act as

parameters of the FFD model and determine the deforma-

tions being modelled. In our work, we use the FFD model

to encode the transformation between the object mask and

its ground-truth object region, for its flexibility and differ-

entiable property.

The object-mask alignment can be formulated as an ob-

ject segmentation problem and solved by a variety of se-

mantic segmentation techniques (e.g., [2, 37]). Early work

on level-set based segmentation start from an initial con-

tour and iteratively evolve the contour towards the tar-

get object by minimizing a functional energy function [5].

More recent approaches tend to use initial masks as a

prior in inferring object segmentation. The masks can

be transferred from similar images with object annota-

tions [23, 24, 21], object shape prior [31] or discriminatively

trained Exemplar-SVMs [34, 14]. However, it usually re-

mains challenging to solve the corresponding segmentation

problem. In this work, we take an alternative perspective

and learn a non-rigid transformation to warp the mask onto

object.

Learning deep regression networks to align objects has

been explored in a variety of problem settings. In [36], the

authors propose a deep deformation network for efficient

object landmark localization. [20] introduces a warpnet to

match images of objects, from which it builds single-view

reconstruction. The spatial transformer network (STN) [18]

learns a parametric transform to recover the canonical view

of objects for better classification accuracy. Our method is

built on top of the STN and mainly addresses the novel task

of aligning a mask to object.

Object segment proposal generation is an important step

for semantic instance segmentation task. One strategy is to

generate object bounding boxes first based on handcrafted

features [38] or deep networks [32] followed by object seg-

mentation. Alternatively, grouping-based methods use mid-

level image cues to generate and rank multiple segment can-

didates [3, 17, 35, 22, 30]. Recent approaches to proposing

object segments learn a deep network that directly predicts

object masks from the input image. In particular, Deep-

Mask [28] builds a two-branch deep network, jointly pro-

ducing a binary mask and an objectness score for every

patch in an image. Dai et al. [8] propose a multi-task net-

work cascade for instance segmentation, in which the first

two stages generate generic bounding box proposals as well

as an object mask for each bounding box. Only a few at-

tempt to improve the quality of object segment proposals:

recent work of SharpMask [29] builds a refinement network

on top of the DeepMask net to obtain better boundary align-

ment. Our method, in contrast, explicitly learns a non-rigid

spatial transform network to warp any initial object candi-

date towards its nearest object.

3. Deep Free-Form Deformation Network

We aim to generate an object segmentation by aligning

an initial mask to its target object in an input image. To this

end, we take the transformation-based strategy that learns a

2D spatial transformer to warp the initial mask to the target

object. In this section, we introduce a deep convolutional

neural network that first predicts a non-rigid transformation

and then applies the transform to the initial mask to produce

the aligned object mask. Our network is fully differentiable

and can be trained in an end-to-end fashion.

More specifically, our network consists of two modules:

the first computes convolutional feature maps and extracts

multi-level features to capture the misalignment between

the mask and object, while the second module predicts the

non-rigid transformation and warps the initial mask. Fig-

ure 2 illustrates the overview of our network structure. We

now describe each module of our system in detail.
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Figure 2. An overview of our deep FFD network for object-mask alignment. The entire network consists of two modules: the first computes

the convolutional feature maps and extracts mask features using dual mask pooling, while the second predicts the FFD transform and warps

the input mask onto the target object.

3.1. Convolutional Features and Mask Pooling

Our first network module uses a base convolutional neu-

ral network (CNN) to compute the convolutional feature

maps of the input image. To capture the misalignment be-

tween the initial mask and its target object, we introduce

a dual mask feature pooling scheme to extract multi-level

features from the feature maps. In particular, this scheme

enables us to capture the mask shape information and the

spatial context cue around the object region that can guide

the network to predict the spatial warping.

Our pooling layer takes as input a set of convolutional

feature maps and an object mask, and generates an object-

mask descriptor. Its design is inspired by the standard

RoI pooling [11] and the convolutional feature masking [7]

methods. Specifically, we form a tight bounding box en-

closing the mask as well as a larger box by expanding the

tight box in its height and width directions by 1.6 times. We

first do weighted RoI pooling in the tight box, where the

output of the standard RoI pooling in each cell is weighted

by the overlap ratio between the cell and the mask. This

generates the first type of mask features, encoding the shape

and the convolutional features covered by the mask. We

then perform the standard RoI pooling in the larger bound-

ing box. This second type of features captures the spatial

context cue of the mask and the target object. The final

object-mask descriptor is formed by concatenating the two

types of pooled mask features. Note that different from the

RoI pooling in object detection [11], we compute the mask

feature pooling on all convolution feature maps generated

by the base network (as shown in Figure 2), which allows

us to capture both local and global cues for predicting the

transformation. Figure 3 illustrates the dual mask feature

pooling process for a single level of feature maps.

Figure 3. The dual mask feature pooling pipeline in our FFD net-

work. Here only a single level of convolutional maps is shown.

Note that we use much finer grid partition than the standard RoI

pooling.

3.2. Free­Form Deformation Transformer

Given the object-mask descriptor, our second network

module predicts a 2D spatial transform to warp the initial

mask onto the target object. As the mask can have arbitrary

shapes, we adopt a rich family of spatial transforms, which

is capable of representing any non-rigid warping in image,

referred to as free-form deformation (FFD) [33].

The FFD defines a family of non-rigid spatial transfor-

mations based on a mesh of control points. By shifting

the control points and interpolating the dense deformation

based on B-splines [25], it provides a flexible tool to de-

scribe the non-rigid transformation between the mask and

object. Figure 4 shows an example of the deformation pro-

cess.

Formally, let Φ be a 2-D mesh of control points and

T : (x, y) 7→ (x′, y′) be a pointwise transformation of any

location (x, y) in target image F to the location (x′, y′) in
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(a) Uniformly spaced control

points

(b) Deformation by shifting

the control points

Figure 4. Illustration of FFD defined on a binary mask. Left is the

original mask with uniformly spaced control points; Right is the

deformed mask with displaced control points.

the source image R. Given a mesh of control points φi,j

with uniform spacing δ pixels, the non-rigid transformation

T by B-spline functions is defined by

T(x,y) =

3∑

l=0

3∑

m=0

Bl(u)Bm(v)φi+l,j+m (1)

where i = ⌊x/δ⌋ − 1, j = ⌊y/δ⌋ − 1, u = x/δ − ⌊x/δ⌋,

v = y/δ − ⌊y/δ⌋, and Bl represents the l-th basis function

of cubic B-splines [25]:

B0(u) = (1− u)3/6, B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6, B3(u) = u3/6

From Equation (1), we note that the B-spline based FFD

is locally controlled as each control point φi,j affects only

its 4δ × 4δ neighborhood. This indicates that the FFD can

describe highly local transformation, which is required for

capturing the complex non-rigid deformations between the

mask and object. Additionally, the degree of non-rigid de-

formations can be controlled by changing the resolution of

the mesh of control points Φ. A larger spacing of control

points allows modelling of global and coarse deformations,

while a small spacing of control points allows modelling of

local and fine-grained deformations.

By shifting the locations of the control points from the

uniform grid φi,j to φi,j + ∆φi,j , the B-spline based FFD

generates a non-rigid transformation as follows:

T(x,y) =

3∑

l=0

3∑

m=0

Bl(u)Bm(v)(φi+l,j+m +∆φi+l,j+m)

(2)

In this work, we parameterize the FFD by the offsets of

its control points {∆φi,j}, and our second network mod-

ule first regresses the control point offsets from the object-

mask descriptor. To achieve scale-invariance, we normalize

the offsets by the size of the initial mask. Our transform

regressor module consists of 3 fully connected (fc) layers

and its outputs are the offset vectors of every control point.

To obtain the warped mask, we follow a similar strategy

as the Spatial Transformer Network [18]. Given the pre-

dicted offsets, we compute the dense transformation accord-

ing to Equation (2). The transform T then generates a sam-

pling grid G, which is a set of points where the initial mask

should be sampled in order to produce the warped mask.

Next, a bilinear sampling layer takes the sampling grid and

the initial mask as inputs and produces the final warped

mask. We refer the reader to [18] for more details about the

bilinear sampling process, especially the back propagation

of the loss through the sampling mechanism.

We note that for the FFD transformer network, the gra-

dients of loss L with respect to ∆φi,j can be computed by:

∂L

∂∆φi,j

=
∂L

∂G
·

∂G

∂∆φi,j

=
∂L

∂G
·

3∑

l=0

3∑

m=0

Bl(u)Bm(v)

(3)

where
∂L

∂G
is the gradients of loss L with respect to the sam-

pling grid G. This equation shows that given
∂L

∂G
,

∂L

∂∆φi,j

can be computed efficiently by convolution, with the filter

weights as Bl(u)Bm(v) and the stride being the spacing

of control points δ. The differentiable property of the FFD

transformer network allows loss gradients to flow back to

the feature maps, which enables us to train the network in

an end-to-end fashion.

3.3. Network Details and Training

Network Architecture. We use ResNet-101 [13] pre-

trained on the ImageNet dataset [9] for image classification

task as our base net to learn the feature representation. We

remove all the layers on top of res4b22 bracnch2a relu, as

the output from these layers are not used in our system.

For the mask feature pooling, we select a 30×30 grid for

computing the feature on the feature maps output from layer

conv1 relu (64 channels) and layer res2c relu (256 chan-

nels), and a 20 × 20 grid for layer res3b3 branch2a relu

(128 channels) and layer res4b22 bracnch2a relu (256

channels). We discover that the high resolution of the

pooling grid is important for training the network, as the

non-rigid transformations to be learned by the network are

highly complex, which need quite discriminative and fine

features to represent them.

As the mask features pooled from different layers are

of different spatial sizes and channel depths, we first fully

connect each set of them into a low dimensional output of

size 128 and then concatenate all the outputs together to

form a feature vector of size 512. Next are another two

fc layers for predicting the offsets of the control points.

The weight sizes of these two fc layers are 512 × 512 and
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512× 2× 13× 13 respectively, which means the resolution

of the mesh of control points is 13× 13 in our experiments.

All the fc layers except the last one are followed by a ReLU

layer and a dropout layer.

Training Examples. To build the set of training examples,

we select those segment proposals who have an IoU with

the ground truth greater than 0.5 as the training samples.

Specifically, for a qualified segment proposal, we crop it

with a larger box whose size is 1.6× to the tight box that

encloses the segment in terms of height and width, so that

the cropped region can cover more of the ground-truth ob-

ject mask. We also use this large box to crop corresponding

ground-truth mask as this region’s ground truth.

Learning Details. We train the network to simply minimize

the L2 loss between the candidate’s mask and the ground

truth’s, which we find is robust and effective. We adopt an

image-centric training policy [11]. In our system, the mini-

batch size is 1 and for every image we randomly sampled

128 training segments. Except the ResNet layers, the extra

fc layers are initialized randomly from Gaussian distribu-

tion. We train the network for 10 epochs using a momen-

tum of 0.9 and weight decay of 0.002. The learning rate we

use for each epoch gradually decreases from 10−4 to 10−7

evenly in the log space.

4. Experiments

We apply our FFD network to the segment proposal re-

finement task in which we intend to improve a set of object

segment proposals generated from state-of-the-art methods.

We evaluate the performance of our approach on three pub-

lic datasets: Cityscapes [4], PASCAL VOC 2012 [10, 12]

and MSCOCO [26],

4.1. Evaluation Metrics and Protocols

For performance evaluation, we compute the average re-

call (AR) [15] between IoU 0.5 and 0.95 for a fixed number

of segment proposals. The AR metric describes the overall

quality of object proposals and has been shown to correlate

highly with the detection accuracy in [15]. Additionally, we

report the recall versus IoU threshold for different number

of proposals.

On the Cityscapes dataset, we split the training set into

two subsets: one for training (2,614 images) and the other

for validation (361 images taken at Tubingen, Ulm and

Zurich). We report our results on the original validation

set (500 images) for evaluation as the test server does not

provide the evaluation for segment proposals. For the PAS-

CAL VOC dataset, we train our network on the training set

(5,623 images) and evaluate on the validation set (5,732 im-

ages). We use the instance-level segmentation annotations

from [12]. For the MSCOCO dataset, we follow the same

protocol as in SharpMask [29].

Method AR@10 AR@100 AR@1000

MNC-r 0.052 0.131 0.180

MNC 0.041 0.102 0.136

SharpMask-r 0.103 0.175 0.215

SharpMask 0.085 0.141 0.171

DeepMask 0.082 0.138 0.164

MCG 0.016 0.046 0.091

Table 1. Quantitative results of segment proposal refinement on

Cityscapes: AR at different number of proposals (10, 100 and

1,000).

To demonstrate the generality of our method, we conduct

our Cityscapes and PASCAL VOC experiments with two

different sets of initial object segments, which are generated

from the state-of-the-art segment proposal generation meth-

ods, SharpMask [29] and MNC [8], respectively. For each

type of initial segments, we train our model from scratch

with a set of selected segment proposals from the initial

pool. However, when training the network with SharpMask

proposals on the PASCAL VOC, we find that it is difficult

for the network to converge, which might be due to much

fewer training segments and their sparse spatial distribution.

So for that case, we fine-tune the network that has been

trained for MNC proposals on the PASCAL VOC. On the

MSCOCO, we only report our experiment with the Sharp-

Mask proposals.

4.2. Results

4.2.1 Cityscapes

In Fgure 5(a), we first report the AR performances of the re-

fined segment proposals (MNC-r and SharpMask-r), and

compare the performance of our method against the orig-

inal proposal methods as well as other baselines (Deep-

Mask [28] and MCG [30]) on the Cityscapes. We can see

that our FFD network can improve the quality of the ini-

tial segment proposals by a significant margin. Specifically,

with 1,000 proposals, our FFD network increases the AR

of MNC and SharpMask from 0.136 to 0.180 (32.4% im-

provement) and from 0.171 to 0.215 (25.7% improvement),

respectively. More detailed quantitative results are shown

in Table 1.

Figure 5(b) and 5(c) show the recall versus IoU threshold

with 100 and 1,000 proposals respectively. They demon-

strate that our method can improve the proposals with dif-

ferent segmentation qualities on the Cityscapes dataset.

We further report some qualitative results in Figure 8.

These examples show that our FFD network is capable of

predicting non-rigid deformations for both local and global

warping, and produces better segmentation for the target ob-

jects with different scales and classes.
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Figure 5. Segment proposal refinement results on Cityscapes: (a) AR vs. number of proposals; (b) and (c) recall vs. IoU threshold with

different number of proposals.
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Figure 6. Segment proposal refinement results on PASCAL VOC: (a) AR vs. number of proposals; (b) and (c) recall vs. IoU threshold

with different number of proposals.

Method AR@10 AR@100 AR@1000

MNC-r 0.323 0.509 0.599

MNC 0.302 0.474 0.541

SharpMask-r 0.350 0.515 0.594

SharpMask 0.325 0.477 0.557

DeepMask 0.293 0.436 0.513

MCG 0.171 0.346 0.481

Table 2. Quantitative results of segment proposal refinement on

PASCAL VOC : AR at different number of proposals (10, 100

and 1,000).

4.2.2 PACAL VOC

We compare the AR performances of our method with other

baselines on the PASCAL VOC in Figure 6(a). It can

be seen that our FFD network further improves the qual-

ity of the segment proposals generated from both state-of-

the-art approaches. In particular, with 1,000 proposals, our

FFD network increases the AR of MNC and SharpMask by

10.52% (from 0.542 to 0.599) and 6.64% (from 0.557 to

0.594). More detailed quantitative results are shown in Ta-

ble 2. This demonstrates that our approach generalizes well

to other types of datasets.

Figure 6(b) and 6(c) show the recall versus IoU threshold

with 100 and 1,000 proposals respectively. We can see that

the refined proposals have better quality, as with high IoU

thresholds, e.g. 0.7, 0.8 and 0.9, the refined proposals have

much higher recall than the initial proposals.

Additionally, we include some qualitative examples in

Figure 9, which show that our FFD network produces a

wide range of refinements on object shapes. Some of these

results have a slightly better boundary alignment, while

the others achieve large improvements over the initial seg-

ments.
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Figure 7. Segment proposal refinement results on MSCOCO: (a) AR vs. number of proposals; (b) and (c) recall vs. IoU threshold with

different number of proposals.

Method AR@10 AR@100 AR@1000

SharpMask-r 0.179 0.327 0.416

SharpMask 0.160 0.298 0.387

Table 3. Quantitative results of segment proposal refinement on

MSCOCO : AR at different number of proposals (10, 100 and

1,000).

IoU Interval [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9)

mean PGIoU 0.548 0.648 0.749 0.849

mean RGIoU 0.665 0.737 0.796 0.861

Gain 21.35% 13.7% 6.28% 1.41%

Table 4. Statistics for the improvements in the quality of MNC

proposals with different initial IoU scores on PASCAL VOC. The

’mean PGIoU’ denotes the average IoU score of the original pro-

posals, while the ’mean RGIoU’ is the average IoU score of the

warped proposals.

4.2.3 MSCOCO

Figure 7(a) demonstrates the AR improvement for Sharp-

Mask proposals on the MSCOCO, while Tabel 3 shows

more detailed quantitative results. With 1,000 proposals,

our approach improve the AR by 7.49% (from 0.387 to

0.416). Figure 7(b) and 7(c) show the recall versus IoU

threshold with 100 and 1,000 proposals respectively. It is

clear that our method can achieve consistent improvements

on MSCOCO, and this demonstrates that our approach is

able to scale up to a larger number of object classes.

4.3. Ablation Study

In order to get more insight into our FFD network, we

analyze the IoU improvements for MNC segment proposals

with different IoU scores on the PASCAL VOC. We divide

the initial proposal set into 4 groups, which correspond to

the IoU intervals of [0.5, 0.6), [0.6, 0.7), [0.7, 0.8) and [0.8,

0.9). We then compute the mean IoU improvements for

each group after aligning the initial masks to their object

regions through the FFD network. The results are shown

in Table 4, from which we can see that our FFD network

is more effective in modeling relatively coarse transforma-

tions than capturing fine-level local deformations. Encod-

ing such fine-level misalignment between the object mask

and its groundtruth might require richer features and denser

control points.

We have also tried to learn a backward transformation

that transforms the groundtruth mask to the proposal mask.

Interestingly, we discover that the backward transformation

is much easier to learn, which can be explored further in

future work.

5. Conclusion

In this paper, we address the problem of object-mask reg-

istration and aim to align a shape mask to a target object

instance. To this end, we take a transformation based ap-

proach that predicts a 2D non-rigid spatial transform and

warps the shape mask onto the target object. In partic-

ular, we propose a deep spatial transformer network that

learns free-form deformations (FFDs) to non-rigidly warp

the shape mask based on a multi-level dual mask feature

pooling strategy. Our network is fully differentiable and

thus can be trained in an end-to-end manner. We evaluate

our FFD network on the task of refining a set of object seg-

ment proposals, and our approach achieves the state-of-the-

art performance on the Cityscapes, the PASCAL VOC and

the MSCOCO datasets.
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Figure 8. Qualitative results on Cityscapes. Red: original object mask. Green: aligned mask.

Figure 9. Qualitative results on PASCAl VOC. Red: original object mask. Green: aligned mask.
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