
Interleaved Group Convolutions

Ting Zhang1 Guo-Jun Qi2 Bin Xiao1 Jingdong Wang1

1Microsoft Research 2University of Central Florida

{tinzhan, Bin.Xiao, jingdw}@microsoft.com guojun.qi@ucf.edu

Abstract

In this paper, we present a simple and modularized neu-

ral network architecture, named interleaved group convo-

lutional neural networks (IGCNets). The main point lies

in a novel building block, a pair of two successive inter-

leaved group convolutions: primary group convolution and

secondary group convolution. The two group convolutions

are complementary: (i) the convolution on each partition in

primary group convolution is a spatial convolution, while

on each partition in secondary group convolution, the con-

volution is a point-wise convolution; (ii) the channels in the

same secondary partition come from different primary par-

titions. We discuss one representative advantage: Wider

than a regular convolution with the number of parameters

and the computation complexity preserved. We also show

that regular convolutions, group convolution with summa-

tion fusion , and the Xception block are special cases of in-

terleaved group convolutions. Empirical results over stan-

dard benchmarks, CIFAR-10, CIFAR-100, SVHN and Ima-

geNet demonstrate that our networks are more efficient in

using parameters and computation complexity with similar

or higher accuracy.

1. Introduction

Architecture design in deep convolutional neural net-

works has been attracting increasing interests. The ba-

sic design purpose is efficient in terms of computation

and parameter with high accuracy. Various design di-

mensions have been considered, ranging from small ker-

nels [15, 35, 33, 4, 14], identity mappings [10] or general

multi-branch structures [38, 42, 22, 34, 35, 33] for easing

the training of very deep networks, and multi-branch struc-

tures for increasing the width [34, 4, 14].

Our interest is to reduce the redundancy of convolu-

tional kernels. The redundancy comes from two extents:

the spatial extent and the channel extent. In the spatial ex-

tent, small kernels are developed, such as 3 × 3, 3 × 1,

1× 3 [35, 29, 17, 26, 18]. In the channel extent, group con-

volutions [42, 40] and channel-wise convolutions or separa-

ble filters [28, 4, 14], have been studied. Our work belongs

to the kernel design in the channel extent.

In this paper, we present a novel network architecture,

which is a stack of interleaved group convolution (IGC)

blocks. Each block contains two group convolutions: pri-

mary group convolution and secondary group convolution,

which are conducted on primary and secondary partitions,

respectively. The primary partitions are obtained by simply

splitting input channels, e.g., L partitions with each con-

taining M channels, and there are M secondary partitions,

each containing L channels that lie in different primary par-

titions. The primary group convolution performs the spa-

tial convolution over each primary partition separately, and

the secondary group convolution performs a 1 × 1 convo-

lution (point-wise convolution) over each secondary parti-

tion, blending the channels across partitions outputted by

primary group convolution. Figure 1 illustrates the inter-

leaved group convolution block.

It is known that a group convolution is equivalent to a

regular convolution with sparse kernels: there is no connec-

tions across the channels in different partitions. Accord-

ingly, an IGC block is equivalent to a regular convolution

with the kernel composed from the product of two sparse

kernels, resulting in a dense kernel. We show that under

the same number of parameters/computation complexity, an

IGC block (except the extreme case that the number of pri-

mary partitions, L, is 1) is wider than a regular convolution

with the spatial kernel size same to that of primary group

convolution. Empirically, we also observe that a network

built by stacking IGC blocks under the same computation

complexity and the same number of parameters performs

better than the network with regular convolutions.

We study the relations with existing related modules. (i)

The regular convolution and group convolution with sum-

mation fusion [40, 42, 38], are both interleaved group con-

volutions, where the kernels are in special forms and are

fixed in secondary group convolution. (ii) An IGC block

in the extreme case where there is only one partition in the

secondary group convolution, is very close to Xception [4].

Our main contributions are summarized as follows.

• We present a novel building block, interleaved group

4373



Split PermutationConcat Split Concat Permutation

Primary group convolution

Secondary group convolution

Figure 1. Illustrating the interleaved group convolution, with L = 2 primary partitions and M = 3 secondary partitions. The convolution

for each primary partition in primary group convolution is spatial. The convolution for each secondary partition in secondary group

convolution is point-wise (1× 1). Details are given in Section 3.1.

convolutions, which is efficient in parameter and com-

putation.

• We show that the proposed building block is wider than

a regular group convolution while keeping the network

size and computational complexity, showing superior

empirical performance.

• We discuss the connections to regular convolutions,

the Xception block [4], and group convolution with

summation fusion, and show that they are specific in-

stances of interleaved group convolutions.

2. Related Works

Group convolutions and multi-branch. Group convolu-

tion is used in AlexNet [21] for distributing the model over

two GPUs to handle the memory issue. The channel-wise

convolutions used in the separable convolutions [28], is an

extreme case of group convolutions, in which each partition

contains only one channel.

The multi-branch architecture can be viewed as an ex-

tension of group convolutions by generalizing the convolu-

tion transformation on each partition, e.g., different number

of convolution layers on different partitions, such as Incep-

tion [34], deeply-fused nets [38], a simple identity connec-

tion [10], and so on. Summation [40, 38], average [22],

and convolution operations [34, 4] following concatenation

are often adopted to blend the outputs. Our approach fur-

ther improves parameter efficiency and adopts primary and

secondary group convolutions, where secondary group con-

volution acts as a role of blending the channels outputted by

primary group convolution.

Sparse convolutional kernels. Sparse convolution kernels

have already been embedded into convolutional neural net-

works: the convolution filters usually have limited spatial

extent. Low-rank filters [15, 17, 26] learn small basis filters,

further sparsifying the connections. Channel-wise random

sparse connection [2] sparsifies the filters in the channel ex-

tent that every output channel is connected to a small subset

of input channels. There are some works introducing regu-

larizations, such as structured sparsity regularizer [24, 39],

ℓ1 or ℓ2 regularization [7, 8] on the kernel weights.

Our approach also sparsifies kernels in the channel ex-

tent, and differently, we use structured sparse connections

in primary group convolution: both input and output con-

volutional channels are split to disjoint partitions and each

output partition is connected to a single input partition and

vice versa. In addition, we use secondary group convolu-

tion, another structured sparse filters, so that there is a path

connecting each channel outputted by secondary group con-

volution to each channel fed into primary group convolu-

tion. Xception [4], which is shown to be more efficient than

Inception [16], is close to our approach, and we show that it

is a special case of our IGC block.

Decomposition. Tensor decomposition over each layer’s

kernel (tensor) is widely-used to reduce redundancy of neu-

ral networks and compress/accelerate them. Tensor de-

composition usually finds a low-rank tensor to approxi-

mate the tensor through decomposition along the spatial di-

mension [6, 17], or the input and output channel dimen-

sions [6, 19, 17]. Rather than compressing previously-

trained networks by approximating a convolution kernel us-

ing the product of two sparse kernels corresponding to our

primary and secondary group convolutions, we train our

network from scratch and show that our network can im-

prove parameter efficiency and classification accuracy.

3. Our Network

3.1. Interleaved Group Convolutions

Definition. Our building block is based on group con-

volution, which is a method of dividing the input chan-

nels into several partitions and performing a regular con-

4374



volution over each partition separately. A group convolu-

tion can be viewed as a regular convolution with a sparse

block-diagonal convolution kernel, where each block corre-

sponds to a partition of channels and there are no connec-

tions across the partitions.

Interleaved group convolutions consist of two group con-

volutions, primary group convolution and secondary group

convolution. An example is shown in Figure 1. We use pri-

mary group convolutions to handle spatial correlation, and

adopt spatial convolution kernels, e.g., 3×3, widely-used in

state-of-the-art networks [10, 29]. The convolutions are per-

formed over each partition of channels separately. We use

secondary group convolution to blend the channels across

partitions outputted by primary group convolution and sim-

ply adopt 1× 1 convolution kernels.

Primary group convolutions. Let L be the number of par-

titions, called primary partitions, in primary group convo-

lution. We choose that each partition contains the same

number (M ) of channels. We simplify the discussion and

present the group convolution over a single spatial position,

and the formulation is easily obtained for all spatial posi-

tions. The primary group convolution is given as follows,













y1

y2

...

yL













=













W
p
11 0 0 0

0 W
p
22 0 0

...
...

. . .
...

0 0 0 W
p
LL

























z1

z2

...

zL













. (1)

Here zl is a (MS)-dimensional vector, with S being the

kernel size, e.g., 9 for 3 × 3 kernels, and it is formed from

the S (e.g., 3× 3) responses around this spatial position for

all the channels in this partition. W
p
ll corresponds to the

convolutional kernel in the lth partition, and is a matrix of

size M × (MS). Let x = [z⊤1 z⊤2 . . . z⊤L ]
⊤ represent the

input of primary group convolution.

secondary group convolutions. Our approach permutes

the channels outputted by primary group convolution,

{y1,y2, . . . ,yL}, into M secondary partitions with each

partition consisting of L channels, such that the channels in

the same secondary partition come from different primary

partitions. We adopt a simple scheme to form the secondary

partitions: the mth secondary partition is composed of the

mth output channel from each primary partition,

ȳm = [y1m y2m . . . yLm]⊤ = P⊤

my, ȳ = P⊤y. (2)

Here, ȳm corresponds to the mth secondary partition, ylm
is the mth element of yl, ȳ = [ȳ⊤

1 ȳ⊤
2 . . . ȳ⊤

M ]⊤. y =
[y⊤

1 y⊤
2 . . . y⊤

L ]
⊤. P is the permutation matrix, and P =

[P1 P2 . . . PM ].
The secondary group convolution is performed over the

M secondary partitions:

z̄m = Ws
mmȳm, (3)

where Ws
mm corresponds to the 1×1 convolution kernel of

the mth secondary partition, and is a matrix of size L × L.

The channels outputted by secondary group convolution are

permuted back to the primary form as the input of the next

interleaved group convolution block. The L permuted-back

partitions are given as follows, {x′
1,x

′
2, . . . ,x

′
L}, and

x′

l = [z̄1l z̄2l . . . z̄Ml]
⊤, x′ = Pz̄, (4)

where z̄ = [z̄⊤1 z̄⊤2 . . . z̄⊤M ]⊤.

In summary, an interleaved group convolution block is

formulated as

x′ = PWsP⊤Wpx, (5)

where Wp and Ws are block-diagonal matri-

ces: Wp = diag(Wp
11,W

p
22, . . . ,W

p
LL) and

Ws = diag(Ws
11,W

s
22, . . . ,W

s
MM ).

Let W = PWdP⊤Wp be the composite convolution

kernel, then we have

x′ = Wx, (6)

which implies that an IGC block is equivalent to a regular

convolution with the convolution kernel being the product

of two sparse kernels.

3.2. Analysis

Wider than regular convolutions. Recall that the kernel

size in the primary group convolution is S and the kernel

size in the secondary group convolution is 1 (= 1 × 1).

Considering a single spatial position, the number of the pa-

rameters (equivalent to the computation complexity if the

feature map size is fixed) in an IGC block is

Tigc = (L ·M ·M · S +M · L · L)
= G2 · (S/L+ 1/M), (7)

where G = ML is the width (the number of channels) of

an IGC block.

For a regular convolution with the same kernel size S
and the input and output width being C, the number of pa-

rameters is

Trc = C · C · S. (8)

Given the same number of parameters, Tigc = Trc = T , we

have C2 = 1

ST , and G2 = 1

S/L+1/M T . It is easy to show

that

G > C, when
L

L− 1
< MS. (9)

Considering the typical case S = 3 × 3, we have G > C
when L > 1. In other words, an IGC block is wider than

4375



Table 1. The widths of our interleaved group convolution block for various numbers of primary partitions L and secondary partitions M

under the roughly-equal number of parameters: (i) ≈ 4672 and (ii) ≈ 17536. The kernel size S of primary group convolution is 9 = 3×3.

The width LM is the greatest when L ≈ 9M : (i) 28 ≈ 3× 9 and (ii) 41 ≈ 5× 9.
(i): #params ≈ 4672 (ii): #params ≈ 17536

L 1 2 3 5 6 12 28 40 64 1 2 4 12 14 23 28 41 64 85 128
M 23 16 13 10 9 6 3 2 1 44 31 22 12 11 8 7 5 3 2 1

#params 4784 4672 4680 4750 4698 4752 4620 4640 4672 17468 17422 17776 17280 17402 17480 17836 17630 17472 17510 17536
Width 23 32 39 50 54 72 84 80 64 44 63 88 144 154 184 196 205 192 170 128

a regular convolution, except the extreme case that there is

only one partition in primary group convolution (L = 1).

When is the widest? We discuss how the primary and sec-

ondary partition numbers L and M affect the width. Con-

sidering Equation 7, we have,

Tigc = L ·M ·M · S +M · L · L (10)

= LM(MS + L) (11)

> LM · 2
√
LMS (12)

= 2
√
S(LM)

3

2 (13)

= 2
√
SG

3

2 , (14)

where the equality in the third line holds when L = MS. It

implies that (i) given the number of parameters, the width

G is upper-bounded,

G 6

(

Tigc

2
√
S

)
2

3

. (15)

and (ii) when L = MS, the width is the greatest.

Table 1 presents two examples. We can see that when

L ≈ 9M (S = 9), the width is the greatest: 3 × 9 ≈ 28 for

#params ≈ 4672 and 5× 9 ≈ 41 for #params ≈ 17536.

Wider leads to better performance? We have shown that

an IGC block is equivalent to a single regular convolution,

with the convolution kernel composed from two sparse ker-

nels: W = PWsP⊤Wp. Fixing the parameter number

means the following constraint,

‖Wp‖0 + ‖Ws‖0 = T, (16)

where ‖·‖0 is an entry-wise ℓ0 norm of a matrix. This equa-

tion means that when the IGC is wider (or the dimension

of the input x is higher), Wp and Ws are larger but more

sparse. In other words, the composite convolution kernelW

is more constrained as it becomes larger. Consequently, the

increased width is probably not fully explored and the per-

formance might not be improved because of the constraint

in the composite convolution kernel, W. Our empirical re-

sults shown in Figure 3 verify this point and suggest that an

IGC block near the greatest width, e.g., M = 2 in the two

example cases in Figure 3, achieves the best performance.

4. Discussions and Connections

We show that regular convolutions, summation fusion

preceded by group convolution as studied in ResNeXt [40]

WW

(a)

W11W11 W12W12 W21W21 W22W22

+ +

(b)

Figure 2. (a) Regular convolution. (b) Four-branch representation

of the regular convolution. The shaded part in (b), we call cross-

summation, is equivalent to a three-step transformation: permuta-

tion, secondary group convolution, and permutation back.

and the Xception block [4] are special IGC blocks, and dis-

cuss several possible extensions.

Connection to regular convolutions. A regular convolu-

tion over a single spatial position can be written as x′ =
Wx, where x is the input, W is the weight matrix corre-

sponding to the convolution kernel, and x′ is the output. We

show the equivalent IGC form by taking L = 4 as an exam-

ple, which is illustrated in Figure 2. The general equiva-

lence for other L can be similarly derived.

Its IGC form is given as follows,

x̄′ =PWsP⊤Wpx̄. (17)

Here, x̄ = [x⊤ x⊤]⊤, and x̄′ = [x′⊤ x′⊤]⊤. Wp is a block-

diagonal matrix,

Wp = diag(W11,W12,W21,W22). (18)

Wij is a block of W which is in the form of 2× 2 blocks,

W =

[

W11 W12

W21 W22

]

. (19)

Ws is a diagonal block matrix with M (= half of the di-

mension of x) blocks of size L × L, where L = 4. All

block matrices in Ws are the same:

Ws
11 = Ws

22 = · · · = Ws
MM =











1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1











. (20)

Connection to summation fusion. The summation fusion

block [38] (like used in ResNeXt [40]), is composed of

4376



a group of branches, e.g., L convolutions1 (as defined in

Equation 1) followed by a summation operation, which is

written as follows,

x′ =
∑L

i=1
yi, (21)

where x′ is the input of the next group convolution in which

the inputs of all the branches are the same. Unlike the

shaded part in Figure 2(b) for regular convolution, summa-

tion fusion receives all the four inputs and sum them to-

gether as the four outputs, which are the same.

In the form of interleaved group convolutions, the sec-

ondary group convolution is simple and the kernel parame-

ters in each convolution are all 1, i.e., the matrix Ws
mm in

Equation 3 is an all-one matrix. For example, in the case

that there are 4 primary partitions,

Ws
11 = Ws

22 = · · · = Ws
MM =











1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1











. (22)

Xception is an extreme case. We discuss two extreme

cases: L = 1 and M = 1. In the case where L = 1, the

primary group convolution becomes a regular convolution,

and the secondary group convolution behaves like assigning

each channel with a different weight.

In the case where M = 1, the primary group convolu-

tion becomes an extreme group convolution: a channel-wise

group convolution, and the secondary group convolution be-

comes a 1 × 1 convolution. This extreme case is close to

Xception (standing for Extreme Inception) [4] that consists

of a channel-wise spatial convolution preceded by a 1 × 1
convolution2. It is pointed in [4] that performing the 1 × 1
convolution before or after the channel-wise spatial convo-

lution does not make difference. Section 3.2 shows that the

two extreme cases do not lead to the greater width except

the trivial case that L = 9 and M = 1 (L = 9M ). Our

empirical results shown in Figure 3 also indicate that L = 1
performs poorly and M = 1 performs well but not the best.

Extensions and variants. First, the convolution kernels in

primary and secondary group convolutions are changeable:

primary group convolution uses 1 × 1 convolution kernels

and secondary group convolution uses spatial (e.g., 3 × 3)

convolution kernels. Our empirical results show that such a

change does not make difference. Second, secondary group

convolution can be replaced by a linear projection, or a 1×1
convolution, which also blends the channels across parti-

tions outputted by primary group convolution. This results

1We discuss the case that each branch (partition) in summation fusion

includes only one convolutional layer. Our approach can also be extended

to more than one layer in each partition.
2The similar idea is also studied in deep root [14].

in a network like discussed in [4, 14]. Secondary group

convolution can also adopt spatial convolutions. Both are

not our choice because extra parameters and computation

complexity are introduced.

Last, our approach appears to be complementary to ex-

isting methods. Other spatial convolutional kernels, such

as 3 × 1 and 1 × 3, can also be used in our primary group

convolution: decompose a 3× 3 kernel into two successive

kernels, 3× 1 and 1× 3. The number of output channels of

primary group convolution can also be decreased, which is

like a bottleneck design. These potentially further improve

the parameter efficiency.

5. Experiments

5.1. Datasets.

CIFAR. The CIFAR datasets [20], CIFAR-10 and CIFAR-

100, are subsets of the 80 million tiny images [37]. Both

datasets contain 60000 32 × 32 color images with 50000
images for training and 10000 images for test. The CIFAR-

10 dataset has 10 classes containing 6000 images each.

There are 5000 training images and 1000 testing images

per class. The CIFAR-100 dataset has 100 classes con-

taining 600 images each. There are 500 training im-

ages and 100 testing images per class. The standard data

augmentation scheme we adopt is widely used for this

dataset [10, 13, 23, 12, 22, 25, 27, 31, 32]: we first zero-pad

the images with 4 pixels on each side, and then randomly

crop them to produce 32× 32 images, followed by horizon-

tally mirroring half of the images. We normalize the images

by using the channel means and standard deviations.

SVHN. The Street View House Numbers (SVHN) dataset3

is obtained from house numbers in Google Street View im-

ages. SVHN contains 73, 257 training images, 26, 032 test

images, and 531, 131 images as additional training. Follow-

ing [13, 23, 25], we select out 400 samples per class from

the training set and 200 samples from the additional set,

and use the remaining images as the training set without

any data augmentation.

5.2. Implementation Details

We adopt batch normalization (BN) [16] right after each

IGC block4 and before nonlinear activation, i.e., IGC + BN

+ ReLU. We use the SGD algorithm with the Nesterov mo-

mentum, and train all networks from scratch. We initialize

the weights similar to [9, 10, 12], and set the weight decay

as 0.0001 and the momentum as 0.95.

3http://ufldl.stanford.edu/housenumbers/
4There is no activation between primary and secondary group convo-

lutions. Our experimental results show that adding a nonlinear activation

between them deteriorates the classification performance.
5We did not attempt to tune the hyper-parameters for our networks, and

the chosen parameters may be suboptimal.

4377



Table 2. The architectures of networks with regular convolutions (RegConv-Wc with c being the channel number (width) at the first stage),

with summation fusions (SumFusion), and with interleaved group convolutions (IGC-L4M8, IGC-L24M2, IGC-L32M26). B is the

number of blocks at each stage. 4× (3× 3, 8) means a group convolution with 4 partitions, with the convolution kernel on each partition

being (3× 3, 8).

Output size SumFusion RegConv-Wc IGC-L4M8 IGC-L24M2 IGC-L32M26

32 × 32 (3× 3, 8) (3× 3, c) (3 × 3, 32) (3 × 3, 48) (3 × 3, 26× 32)

32 × 32

[

4× (3 × 3, 8)

Summation

]

× B (3 × 3, c)×B

[

4× (3 × 3, 8)

8× (1 × 1, 4)

]

×B

[

24× (3× 3, 2)

2× (1× 1, 24)

]

× B

[

32× (3 × 3, 26)

26× (1 × 1, 32)

]

× 6

16 × 16

[

4× (3× 3, 16)

Summation

]

× B (3× 3, 2c)× B

[

4× (3× 3, 16)

16× (1× 1, 4)

]

× B

[

24× (3× 3, 4)

4× (1× 1, 24)

]

× B

[

32× (3 × 3, 52)

52× (1 × 1, 32)

]

× 6

8× 8

[

4× (3× 3, 32)

Summation

]

× B (3× 3, 4c)× B

[

4× (3× 3, 32)

32× (1× 1, 4)

]

× B

[

24× (3× 3, 8)

8× (1× 1, 24)

]

× B

[

32× (3× 3, 104)

104× (1× 1, 32)

]

× 6

1× 1 average pool, fc, softmax

Depth 3B + 2 20

Table 3. The number of parameters of networks used in our experiments and the computation complexity in terms of FLOPs (# of multiply-

adds). The statistics of the summation fusion networks are nearly the same with RegConv-W 16 and are not included. For IGC-L24M2,

the numbers of parameters are the smallest, and the computation complexities are the lowest.

D
#Params (×M) FLOPs (×10

8)

RegConv-W16 RegConv-W18 IGC-L4M8 IGC-L24M2 RegConv-W16 RegConv-W18 IGC-L4M8 IGC-L24M2

8 0.075 0.095 0.078 0.047 0.122 0.154 0.131 0.099
20 0.27 0.34 0.27 0.15 0.406 0.513 0.424 0.288
38 0.56 0.71 0.57 0.31 0.830 1.05 0.862 0.571
62 0.95 1.20 0.96 0.52 1.40 1.77 1.45 0.948
98 1.53 1.93 1.56 0.83 2.25 2.84 2.32 1.51

Table 4. Classification accuracy comparison on CIFAR-10 and

CIFAR-100 of the convolutional networks with regular convo-

lutions (RegConv-W 16, RegConv-W 18), with summation fu-

sions (SumFusion), and with interleaved group convolutions (IGC-

L4M8, IGC-L24M2). The architecture description and the pa-

rameter number statistics are given in Table 2 and in Table 3.
SumFusion RegConv-W16 RegConv-W18 IGC-L4M8 IGC-L24M2

D CIFAR-10

8 84.94 ± 0.40 89.46 ± 0.16 90.30 ± 0.25 89.89 ± 0.24 90.31± 0.39
20 88.71 ± 0.46 92.24 ± 0.17 92.55 ± 0.14 92.54 ± 0.37 92.84± 0.26
38 86.95 ± 0.77 90.77 ± 0.23 91.57 ± 0.09 92.05 ± 0.76 92.24± 0.62
62 82.66 ± 0.75 88.22 ± 0.91 88.60 ± 0.49 89.23 ± 0.89 90.03± 0.85
D CIFAR-100

8 52.01 ± 0.77 62.83 ± 0.32 64.70 ± 0.27 64.18 ± 0.70 65.60± 0.59
20 59.33 ± 0.86 67.90 ± 0.14 68.71 ± 0.32 69.45 ± 0.69 70.54± 0.61
38 57.18 ± 1.21 64.04 ± 0.42 65.00 ± 0.57 67.33 ± 0.48 69.56± 0.76
62 48.68 ± 3.84 56.88 ± 1.16 58.52 ± 2.31 63.06 ± 1.42 65.84± 0.75

On CIFAR-10 and CIFAR-100, we train all the mod-

els for 400 epochs, with a total mini-batch size 64 on two

GPUs. The learning rate starts with 0.1 and is reduced by a

factor 10 at the 200, 300, 350 training epochs. On SVHN,

we train 40 epochs for all the models, with a total mini-

batch size 64 on two GPUs. The learning rate starts with

0.1 and is reduced by a factor 10 at the 20, 30, 35 training

epochs. Our implementation is based on MXNet [3].

5.3. Empirical Study

Comparison with regular convolution and summa-

tion fusion. We compare five networks: convolu-

tional networks with regular convolutions (RegConv-W16,

RegConv-W18), with summation fusions (SumFusion),

and with interleaved group convolutions (IGC-L4M8, IGC-

L24M2). Network architectures, parameter numbers and

computation complexities are given in Table 2 and Table 3.

The comparisons on CIFAR-10 and CIFAR-100 are

given in Table 4. It can be seen that the overall perfor-

mance of our networks, IGC-L4M8, are better than both

RegConv-W16 containing slightly fewer parameters and

RegConv-W18 containing more parameters, demonstrating

that our IGC block is more powerful than regular convo-

lutions. Another model, IGC-L24M2, containing much

fewer parameters, performs better than both RegConv-W16
and RegConv-W18. The main reason lies in the advantage

that our IGC blocks increase the width and the parameters

are exploited more efficiently. For example, on CIFAR-

100, when the depth is 38, IGC-L4M8 and IGC-L24M2
achieve 67.33%, 69.56% accuracy, about 2.3%, 4.5% better

than RegConv-W18. The summation fusion (SumFusion)

performs worse because the summation fusion reduces the

width and the parameters are not very efficiently used.

The effect of partition numbers. We have shown that

how the numbers of primary and secondary partitions affect

the width and one extreme case of our approach is Xcep-

tion [4]. Now we empirically study how the performances

are affected by the partition numbers and show that a typical

setup, M = 2, performs better than Xception [4].

To clearly show the effect, we use networks with 8 lay-

ers: 6 IGC blocks, the first convolution layer, and the last

FC layer. There is no down-sampling stage: the map is al-

ways of size 32 × 32. We change the partition numbers, L
and M , to guarantee the model size (the computation com-

plexity) almost the same. We consider two cases for an IGC

block: (i) the parameter number (9LM2+ML2) is approxi-

mately 4672 and (ii) the parameter number is approximately

17536 (see Table 1).

4378



(a) (L, M)

(1, 23) (2, 16) (3, 13) (5, 10) (6, 9) (12, 6) (28, 3) (40, 2) (64, 1)

A
cc

u
ra

cy

50

52

54

56

58

60

62

64

51.11

53.28

55.09

56.28

57.22

60.31

63.21
63.89

63.07

(b)
(L, M)

(1, 44) (2, 31) (4, 22) (12, 12) (14, 11) (23, 8) (28, 7) (41, 5) (64, 3) (85, 2) (128, 1)

A
cc

u
ra

cy

60

61

62

63

64

65

66

67

68

69

61.10

61.70

63.05

65.05
65.36

66.59

67.04

67.93 68.08 68.13

67.13

Figure 3. Illustrating the performances under different primary and secondary partition numbers L and M with same #params on CIFAR-

100. We report the mean and the standard deviation over five runs. (a) corresponds to (i) in Table 1 and (b) corresponds to (ii).

Table 5. Illustrating that our approach benefits from identity mappings. Classification accuracy comparison on CIFAR-10 and CIFAR-

100 between ResNets and our approach with identity mappings. Our network, IGC-L24M2+Ident. with fewer parameters and lower

computation complexity (see Table 3), performs the best.
RegConv-W16 + Ident. RegConv-W18 + Ident. IGC-L4M8 +Ident. IGC-L24M2 +Ident.

Depth CIFAR-10
50 94.40± 0.45 94.67± 0.25 94.74 ± 0.54 94.88± 0.32

74 94.66± 0.30 94.77± 0.59 94.79 ± 0.40 94.95± 0.23

98 94.71± 0.44 94.95± 0.39 94.81 ± 0.30 95.15± 0.48

Depth CIFAR-100
50 72.98± 0.75 73.97± 0.49 74.00 ± 0.69 74.89± 0.67

74 74.04± 0.62 74.55± 0.89 75.15 ± 0.49 75.41± 0.75

98 74.49± 0.66 75.30± 0.88 75.58 ± 0.80 76.15± 0.50

Table 6. Imagenet classification results of a ResNet of depth 18
and our approach. The network structure for ResNet can be found

in [10]. Both ResNets and our networks contain four stages, and

when down-sampling is performed, the channel number is dou-

bled. For ResNets, C is the channel number at the first stage. For

our networks except IGC-L100M2+Ident., we double the chan-

nel number by doubling M and keeping L unchanged. For IGC-

L100M2+Ident., we double the channel number by doubling L

and keeping M unchanged.
#Params FLOPs training error testing error

(×M) (×10
9) top-1 top-5 top-1 top-5

ResNet (C = 64) 11.151 1.8 22.41 6.53 31.06 11.38
ResNet (C = 69) 11.333 2.1 21.43 5.96 30.58 10.77
IGC-L4M32+Ident. 11.205 1.9 21.71 6.21 30.77 10.99
IGC-L16M16+Ident. 11.329 2.2 19.97 5.44 29.40 10.32
IGC-L100M2+Ident. 8.61 1.3 13.93 2.75 26.95 8.92

The results are presented in Figure 3. It can be observed

that the accuracy increases when the number of primary par-

titions becomes larger (the number of secondary partitions

becomes smaller) till it reaches some number and then de-

creases. In the two cases, the performance with M = 2
secondary partitions is better than Xception. For example,

in case (i), IGC with L = 40 and M = 2 gets 63.89% accu-

racy, about 0.8% better than IGC with L = 64 and M = 1,

which gets 63.07% accuracy. We believe that the perfor-

mance in general is a concave function with respect to M
(or L) under roughly the same number of parameters, and

the performance is not the best when M = 1 (i.e., Xcep-

tion [4]) or L = 1.

Combination with identity mappings. We show that our

IGCnets also benefit from identity mappings and achieve

superior performance over ResNets [10]. We compare two

networks with regular convolutions, RegConv-W16 and

RegConv-W18, with IGC-L4M8 and IGC-L24M2. The

residual branch consists of two regular convolution layers

for ResNets [10] and two IGC blocks for our networks.

The results are shown in Table 5. One can see that our

approaches, IGC-L4M8 + Ident. and IGC-L24M2+Ident.,

do not suffer from training difficulty because of identity

mappings. IGC-L4M8+Ident. performs better (e.g., about

1% accuracy improvement on CIFAR-100 with slightly

more parameters, see Table 3) than RegConv-W16 + Ident.,

and performs similar (with smaller #parameters and com-

putation complexity, see Table 3) to RegConv-W18+Ident..

In addition, IGC-L24M2+Ident., with fewer parameters

and lower computation complexity (see Table 3), performs

better than both RegConv-W16+Ident. and RegConv-

W18+Ident., which again demonstrates that our IGC block

can exploit the parameters efficiently.

ImageNet classification. We present the comparison to

ResNets [10] for ImageNet classification. The ILSVRC

2012 classification dataset [5] contains over 1.2 million

training images and 50, 000 validation images, and each im-

age is labeled from 1000 categories. We adopt the same data

augmentation scheme for the training images as in [10, 11].

The models are trained for 95 epochs with a total mini-batch

size 256 on 8 GPUs. The learning rate starts with 0.1 and

is reduced by a factor 10 at the 30, 60, 90 epochs. A single

224× 224 center crop from an image is used to evaluate at

test time. Our purpose is not to push the state-of-the-art re-

sults, but to demonstrate the powerfulness of our approach.

So we use the comparison to ResNet-18 as an example.

The result is depicted in Table 6. (i) Our approach, IGC-

4379



Table 7. Classification error comparison with the state-of-the-arts. The best, second-best, and third-best accuracies are highlighted in red,

green, and blue.
Depth #Params CIFAR-10 CIFAR-100 SVHN

Network in Network [25] - - 8.81 35.68 2.35
All-CNN [31] - - 7.25 33.71 -

FitNet [27] - - 8.39 35.04 2.42
Deeply-Supervised Nets [23] - - 8.22 34.57 1.92
Swapout [30] 20 1.1M 6.58 25.86 -

32 7.4M 4.76 22.72 -

Highway [32] - - 7.72 32.39 -

DFN [38] 50 3.7M 6.40 27.61 -

50 3.9M 6.24 27.52 -

FractalNet [22] 21 38.6M 5.22 23.30 2.01
With dropout & droppath 21 38.6M 4.60 23.73 1.87
ResNet [10] 110 1.7M 6.61 - -

ResNet [13] 110 1.7M 6.41 27.76 1.80
ResNet (pre-activation) [11] 164 1.7M 5.46 24.33 -

1001 10.2M 4.92 22.71 -

ResNet with stochastic depth [13] 110 1.7M 5.25 24.98 1.75
1202 10.2M 4.91 - -

Wide ResNet [41] 16 11.0M 4.27 20.43 -

28 36.5M 4.00 19.25 -

With dropout 16 2.7M - - 1.64
RiR [36] 18 10.3M 5.01 22.90 -

Multi-ResNet [1] 200 10.2M 4.35 20.42 -

26 72M 3.96 19.45 -

DenseNet (k = 24) [12] 100 27.2M 3.74 19.25 1.59
DenseNet-BC (k = 24) [12] 250 15.3M 3.62 17.60 1.74
DenseNet-BC (k = 40) [12] 190 25.6M 3.46 17.18 −

ResNeXt-29, 8× 64d [40] 29 34.4M 3.65 17.77 −

ResNeXt-29, 16× 64d [40] 29 68.1M 3.58 17.31 −

DFN-MR1 [42] 56 1.7M 4.94 24.46 1.66
DFN-MR2 [42] 32 14.9M 3.94 19.25 1.51

DFN-MR3 [42] 50 24.8M 3.57 19.00 1.55

IGC-L16M32 20 17.7M 3.37 19.31 1.63
IGC-L450M2 20 19.3M 3.25 19.25 −

IGC-L32M26 20 24.1M 3.31 18.75 1.56

L4M32+Ident., performs better than ResNet (C = 64) that

contains slightly fewer parameters. (ii) Our approach IGC-

L16M16+Ident. performs better than ResNet (C = 69) that

has approximately the same number of parameters and com-

putation complexity: our model gets about 1.5% reduction

for top-1 error and 1% reduction for top-5 error. (iii) Our

approach IGC-L100M2+Ident. gets the best result with a

much smaller number of parameters and smaller computa-

tion complexity. We also notice that the training error of our

approach is smaller than ResNets, suggesting that the gains

are not from regularization but from richer representation.

5.4. Comparison with the State­of­the­Arts

We compare our approach with the state-of-the-art algo-

rithms. The comparisons are reported in Table 7. We do not

optimally tune the partition numbers for our network since

the NVIDIA CuDNN library does not support group convo-

lutions yet, making the group convolution operation slow in

practical implementation.

Our networks contain 20 layers: 18 interleaved group

convolution blocks, the first convolution layer and the last

FC layer (see IGC-L32M26 in Table 3 as an example. We

double the width by doubling M when down-sampling the

feature map at each stage). The best, second-best, and

third-best accuracies are highlighted in red, green, and blue.

It can be seen that our networks achieve competitive per-

formance: the best accuracy on CIFAR-10, and the third-

best accuracy on SVHN (close to the second-best accu-

racy). Our performance would be better if our network also

adopts the bottleneck design as in DenseNet-BC [12] and

ResNeXt [40] or adopts more primary partitions.

6. Conclusion

In this paper, we present a novel convolutional neu-

ral network architecture, which addresses the redundancy

problem of convolutional filters in the channel domain.

The main novelty lies in the interleaved group convolution

block: channels in the same partition in the secondary group

convolution come from different partitions used in the pri-

mary group convolution. Experimental results demonstrate

that our network is efficient in parameter and computation.

Acknowledgements

Dr. Qi was partially supported by NSF grant 1704337.

4380



References

[1] M. Abdi and S. Nahavandi. Multi-residual networks. CoRR,

abs/1609.05672, 2016.

[2] S. Changpinyo, M. Sandler, and A. Zhmoginov. The

power of sparsity in convolutional neural networks. CoRR,

abs/1702.06257, 2017.

[3] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and effi-

cient machine learning library for heterogeneous distributed

systems. CoRR, abs/1512.01274, 2015.

[4] F. Chollet. Xception: Deep learning with depthwise separa-

ble convolutions. CoRR, abs/1610.02357, 2016.

[5] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. Ima-

genet: A large-scale hierarchical image database. In CVPR,

pages 248–255, 2009.

[6] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In NIPS, pages 1269–1277,

2014.

[7] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural network with pruning, trained quanti-

zation and huffman coding. CoRR, abs/1510.00149, 2015.

[8] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both

weights and connections for efficient neural network. In

NIPS, pages 1135–1143, 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, pages 1026–1034, 2015.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In ECCV, pages 630–645, 2016.

[12] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected

convolutional networks. CoRR, abs/1608.06993, 2016.

[13] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.

Deep networks with stochastic depth. In ECCV, pages 646–

661, 2016.

[14] Y. Ioannou, D. P. Robertson, R. Cipolla, and A. Criminisi.

Deep roots: Improving CNN efficiency with hierarchical fil-

ter groups. CoRR, abs/1605.06489, 2016.

[15] Y. Ioannou, D. P. Robertson, J. Shotton, R. Cipolla, and

A. Criminisi. Training cnns with low-rank filters for efficient

image classification. CoRR, abs/1511.06744, 2015.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, pages 448–456, 2015.

[17] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions. In

BMVC, 2014.

[18] J. Jin, A. Dundar, and E. Culurciello. Flattened convolu-

tional neural networks for feedforward acceleration. CoRR,

abs/1412.5474, 2014.

[19] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin.

Compression of deep convolutional neural networks for fast

and low power mobile applications. CoRR, abs/1511.06530,

2015.

[20] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, 2009.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1106–1114, 2012.

[22] G. Larsson, M. Maire, and G. Shakhnarovich. Fractal-

net: Ultra-deep neural networks without residuals. CoRR,

abs/1605.07648, 2016.

[23] C. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. In AISTATS, 2015.

[24] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. CoRR, abs/1608.08710,

2016.

[25] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,

abs/1312.4400, 2013.

[26] F. Mamalet and C. Garcia. Simplifying convnets for fast

learning. In ICANN, pages 58–65, 2012.

[27] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. CoRR,

abs/1412.6550, 2014.

[28] L. Sifre and S. Mallat. Rigid-motion scattering for texture

classification. CoRR, abs/1403.1687, 2014.

[29] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[30] S. Singh, D. Hoiem, and D. A. Forsyth. Swapout: Learning

an ensemble of deep architectures. In NIPS, pages 28–36,

2016.

[31] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Ried-

miller. Striving for simplicity: The all convolutional net.

CoRR, abs/1412.6806, 2014.

[32] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training

very deep networks. In NIPS, pages 2377–2385, 2015.

[33] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, pages 4278–4284, 2017.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, pages 1–9, 2015.

[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, pages 2818–2826, 2016.

[36] S. Targ, D. Almeida, and K. Lyman. Resnet in resnet: Gener-

alizing residual architectures. CoRR, abs/1603.08029, 2016.

[37] A. Torralba, R. Fergus, and W. T. Freeman. 80 million

tiny images: A large data set for nonparametric object and

scene recognition. IEEE Trans. Pattern Anal. Mach. Intell.,

30(11):1958–1970, 2008.

[38] J. Wang, Z. Wei, T. Zhang, and W. Zeng. Deeply-fused nets.

CoRR, abs/1605.07716, 2016.

[39] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In NIPS, pages

2074–2082, 2016.

[40] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Ag-

gregated residual transformations for deep neural networks.

CoRR, abs/1611.05431, 2016.

4381



[41] S. Zagoruyko and N. Komodakis. Wide residual networks.

CoRR, abs/1605.07146, 2016.

[42] L. Zhao, J. Wang, X. Li, Z. Tu, and W. Zeng. On the connec-

tion of deep fusion to ensembling. CoRR, abs/1611.07718,

2016.

4382


