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Abstract

Outdoor lighting has extremely high dynamic range.

This makes the process of capturing outdoor environment

maps notoriously challenging since special equipment must

be used. In this work, we propose an alternative approach.

We first capture lighting with a regular, LDR omnidirec-

tional camera, and aim to recover the HDR after the fact

via a novel, learning-based inverse tonemapping method.

We propose a deep autoencoder framework which regresses

linear, high dynamic range data from non-linear, saturated,

low dynamic range panoramas. We validate our method

through a wide set of experiments on synthetic data, as well

as on a novel dataset of real photographs with ground truth.

Our approach finds applications in a variety of settings,

ranging from outdoor light capture to image matching.

1. Introduction

Outdoor lighting has an intrinsic dynamic range that is

much higher than what conventional cameras can capture.

While professional cameras boast dynamic ranges of up

to 16 bits, we are still a long way from the full 22 bits

needed to properly model outdoor lighting [35]. There-

fore, to accurately capture the full dynamic range of out-

door illumination, one must resort to acquiring multiple ex-

posures [8], imaging a specially-designed light probe [7], or

using custom-designed photographic hardware [25, 36].

An attractive alternative is to apply inverse lighting algo-

rithms on low dynamic range imagery, which shifts the bur-

den from capture to processing. These algorithms attempt

to inverse the image formation process in order to recover

lighting information, either in a physics-based [23] or data-

driven [22, 14] way. A main limitation of these algorithms

is that they are inherently limited to the information avail-

able within the image. An image may not always contain

sufficient information to recover the lighting reliably.

In this work, we propose to directly learn the relation-

ship between the low dynamic range (LDR) information

available in an outdoor 360◦ panorama and the high dy-

namic range (HDR) of outdoor lighting. Our method takes

as input a single LDR omnidirectional panorama, and con-

verts it to HDR automatically, filling in saturated pixels with

plausible values. Recovering HDR from LDR is known as

inverse tonemapping: this is typically achieved by invert-

ing the camera response function [30]. While there exists a

wide variety of such techniques in the literature, these meth-

ods are not tuned for outdoor lighting as they do not expect

such extreme variations in dynamic range, and fail to re-

cover plausible results as will be demonstrated in the paper.

Our work proposes the following three key contributions.

First, we present a full end-to-end learning approach which

directly regresses HDR from LDR information in an out-

door panorama. Surely this is a challenging task: the sun

can be 17 f-stops brighter than the rest of the sky [35]!

To learn this relationship, we rely on a large set of HDR

sky environment maps [21], which we use as light sources

to render a high quality synthetic city model to form a

large corpus of synthetic panoramas. From this dataset,

we train an LDR-to-HDR deep convolutional autoencoder,

and show, through extensive experiments on synthetic and

real data, that it succeeds in accurately predicting the ex-

treme dynamic range of outdoor lighting. Our second key

contribution is a novel dataset of real LDR panoramas and

associated HDR ground truth. We use this novel dataset

to see how the Convolutional Neural Network (CNN) can

be adapted to work on the challenging case of real data.

Our third key contribution is to show the applicability of

our approach on three novel applications: single shot light

probe, visualizing virtual objects and image matching in

large LDR panorama database. Given the availability of

large datasets of outdoor panoramas (e.g. SUN360 [37] and

Google Street View) and the recent interest in using HDR

panoramas for virtual and mixed reality applications [31],

our work is timely in enabling the use of LDR data, which

is easy to capture, in HDR applications. Code and data are

available on our project page.

2. Related work

Image-based lighting The seminal work of Debevec [6]

on image-based rendering demonstrated that capturing
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lighting can be achieved by acquiring several photographs

of a mirrored sphere at different exposures. Since then, it

has been demonstrated that the same can be done from a

single shot of a metallic/diffuse hybrid sphere [7]. Sim-

ilarly, specialized probes also exist for real-time applica-

tions [4]. Another method proposes to stitch multiple pho-

tographs taken with different exposures and viewpoints us-

ing a smartphone [18]. The resulting light probes are useful

for virtual object insertion, but also in virtual or mixed real-

ity applications [31]. In contrast, our approach uses a single

LDR shot, taken from a commodity 360◦ camera.

Inverse tone mapping Algorithms for reproducing HDR

from LDR images have been proposed in recent years,

which are known as inverse tone mapping operators (iT-

MOs). To reproduce the HDR content from an LDR image

is an ill-posed problem since the information is missing in

the saturated regions. Banterle et al. [2, 3] apply the inverse

of the Reinhard tone mapping function [29] to the LDR im-

age, then they create an expand map by density estimation

of the bright areas to guide the dynamic range expansion.

Rempel et al. [30] proposed a similar expand map combined

with an edge stopping function to expand the dynamic range

while increasing the contrast around edges. Kuo et al. [20]

use different inverse tone mapping parameters based on the

scene content. Meylan et al. [26, 27] explicitly focus on the

specular highlight region; they use different linear functions

to expand the diffuse and specular region in the image. The

main concern of most of these techniques is to display LDR

content onto HDR devices [1], and as such these approaches

are ill-suited for the case of outdoor lighting.

Deep learning Deep CNNs are often used in image

recognition and classification, but recent work has shown

that they can also be used to estimate missing information

from images. Pathak et al. [28] proposed to use CNNs to

predict the missing content of a scene based on the sur-

rounding pixels by minimizing a reconstruction loss and an

adversarial loss [12]. Zhang et al. [38] employed CNNs to

recover color from grayscale images. Sangkloy et al. [32]

proposed an adversarial image synthesis architecture to con-

strain the generation by user input. CNNs are also used for

generating a high resolution image from a low resolution

image [9], predicting the missing depth information from

a single RGB image [10], producing a complete 3D voxel

representation from a single depth image [34]. In contrast,

our approach recovers missing dynamic range.

3. Approach

Our approach relies on a convolutional autoencoder that

learns to reconstruct high dynamic range from low dynamic

range panoramas. It is trained on a large dataset of synthetic

LDR panoramas. Before the data generation process is de-

scribed in sec. 4, we first describe our CNN architecture,

loss function, and training parameters.

Input: LDR panorama xLDR

conv7-64

conv5-128

conv3-256

conv3-256

FC-64

deconv3-256 FC-32

deconv3-256 FC-16

deconv5-128 FC-1

deconv7-64

deconv1-3 Output: sun elevation yθ

Output: HDR panorama yHDR

Figure 1. The proposed CNN architecture. The encoder (top half)

compresses the input LDR panorama to a 64-dimensional vector

through 4 convolutional layers and splits into two heads: one to

reconstruct the HDR panorama yHDR through a series of deconvo-

lutional layers; and the second, composed of two fully-connected

layers, to predict the sun elevation yθ . The output of each convolu-

tional layer is added to the input of its deconvolutional counterpart

via skip links (dashed lines). A stride of 2, batch normalization,

and ELU [5] are used on all (de)convolutional layers.

3.1. Network architecture

As shown in fig. 1, we use a convolutional neural net-

work that takes in a 64 × 128 LDR panorama xLDR as in-

put stored in the latitute-longitude format. It assumes the

panorama has been previously rotated to align the sun with

the center of the image1. From this input, it produces a

64-dimensional encoding of the input through a series of

convolutions downstream and splits into two upstream ex-

pansions, with two distinct tasks: (1) HDR recovery, and

(2) sun elevation prediction. The encoder and decoder are

both modeled by four (de)convolution layers. The output of

each convolution is added to the input of its corresponding

deconvolution layer via skip links (shown with dashed lines

in fig. 1). Each (de)convolution layer is followed by an (up-

sub)sampling step (stride of 2), batch normalization, and the

ELU activation function [5]. The sun elevation decoder is

composed of three low-dimensional fully-connected layers.

3.2. Loss function

To train the CNN, the following loss function is defined:

Lall(y, t) = LHDR(y, t) + λ1Lθ(y, t) + λ2Lrender(y, t) ,
(1)

where y is the predicted output, and t is the ground truth

target label. Eq. (1) is composed of three loss functions

computed on different labelled data, with the weights λ1 =

1As in [14], the sun is detected by computing the center of mass of the

largest saturated region in the image.
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(a) 3D scene (b) Example rendering

Figure 2. (a) 3D view of the scene used to compute the transport

matrix T in the rendering loss Lrender (5), and (b) example ren-

dering obtained with the resulting T and a sunny HDR panorama.

The perspective effect is considerable when the camera is close to

the object, as such, the shadow cast on the plane is smaller than the

object. The scene was chosen to generate complex lighting effects

such as cast shadows, smooth shading, and occlusions.

λ2 = 0.1 controlling the relative importance of each loss

function. The first element in (1) is the L1 norm between

the predicted HDR panorama yHDR and the ground truth

tHDR:

LHDR(y, t) = ||yHDR − tHDR||1 . (2)

The L1 norm is used to be more robust to the very high

dynamic range of the HDR panorama. Since the sun pixel

intensity can be up to 100,000 times brighter than other pix-

els, using an L2 norm overwhelmingly penalizes errors on

the sun at the expense of the other, lower dynamic range pix-

els. To help the network in predicting high dynamic range

values, the full HDR target t∗HDR is tonemapped using

tHDR = α(t∗HDR)
1/γ . (3)

We use γ = 2.2 and α = 1/30, which brings the sun inten-

sity close to 1 when it is bright. The inverse of (3) is applied

to yHDR to convert the network output to full HDR.

The second element in (1) computes the L2 norm be-

tween the predicted and ground truth sun elevations yθ, tθ:

Lθ(y, t) = ||yθ − tθ||2 . (4)

Our experiments demonstrate that a small gain in perfor-

mance can be obtained with this additional path in the net-

work (see sec. 4.2). Finally, we also incorporate a render

loss in the third element in (1):

Lrender(y, t) = ||TyHDR −TtHDR||2 , (5)

where T is the transport matrix for a lambertian scene

(without interreflections). To ensure that interesting light-

ing effects are captured, a scene made of a complex “spiky

sphere” on a flat ground plane seen from above is used (see

fig. 2). This effectively re-weights the pixels in the panora-

mas according to the fraction of the visible hemisphere for

each pixel in the scene. Rendering is performed at 64× 64
resolution, so T is of dimensions2 642 × 4, 096. Since this

2The number of columns in T is equal to the number of pixels in the

panorama, so 64× 128 = 8, 192. To save memory, it can be divided by 2

because only the top hemisphere is visible in the render.
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Figure 3. Quantitative comparison of results obtained with the

LDR panorama (leftmost column) and different combinations of

losses (other columns) for our approach on the synthetic test set.

Different error metrics are reported, from top to bottom: the mean

absolute error on the sky panorama EHDR, the RMSE on the sun

elevation Eθ , the RMSE on the sun intensity Esun, and the RMSE

on the render Erender. Lall yields the lowest error on all metrics.

is a simple matrix multiplication, gradients can easily be

back-propagated through this rendering step.

3.3. Training details

To train the CNN, we use the ADAM optimizer [19] with

a minibatch size of 128, initial learning rate of 0.001, and

momentum parameter of β1 = 0.9. Training 500 epochs

takes roughly 50 hours on an Nvidia GeForce 1060 GPU.

At test time, inference takes approximately 5ms.

4. Validation on Synthetic Data

4.1. Data generation

Even though small datasets of HDR panoramas exist3,

none do in sufficiently large quantity to train a deep neu-

ral network. Therefore, we have obtained access to the

Laval HDR Sky Database [21], which contains approxi-

mately 38,000 unsaturated, HDR omnidirectional photos of

the sky, gathered over 103 different days over the course of

3 years. We use a subset of 9,732 HDR skies to generate

renders of a realistic virtual 3D model of a small city. The

3D model was obtained from the Unity Store, and contains

over 100 modular buildings with different styles and mate-

rials, including realistic roads, sidewalks, and foliage.

To generate a panorama, the sky is first rotated to center

the sun in the middle of the panorama based on the known

ground truth sun position. Next, a random camera posi-

tion is sampled in manually defined regions in the 3D city

model corresponding to open spaces. The HDR sky is then

set as the sole virtual light source, and rendering is per-

formed. For data augmentation, each HDR sky is flipped

horizontally and re-exposed with factors 1.75x, where x =

3See for example: http://www.hdrlabs.com.
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Figure 4. Qualitative results on the synthetic dataset. Top row: the ground truth HDR panorama, middle row: the LDR panorama, and bottom

row: the predicted HDR panorama obtained with our method. To illustrate dynamic range, each panorama is shown at two exposures, with

a factor of 16 between the two. For each example, we show the panorama itself (left column), and the rendering of a 3D object lit with

the panorama (right column). The object is a “spiky sphere” on a ground plane, seen from above. Our method accurately predicts the

extremely high dynamic range of outdoor lighting in a wide variety of lighting conditions. A tonemapping of γ = 2.2 is used for display

purposes. Please see additional examples on our project page.
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Figure 5. HDR predictions over the course of one day from the

synthetic test set. We plot the ground truth sun intensity (blue),

along with the predictions from our network (orange) over the

course of one day. Our method achieves a relatively stable tem-

poral coherence, even if it is working on one panorama at a time.

{−1, 0, 1}. We employ the physically-based rendering en-

gine Mitsuba [17], and render with a virtual omnidirectional

camera, saving the output directly to a latitude-longitude

panorama format in EXR. The LDR panorama xLDR is ob-

tained by converting this output to an 8-bit JPG file. Exam-

ple images generated by this process are shown in fig. 4.

From the resulting dataset of synthetic panoramas, 69%
(70 days, 39,198 images) of the samples are used for train-

ing, 15% (16 days 8,730 images) for validation and early

stopping, and 16% (17 days, 10,458 images) for test. Note

that care is taken to split the dataset according to days, since

HDR sky images are taken at the frequency of one every two

minutes in [21], so two consecutive photos from the same

day are extremely similar.

4.2. Quantitative experiments

The model is first evaluated on the synthetic test set. Dif-

ferent loss functions are compared together in fig. 3. We

evaluate the performance using different error metrics: the

mean absolute error (MAE) on the HDR sky EHDR, RMSE

on the sun elevation Eθ, and RMSE on the “spiky sphere”

render Erender (fig. 2). We also compute the RMSE on the

predicted sun intensity Esun, which is approximated by the

intensity of the brightest pixel in the HDR image.

Fig. 3 shows that the model trained solely with LHDR

already provides a good result when compared to using

the LDR panorama directly. While various combinations

of losses improve upon the baseline, combining the three

losses in Lall (1) yields the lowest error on all metrics. Fig. 4

shows qualitative results obtained by the network. Interest-

ingly, predicting the sun elevation and estimating the HDR

benefit from each other, as including them in the loss func-

tion results in improved performance at both these tasks.

4.3. Temporal coherence

We select one full day from sunrise to sunset in the HDR

sky dataset [21], and relight the city model from a fixed

camera position using that day. Our model is used to regress

the HDR from the resulting LDR panoramas one at a time.

Fig. 5 shows that even if we do not enforce temporal consis-

tency, our network successfully adapts to time changes and

corresponding variations in sun intensity, as the prediction

closely follows the ground truth.

5. Experiments on real data

We now present extensive experiments which validate

that our approach is applicable to real-world data. First, we

present a novel dataset of real outdoor LDR panoramas with

corresponding HDR ground truth. This dataset is used first

in a quantitative comparison of several training approaches;

and second in a comparison to previous work.
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Figure 6. Examples from our real dataset. For each case, we show

the LDR panorama captured by the Ricoh Theta S (left), and the

corresponding HDR panorama captured by the Canon 5D Mark iii

(right, shown at a different exposure to illustrate the high dynamic

range). Please see additional examples on our project page.

5.1. Dataset of real photographs

We collected a novel dataset of LDR panoramas with

their corresponding HDR skies. The LDR panoramas were

captured with a Ricoh Theta S camera, a consumer grade

point-and-shoot 360◦ camera. The HDR skies were cap-

tured with a Canon 5D Mark iii mounted on a tripod,

equipped with a Sigma 8mm fisheye lens, and placed at

the same location as the Theta camera. To properly im-

age the true dynamic range of outdoor lighting, we installed

a ND 3.0 filter behind the lens and captured 7 exposures

ranging from 1/8000 to 8 seconds at f/16, following [35].

The fisheye lens was radiometrically and geometrically cal-

ibrated [33], so that the resulting HDR image could be

warped to a latitude-longitude panorama.

We use a ColorChecker Digital SG chart to match the

colors between the LDR and HDR panoramas. To compen-

sate for possible misalignments, the two panoramas are first

geometrically aligned by finding SIFT feature correspon-

dences and using RANSAC to find the optimal rotation ma-

trix between the panoramas. This procedure is followed by

a step of pixel-wise optical flow refinement to account for

lens calibration errors.

Using this technique, we captured pairs of real

LDR/HDR panoramas over 13 different days, for a total of

404 pairs. Our dataset contains a variety of different illu-

mination and weather conditions, as shown in fig. 6. The

dataset is separated into non-overlapping training and test

subsets of 8 and 5 days (490 and 318 panoramas—obtained

by flipping each panorama horizontally) respectively. The

same split is used in the following experiments to allow for

comparisons between techniques. Please see additional re-

sults on our project page.

5.2. Adapting to real data

5.2.1 Augmenting the training dataset

Evaluating the network trained on linear data on the real

world data yields the performance shown in the first row

Method EHDR Erender Eθ Esun

LDR 5.30 1.34 0.21 0.54

Baseline 5.34 1.19 0.10 0.43

Color 5.32 1.16 0.10 0.46

Tone 3.59 1.06 0.08 0.31

Domain adaptation [11] 7.53 1.30 0.10 0.36

Fine-tuning 2.55 0.64 0.07 0.22

Table 1. Analyzing the impact of training data. Quantitative com-

parison of models trained on different synthetic inputs, and tested

on real JPG panoramas. Refer to fig. 7 for qualitative examples.

The model is trained on: linear data (“Baseline”), linear data with

color changes (“Color”), and non-linear data where a camera re-

sponse function is applied along with color changes (“Tone”). The

network trained on the “Tone” data achieves better performance

when testing on real panoramas. Domain adaptation [11] does not

perform well on the real dataset; we believe this is because we

do not have enough Theta S images. Fine-tuning with the ground

truth training data (“Fine-tuning”) performs best, see sec. 5.2.3.

Method EHDR Erender Eθ Esun

JP
G

s LDR 5.30 1.34 0.21 0.54

Baseline 5.34 1.19 0.10 0.43

Tone 3.59 1.06 0.08 0.31

γ
=

2.
2 LDR 6.33 1.53 0.19 0.54

Baseline 6.63 1.45 0.13 0.49

Tone 7.06 1.50 0.08 0.43

R
F

LDR 4.64 1.46 0.18 0.54

Baseline 4.33 1.18 0.08 0.36

Tone 6.64 1.35 0.07 0.35

R
F

+
W

B LDR 3.31 1.34 0.23 0.54

Baseline 2.99 1.03 0.08 0.30

Tone 6.55 1.41 0.08 0.38

Table 2. Analyzing the impact of modeling the camera. Radiomet-

ric camera models of increasing fidelity are applied to the JPG in-

puts and compared. Camera models include: none (“JPGs”), γ =

2.2, calibrated inverse response function (“RF”), and combining

the “RF” with white balance adjustment (“RF+WB”). The three

methods compared are: using the input LDR directly (“LDR”),

network trained on synthetic linear data (“Baseline”), and network

trained on synthetic data augmented with color shifts and non-

linear response functions (“Tone”, see also table 1).

of table 1. To improve these results, we first attempt to aug-

ment the synthetic dataset used for training, in order to more

closely match real world capture conditions.

Modeling the white balance Digital cameras often ap-

ply significant color adjustments to images. We simulate

this by applying a random additive shift to the hue and

saturation channels (sh, ss), where sh ∼ N (0, 10) and

ss ∼ N (0, 0.1). Adding color shifts to the training data

only marginally improves performance (table 1).
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Figure 7. Quantitative comparison of models on the real dataset. For each model, we show a full distribution of errors (curved shapes), as

well as the 25th, 50th and 75th percentiles (gray vertical bar).

Method EHDR Erender Eθ Esun

LDR 5.30 1.34 0.21 0.54

[3] 16.5 9.24 0.16 0.30

[20] 24.63 19.30 0.18 0.30

[26] 29.1 29.25 0.17 0.28

[30] 29.1 29.26 0.17 0.29

[14] 5.4 21.8 0.06 1.70

Ours 2.55 0.64 0.07 0.22

Table 3. Comparison with previous work. The main parameters

of each competing method are cross-validated on the ground truth

training data, while our approach is fine-tuned using the same data.

The existing inverse tonemapping methods yield unreasonable es-

timates when regressing the extreme HDR of outdoor lighting.

Modeling the response function of the camera Real

cameras have non-linear response functions. To simulate

this, we randomly sample real camera response functions

from the Database of Response Functions (DoRF) [13],

and apply them to the linear synthetic data before train-

ing. Training on this data yields a network which performs

significantly better than the previous versions (see table 1).

This also has the interesting side effect of resulting in better

sun elevations.

Domain adaptation with unlabelled data We apply un-

supervised domain adaptation [11] to adapt the synthetic

model to real world images. This is achieved by adding

a domain classifier connected to the FC-64 latent layer of

the network via a gradient reversal layer, which ensures the

encoding feature is domain-invariant to synthetic and real

data. The discriminator contains two fully-connected layers

of 32 and 2 nodes, followed by ELU and softmax activation

respectively. This model is trained by adding unlabelled

real data to each minibatch, which now contains 50% of

synthetic data with known label t, and 50% of real-world

LDR panoramas sampled from the SUN360 database [37],

Google Street View, and training images (where ground

truth is ignored) from our real dataset. Unfortunately, ap-

plying this domain-adaptated model does not yield satis-

fying quantitative results (table 1), probably because there

are not enough unlabelled theta S panoramas. However, we

use this model when testing on SUN360 and Google Street

View imagery in sec. 6 with improved results.

5.2.2 Adapting the input panorama

Aside from augmenting the training data, another option

is to adapt the input panorama xLDR. For this, we ap-

ply different camera models to the JPG files captured by

the theta S camera, ranging from: 1) none (“JPGs”); 2)

a simple γ = 2.2 as is commonly done in the literature;

3) a per-channel inverse response function calibrated us-

ing a Macbeth color checker (“RF”); and 4) the inverse re-

sponse function followed by a white balance transformation

(“RF+WB”). These options are compared in table 2. We

observe that linearizing the input data with the “RF+WB”

model performs best. If such information is unavailable, the

model trained on augmented synthetic data (“Tone”) per-

forms best on the input JPG images themselves.

5.2.3 Adapting with ground truth HDR

We observe that with a small amount of labelled data, the

model can be fine-tuned to gain a better performance. We

use JPG panoramas from the novel real dataset (8 days of
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Figure 8. Capturing outdoor light probes with a single shot. A

single LDR panorama is shot at the point of object insertion (top).

Our approach correctly extrapolates the high dynamic range from

the panorama, resulting in a realistic render (last row). Please see

additional results on our project page.

training subset) to fine-tune the best model trained with

JPGs(“Tone”) , and report the results in the last row of ta-

ble 1. This option far outperforms the others, and can learn

to robustly predict HDR from LDR. Fig. 7 shows the distri-

bution of errors for each method evaluated in this section. In

addition, it also shows qualitative examples corresponding

to the 25th, 50th and 75th percentile of errors for the fine-

tuned network to illustrate the meaning of these numbers.

5.3. Comparison with previous work

Since there are very many options in the inverse tone-

mapping (iTMO) literature, we compare against the fol-

lowing set of representative methods: [3, 20, 26, 30]. We

also experimented with the approach of Hold-Geoffroy

et al. [14]. They propose to fit a physically-based sky

model [16] to the unsaturated portion of the sky, and ex-

trapolate the sun color via an additional sun model [15].

Table. 3 shows the errors for each method computed on

our test set. For fairness, the parameters of each method (ex-

cept [14] which does not require tuning) are cross-validated

on the training set. Our method is the fine-tuned model on

the same training set. As table 3 shows, the existing iTMO

methods fail at this task. This is probably due to the fact that

they were not designed to work with the extremely high dy-

namic range of outdoor lighting. We found the method of

Hold-Geoffroy et al. [14] to consistently overshoot in esti-

mating the sun intensity.
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Figure 9. Relighting in a Google Street View image. Every Google

Street View image is a LDR spherical panorama. Our method

can be applied to this dataset to automatically estimate plausible

HDR data and be used, for example, to visualize virtual objects

in real scenes. The top row shows a cropped regular image from

the panorama, and the bottom shows a virtual object relit with the

HDR panorama predicted from our network. Our method can re-

alistically extrapolate high dynamic range even on uncalibrated

cameras. Please see additional results on our project page.

6. Applications

Extrapolating accurate high dynamic range from a sin-

gle, low dynamic range panorama gives rise to several in-

teresting applications. In this section, we present three dif-

ferent ways of using our network in practical scenarios.

6.1. Single shot outdoor light probe

We can use our method to simplify the process of cap-

turing outdoor light probes. Because of its extremely high

dynamic range, capturing outdoor light requires a carefully

calibrated setup [35] or specially-designed light probes [7].

Instead, one could simply take an LDR panorama with an

off-the-shelf, point-and-shoot 360◦ camera such as the Ri-

coh Theta S, and extrapolate the HDR using our network.

This is demonstrated in fig. 8. In this example, a novice

user shot an LDR panorama with a Theta S at the loca-

tion where the object is to be inserted. From this LDR

panorama, the prediction from our “Fine-tuning” network

is used as a light probe for image-based lighting to insert

virtual objects in the photograph. The image rendered with

our prediction produces a plausible rendering result.

6.2. Visualization in Google Street View imagery

The Google Street View dataset is a huge source of LDR

panoramas, captured all over the world by cars equipped

with omnidirectional cameras. We leverage our approach

to extrapolate HDR from this dataset, and show that the re-

sulting panoramas can be used for image-based lighting in

fig. 9. In this case, we use the domain-adapted version of the
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Figure 10. Illumination-based image matching from the SUN360 database [37]. We retrieve images based on two target parameters: the

sun intensity (bright or dim) and elevation (in degrees). Matching LDR panoramas to these parameters would not be possible, so images are

retrieved based on the estimates given by our network (the sun intensity is simply the intensity of the brightest pixel in the HDR panorama).

Here, a bright (dim) value is given as the 75th (25th) percentile sun intensity over the entire dataset.

network from sec. 5.2 as it qualitatively yields better results

than the network fine-tuned on the theta S data.

6.3. Image matching in the SUN360 dataset

We can also use our method for matching panoramas

based on intuitive illumination parameters. For instance, we

show an example of browsing the SUN360 database [37]

based on sun elevation and intensity in fig. 10. For this,

we first run our network on all outdoor LDR panoramas in

the database. Then, we compute the sun intensity as be-

ing the intensity of the brightest pixel in the estimated HDR

panoramas. Finally, a target set of parameters is specified

(e.g. bright sun at 75◦ elevation as in the first row of fig. 10),

and the best images can efficiently be retrieved using near-

est neighbor matching. Note that this would be very hard

to do without our method, as the sun is always saturated in

outdoor panoramas. As with sec. 6.2, the domain-adapted

version of the network from sec. 5.2 is used here as well.

7. Conclusion

We present a full end-to-end learning approach to esti-

mate the extremely high dynamic range of outdoor lighting

from a single, LDR 360◦ panorama. Our main insight is to

exploit a large dataset of synthetic data composed of a re-

alistic virtual city model, lit with real world HDR sky light

probes [21], to train a deep convolutional autoencoder. The

resulting network is evaluated on a wide range of experi-

ments on synthetic data, as well as on a novel dataset of real

LDR panoramas and corresponding HDR ground truth. The

applicability of the approach is also demonstrated on three

novel applications.

Despite its success, our approach is not without limita-

tions. First, we note a certain sensitivity to the tonemap-

ping function of the input LDR. Our qualitative experiments

demonstrate that domain adaptation helps in adjusting to

the wide variability in camera response functions and im-

age post-processing operations applied to panoramas in the

SUN360 dataset [37], but these are complicated by the fact

that no ground truth is available. A second limitation is that

our approach is limited to outdoor scenes and the sun, when

visible, needs to be centered in the panorama. While the

sun is typically relatively easy to detect in LDR panoramas,

the simple sun detection method of [14] may fail, result-

ing in unlikely results. A possible extension of this work

could be the inclusion of sun azimuth estimation from the

FC-64 latent layer. Finally, the resolution of the output is

limited at 64 × 128, which, while sufficient for relighting

applications, cannot extrapolate the HDR information in a

full-resolution LDR background image. A potential way to

leverage high resolution images is applying a fully convo-

lution network [24] by converting all fully-connected layers

to convolutions. Future work includes the adaptation of the

network to learn high resolution HDR textures from limited

field-of-view LDR images.
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