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Abstract

We propose a simple, yet powerful regularization tech-

nique that can be used to significantly improve both the

pairwise and triplet losses in learning local feature descrip-

tors. The idea is that in order to fully utilize the expressive

power of the descriptor space, good local feature descrip-

tors should be sufficiently “spread-out” over the space. In

this work, we propose a regularization term to maximize

the spread in feature descriptor inspired by the property of

uniform distribution. We show that the proposed regular-

ization with triplet loss outperforms existing Euclidean dis-

tance based descriptor learning techniques by a large mar-

gin. As an extension, the proposed regularization technique

can also be used to improve image-level deep feature em-

bedding.

1. Introduction

Computing image patch correspondences based on lo-

cal descriptor matching is important in many computer vi-

sion problems such as image retrieval, wide baseline stereo

matching and panorama building. The main challenge of

finding correct correspondences is that the appearance of

the image patches varies due to changes of scaling, view

angle, illumination and imaging condition etc. Designing

local feature descriptors that are invariant to such changes

is therefore essential. Efforts of local descriptor fall into

two categories: hand-crafted and learning-based. Hand-

crafted descriptors try to achieve the invariance by manu-

ally selected rules. One of the most popular hand-crafted

descriptors is SIFT [10] and its variants [2, 24], which are

widely used in the computer vision community. The main

issue of the hand-crafted descriptors is that they can only

consider a limited predefined set of variations.

One approach to take all variations into consideration

is learning local descriptors from a large patch correspon-

dence dataset [3, 20]. The state-of-the-art descriptor learn-

ing methods are based on neural networks [1, 8, 19, 26].

In addition to the model itself, the most important aspect

of learning-based method is the loss function which defines

the goal of descriptor learning: matching patches should

be close in the descriptor space, while the non-matching

patches should be far-away1. The pairwise loss and triplet

loss (Section 2) are the commonly used loss functions to

achieve the desired properties. Recently, there are a lot of

works such as smart sampling strategies [1, 12] and struc-

tured loss [23] that improve the triplet loss. In particular,

Kumar et al. [8] propose to use a global loss to separate

the distance distributions of the matching pairs and non-

matching pairs. This approach avoids the design of com-

plicated sampling strategies and is also shown to provide

results that are robust to training with outliers.

The success of global loss motivates us to further explore

the desired properties of the descriptor space and design a

robust regularization term based on these properties. Our

main idea is that the good local feature descriptors should

be sufficiently “spread-out” in the descriptor space in order

to fully utilize the expressive power of the space. Specif-

ically, we introduce a regularization term that induces the

spread-out condition, inspired by the properties of the uni-

form distribution on unit sphere (Section 3). The regular-

ization can be easily used to improve all methods where

pairwise or triplet loss is used. We show that the proposed

regularization with triplet loss, without hard sample mining,

outperforms all the Euclidean distance based descriptors by

a large margin (Section 5). In particular, it outperforms the

global loss [8] in the patch pair classification task. As an

extension of descriptor learning, we show that the proposed

regularization can also be used in improving image-level

deep feature embedding (Section 6).

2. Background

We begin by reviewing some commonly used loss func-

tions in learning local feature descriptors. Let X =
{x1, . . . ,xN}, xi ∈ R

m×n denote a set of N training

patches with m × n pixels. {yij , 1 ≤ i, j ≤ N} is a set

of pairwise labels for X indicating whether xi and xj be-

long to the same class (yij = 1) or not (yij = 0). In this

paper, we call the pairs with yij = 1 the matching pairs,

1We use Euclidean distance in this paper. See Section 2 for more de-

tails, and Section 3 for the discussion on alternatives.
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and the pairs with yij = 0 the non-matching pairs. The

goal of descriptor learning is to learn a feature embedding

f(·) : Rm×n 7→ R
d that maps raw patch pixels to a d di-

mensional vector, such that ∥ f(xi) − f(xj) ∥2 is small

when yij = 1 and ∥ f(xi)−f(xj) ∥2 is large when yij = 0.

In this paper, we assume that f(·) lives on the unit sphere,

i.e., ∥ f(x) ∥2= 1, ∀x ∈ R
m×n.

2.1. Pairwise loss

The pairwise loss tries to directly induce small distance

for matching pairs and large distance for non-matching

pairs. An input for pairwise loss is of the form (xi,xj , yij),
consisting of a pair of samples and their corresponding la-

bel. The most widely used pairwise loss is the contrastive

loss:

ℓcon = yij max(0, ∥ f(xi)− f(xj) ∥2 −ϵ+)

+ (1− yij)max(0, ϵ−− ∥ f(xi)− f(xj) ∥2),
(1)

where f(·) is the feature embedding. ϵ+ and ϵ− control

the margins of the matching and non-matching pairs respec-

tively. Contrastive loss was originally proposed in [4] with

ϵ+ = 0. As shown in [9], this often leads to overfitting. And

a proper relaxed margin (ϵ+ > 0) can achieve better perfor-

mance. The main problem with the pairwise loss is that the

margin parameters are often difficult to choose [25].

2.2. Triplet loss

Triplet loss takes a triplet of samples as input. One triplet

consists of three samples: (xi,xj ,xk), with yij = 1 and

yik = 0. To simplify the notation, we denote one triplet as

(xi,x
+
i ,x

−

i ), where x
+
i = xj and x

−

i = xk. One com-

monly used triplet loss is the ranking loss [18]:

ℓtri = max
(

0, ϵ− (∥ f(xi)− f(x−

i ) ∥2

− ∥ f(xi)− f(x+
i ) ∥2)

) (2)

where ϵ is a margin. The idea of ranking loss is to sepa-

rate the matching sample and the non-matching sample by

at least a margin ϵ. The main difference between pairwise

loss and triplet loss is that pairwise loss considers the abso-

lute distances of the matching pairs and non-matching pairs,

while triplet loss considers the relative difference of the dis-

tances between matching and non-matching pairs. Since

the quality of the embeddings largely depends on the rela-

tive ordering of the matching pairs and non-matching pairs,

triplet loss shows better performance than pairwise loss in

local descriptor learning [1, 8].

2.3. Improvements

The main issue of triplet loss and pairwise loss is that as

the number of training samples grows, sampling all the pos-

sible triplets/pairs becomes infeasible, and only a relatively

small portion of triplets/pairs can be used in training. As

observed in practice, the training is often ineffective since

many of the sampled triplets/pairs will satisfy the constraint

within just a few training steps. One possible solution is

to remove the “easy samples” and add new “hard samples”

to the training set. However, determining which samples

to remove or add is a challenging task [17, 19]. Addition-

ally, focusing only on the samples that violate the training

constraints the most will lead to overfitting [17].

Balntas et al. [1] propose an improved version of triplet

loss by applying in-triplet hard negative mining. The idea

is that one triplet contains two non-matching pairs (xi,x
−

i )
and (x+

i ,x
−

i ), and choosing the one that violates the triplet

constraint more will make training more effective. They call

this technique “anchor swap”.

Kumar et al. [8] propose a global loss and combine it

with the traditional triplet loss to address the sampling issue

in pairwise and triplet loss. Instead of considering sample

pair or triplet, the global loss considers all matching and

non-matching pairs in one training batch, and calculate the

empirical mean and variance of the distance of the match-

ing and non-matching pairs. The main idea of the global

loss is to separate two empirical means by a margin and

minimize the variances. There are two drawbacks of this

method. First, the distribution of the distance of the match-

ing pairs can vary greatly across different classes, and using

a batch of randomly sampled matching pairs to estimate that

distribution is unstable. Second, the extra margin in global

loss adds extra complexity for training.

Structured loss [12, 13, 14, 21, 23] considers all the pos-

sible matching and non-matching pairs in one batch of sam-

ples. By carefully designing the loss functions, structured

loss has the ability to focus on the “hard” pairs in training.

Song et al. [14] propose the lifted structured similarity soft-

max loss (LSSS). N-pair loss [21] further develops the idea

by using a more effective batch construction method.

The motivation of this paper is that good descriptors

should fully utilize the expressive power of the whole space

(“spread-out” in the descriptor space). We also propose

a simple regularization term, global orthogonal regulariza-

tion, to encourage the “spread-out” property. The global or-

thogonal regularization can be easily incorporated into other

losses. Experiments show that the proposed regularization

can improve the performance of different types of losses,

especially those originally without the “spread-out” prop-

erty.

3. Methodology

3.1. “Spread­out” local descriptors

The main idea of this paper is that in order for the de-

scriptors to fully utilize the descriptor space, it should be

sufficiently “spread-out” in the descriptor space. On the

contrary, suppose there is part of the space where no fea-
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Figure 1. Valid area for pT

1 p2 ≤ s = cos θ. If p2 is on the blue

spherical cap, pT

1 p2 ≤ cos θ, otherwise, pT

1 p2 > cos θ

ture descriptor appears, the learned feature descriptor is not

fully utilizing the expression power of the space.

One intuitive way to characterize “spread-out” is that:

Given a dataset, we say that the learned descriptors are

spread-out if two randomly sampled non-matching descrip-

tors are close to orthogonal with a high probability. As an

obvious example, we notice that uniform distribution has

such property.

Proposition 1. Let p1,p2 ∈ S
d−1 be two points inde-

pendently and uniformly sampled from the unit sphere in

d-dimensional space. Each point is represented by a d-

dimensional ℓ2 normalized vector. The probability density

of pT
1 p2 satisfies

p(pT
1 p2 = s) =











(1− s2)
d−1

2
−1

B(d−1
2 , 1

2 )
− 1 ≤ s ≤ 1

0 otherwise,

where B(a, b) is the beta function.

Proof. Since −1 ≤ pT
1 p2 ≤ 1, the second equation is ob-

vious. To show the first equation, we calculate the cumula-

tive distribution first. Here we only consider the case when

−1 ≤ s < 0, and 0 ≤ s < 1 can be shown similarly.

Without loss of generality, we fix p1 and also assume that

s = cos θ, as shown in Figure 1. Since cos(·) is a monotone

function in [0, π], pT
1 p2 ≤ s if and only if p2 is located on

the blue spherical cap. Since p2 is uniformly sampled from

the sphere, the probability of pT
1 p2 ≤ s is equal to the area

of the blue spherical cap divided by the area of the whole

sphere. The area of the d− 1 dimensional spherical cap is

S =
1

2
S0r

d−1I(2rh−h2)/r2(
d− 1

2
,
1

2
),

where S0 is the area of the whole sphere. r = 1 is the radius

of the sphere. h is the height of the spherical cap: h =
r+rcos(θ) = r+sr. Ix(a, b) is the regularized incomplete

beta function. Therefore, the cumulative distribution can be

s
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p

2
=

s
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Figure 2. Probability density of inner product of two points which

are independently and uniformly sampled from the unit sphere in

d-dimensional space. We can see that, in high dimensional space,

most pairs are close to orthogonal.

written as,

P (pT
1 p2 ≤ s) =

1

2
I1−s2(

d− 1

2
,
1

2
), −1 ≤ s < 0.

The probability density is the derivative of the cumulative

distribution.

Figure 2 shows the probability distribution of the inner

product (cosine similarity) of two points independently and

uniformly sampled from the unit sphere2. It shows that with

high probability, the two independently and uniformly sam-

pled points are close to orthogonal.

Based on the above observation, one might hope to make

the distribution of the learned descriptors matches that of

the uniform distribution. This is not practical in two ways.

1) How the learned descriptors distribute depends not only

on the learned model, but also on the natural distribution of

the image patches (not controllable). 2) It is technically dif-

ficult to match two distributions in practice. Instead, in this

paper, we propose a regularization technique inspired by

the theoretic properties of the uniform distribution on unit

sphere. The regularization encourages the inner product of

two randomly sampled non-matching descriptors matches

that of two points independently and uniformly sampled

from the unit sphere in its mean and second moment.

The following proposition shows that for two points

that are independently and uniformly sampled on the unit

sphere, the mean and the second moment of their inner

product are 0 and 1/d, respectively.

Proposition 2. Let p1,p2 ∈ S
d−1 be two points indepen-

dently and uniformly sampled from the unit sphere. The

2Note that since we assume the descriptors stay on the unit sphere (ℓ2
normalized), there is only a sign and constant difference between ℓ2 dis-

tance and cosine similarity, and the cosine similarity equals to the inner

product.
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mean and the second moment of pT
1 p2 are

E(pT
1 p2) = 0 and E((pT

1 p2)
2) =

1

d
.

Proof. Due to symmetry, it’s easy to show that E(p1) =
E(p2) = 0, since p1 and p2 are independent,

E(pT
1 p2) = E(pT

1 )E(p2) = 0T0 = 0.

Since both p1 and p2 are uniformly sampled from the unit

sphere, when considering the second moment of the inner-

product, we can fix one point and let the other point to be

uniformly sampled. Without loss of generality, we choose

p1 = [1, 0, . . . , 0]T and denote p2 as [p21, . . . , p2d]
T , thus,

(pT
1 p2)

2 = p21 and E((pT
1 p2)

2) = E(p221).

Due to the symmetry of the sphere, we can have E(p221) =
E(p222) = . . . = E(p22d). Since p2 is on the unit sphere,
∑d

i=1 p
2
2i = 1. Thus, E(p221) = 1/d.

3.2. Global orthogonal regularization

We propose a regularization which tries to match the

mean and second moment shown in Proposition 2. It

encourages that the descriptors of random sampled non-

matching pairs have similar statistical property as two

points independently and uniformly sampled from the unit

sphere. We call this regularization Global Orthogonal Reg-

ularization (GOR). Following the notations in Section 2,

given a set of N random sampled non-matching patches

{(xi,x
−

i )}
N
i=1, denote the descriptor function as f(·). The

sample mean of the inner product of the descriptors of non-

matching pairs is,

M1 =
1

N

N
∑

i=1

f(xi)
T f(x−

i ). (3)

The sample second moment of the inner product is,

M2(f(x)
T f(x−)) =

1

N

N
∑

i=1

(f(xi)
T f(x−

i ))
2. (4)

The Global Orthogonal Regularization (GOR) is defined as

ℓgor = M2
1 +max(0,M2 −

1

d
), (5)

where d is the dimension of the final output descriptor.

In (5), the first term tries to match the mean of the dis-

tributions and the second term tries to make the second mo-

ment close to 1/d. In order to calculate the regularization

term, one needs to consider all the non-matching pairs in

the training set – this is impractical. In practice we use a

sampled batch to estimate its value. The reason for using

the hinge loss for the second term is that, in many batches,

all the non-matching pairs are already very close to being

orthogonal (M2 < 1/d), and there is no need to force M2

to be 1/d. We have tried other loss functions for the second

term. ℓ1 loss results in a similar performance, while ℓ2 leads

to slight degradation.

The proposed regularization term can be used with any

loss function. Denote the original training loss as ℓ(·), the

final loss can be written as,

ℓ(·) gor = ℓ(·) + αℓgor, (6)

where α is a tunable parameter. In the experiment sec-

tion, we test combining the global orthogonal regulariza-

tion with contractive loss3 (1) [19], triplet loss (2) [1], lifted

structured similarity softmax loss (LSSS) [14] and N-pair

loss [21].

3.3. Non­Euclidean distance

So far, we assumed that the distance of the descriptors

is based on the Euclidean distance. There are several re-

cent works that use a decision network instead of the Eu-

clidean distance to calculate the similarity. Han et al. [6]

propose to use a Siamese network followed by a decision

net. Zagoruyko and Komodakis [27] develop a 2-stream

networks, in which one stream focuses on the central area

of the patch and the other focuses on the surrounding area

of the patch. Kumar et al. [8] propose a global loss and

combine it with the 2-stream networks to achieve the state-

of-the-art performance. The drawback of using a new type

of distance rather than Euclidean distance is that efficient

large-scale nearest neighbor search method such as locality

sensitive hashing (LSH) [15] can no longer be used. In this

paper, we focus on training local descriptor in the Euclidean

space.

4. Implementation

In this section, we show our training framework based

on triplet loss and the proposed global orthogonal regu-

larization. The framework has three branches (as shown

in Figure 3). The proposed global orthogonal regulariza-

tion only considers two branches which process the non-

matching pairs. Training pipeline of other losses can be

achieved accordingly. For example, for the pairwise loss,

we use a network with two branches (known as the Siamese

network) instead of three.

Though our method is flexible in terms of the patch

sizes, here we follow [6] to use patch size 64 × 64. Each

branch in the triplet/Siamese network has the following

structure: {Conv(7,7,32) - MaxP(2,2) - Conv(6,6,64) -

MaxP(2,2) - Conv(5,5,128) - MaxP(2,2) - FC(128) - ℓ2
Norm}. Conv(n,m, c) means convolutional layer with ker-

nel size (n,m) and output channel number c. MaxP(n,m)

3For contractive loss (1), we substitute the second term in (1) with the

proposed regularization, since both terms try to separate the non-matching

pairs.
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Figure 3. Local feature descriptor training pipeline with triplet loss and the proposed global orthogonal regularization (GOR). GOR can

also be used with the pairwise loss. In that case, there will be two branches of the network (known as the Siamese network) instead of

three.

is a max pooling layer with size n×n and stride m. FC(d) is

a fully connected layer with output dimension d. ℓ2 Norm

is ℓ2 normalization layer to guarantee each descriptor has

unit norm. All the convolution layers are followed by batch

normalization [7] and ReLU. Based on our implementation,

when trained without the proposed global regularization,

the above network structure achieves similar performance

as the one proposed in [1]. The motivation of the use of the

above shallow network is for efficiency and avoiding over-

fitting [1, 19]. We show the experiment of the proposed

method over the large-scale patch descriptor benchmark in

the next section.

5. Local Descriptor Result

5.1. Dataset

We first conduct experiments on the standard local patch

descriptor benchmark, UBC patch dataset [3]. The dataset

contains three subsets, Yosemite, Notre Dame and Liberty.

Each subset consists of more than 100k classes which in-

clude different image patches corresponding to the same 3D

location obtained through a 3D reconstruction from differ-

ent multi-view images. The total number of local image

patches within each subset is more than 450k. Each patch

has a size of 64 × 64 and is sampled around the output

of difference of Gaussian (DOG) [10] detector. The scale

and orientation of the patch is normalized by the detector.

Though with normalized scale and orientation, the patch

dataset still contains great variations in view points, light-

ing, camera conditions etc. We follow the evaluation pro-

tocol proposed in [3] to separate the whole dataset into six

training-test combinations in which one subset is for train-

ing and the other for test.

The metric used to evaluate different methods is false

positive rate at 95% true positive rate (FPR95), which is the

standard metric in previous works [1, 19, 27]. The test split

of each subset contains 100k patch pairs in which 50% are

matching pairs and the other 50% are non-matching pairs.

The test pairs are predefined in [3].

5.2. Training setting and evaluation method

For training, we randomly sample 1M triplets (for triplet

network), or 1M matching pairs and 1M non-matching pairs

(for Siamese network), for each training subset. No data

augmentation or specially designed sampling is used. The

training batch size is set to 128. We use SGD with mo-

mentum in the optimization. The learning rate starts at 0.1,

with momentum 0.9. The learning rate is reduced after each

epoch by a factor of 0.96. The trade-off parameter α in (6)

is set to 1 (we discuss the choice of α in Section 5.3). The

loss function in (5) is hinge loss. The margin for match-

ing pair in Siamese network (ϵ+ in (1)) is set to 0.7 and the

margin of triplet network (ϵ in (2)) is set to 0.5. All are

estimated via empirical cross validation. Our implementa-

tion is based on TensorFlow [5]. The training of each epoch

takes about 10 minutes on a Titan X GPU. All the networks

are trained with 20 epochs, and they all converge before the

end of training.

We compare our method with a large set of local fea-

ture descriptors which use Euclidean distance as similar-

ity metric. The methods include: 1) hand-crafted descrip-

tor (SIFT [10]), conventional machine learning based de-

scriptor (VGG-Opt [20]), 2) deep learning based descrip-

tors learned with pairwise loss (DeepCamparesiam [27],
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Loss

Type

Training NotreDame Liberty NotreDame Yosemite Yosemite Liberty

MeanTest Yosemite Liberty NotreDame

Descriptor Dim

N/A
SIFT [10] 128 27.29 29.84 22.53 26.55

VGG-Opt [20] 80 10.08 11.63 11.42 14.58 7.22 6.17 10.28

Pairwise

DeepComparesiam[27] 256 15.89 19.91 13.24 17.25 8.38 6.01 13.45

DeepCompare2str[27] 512 13.02 13.24 8.79 12.84 5.58 4.54 9.67

DeepDesc[19] 128 16.19 8.82 4.54 9.85

CL+GOR (Ours) 128 6.88 6.99 6.46 8.33 3.73 3.40 5.97

Global TGLoss[8] 256 9.47 10.65 9.91 13.45 5.43 3.91 8.80

Triplet

TFeat[1] 128 7.95 8.10 7.64 9.88 3.83 3.39 6.79

TFeat+AS[1] 128 7.08 7.82 7.22 9.79 3.85 3.12 6.47

TL+GOR (Ours) 128 4.94 5.74 5.47 7.13 2.58 2.28 4.69

TL+AS+GOR (Ours) 128 5.15 5.40 4.80 6.45 2.38 1.95 4.36

Structured
N-pair[21] 128 5.53 8.29 4.80 7.51 3.01 2.60 5.29

N-pair+GOR (Ours) 128 5.16 7.43 5.03 7.10 2.81 2.34 4.98

Table 1. FPR95 (%) of different methods on UBC patch dataset. TL+AS+GOR achieves the lowest FPR95 rate.
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Figure 4. ROC curves for our method and baseline method trained

on the Notre Dame subset and tested on the Liberty and Yosemite

subsets.

DeepCampare2str
4 [27] and DeepDesc [19]), 3) descrip-

tors learned with triplet loss with and without anchor swap

(TFeat+AS [1] and TFeat [1]), 4) descriptors learned with

global loss (TGLoss [8]), and 5) descriptors learned with

structured loss (N-pair [21]).

We combine the proposed Global Orthogonal Regular-

ization with four commonly used losses mentioned in Sec-

tion 2, namely, contractive loss, triplet loss, triplet loss

with anchor swap and N-pair loss [21]. Thus four vari-

ants of our method are used in evaluation: contractive loss

with global orthogonal regularization (CL+GOR), triplet

loss with GOR (TL+GOR), triplet loss with anchor swap

[1] and GOR (TL+AS+GOR) and N-pair loss with GOR

(N-pair+GOR).

5.3. Patch pair classification result

Classification error. Table 1 summarizes the performance

of all the evaluated Euclidean embedding methods on UBC

patch dataset. We show FPR95 on each of the six training-

4Subscript “2str” means central-surround network proposed in [27].

test combinations and also the mean over all of them.

By simply applying the proposed global orthogonal reg-

ularization, almost all the baseline methods show per-

formance gains. Specifically, among all the pairwise

loss based methods, contractive loss with the proposed

GOR (CL+GOR) reduces the error of the previous best

pairwise loss model (DeepCampare2str) from 9.67 to 5.97

with a relative deduction of 38.3%. Among all the triplet

loss based methods, triplet loss with the proposed GOR

(TL+GOR) reduces the error of its triplet loss baseline

(TFeat) from 6.79 to 4.69. For the anchor swap version

(TL+AS+GOR vs. TFeat+AS), the error reduces from 6.47

to 4.36. The relative deductions are 30.9% and 32.6%, re-

spectively. For the structured loss, the error was reduced

from 5.29 to 4.98. The improvement is not as significant

because the N-pair loss already has the ability to force the

random non-matching pairs to be orthogonal. The second

moment of the non-matching pairs trained with N-pair loss

is close to 2/d, while that of the triplet loss is close to 50/d.

Overall, TL+AS+GOR achieves the lowest FPR95 rate.

The improvement of our method can also be shown us-

ing other metrics such as the ROC curves. The ROC curves

of TL+AS+GOR and TL+AS both are shown in Figure 4.

Here, the training subset is Notre Dame, and the test sub-

sets are Liberty (Figure 4(a)) and Yosemite (Figure 4(b).

The result shows that the performance gain of the proposed

regularization is universal at different false positive rates.

Similarity histogram. To understand how the proposed

GOR affects the distribution of the similarity, the his-

tograms of cosine similarity of the matching pairs and non-

matching pairs of the models trained with/without the pro-

posed GOR on test set are shown in Figure 5. We use the

same baseline method defined above. This figure shows the

setting in which the training subset is Notre Dame and the

test subset is Liberty, but the observation is also general for
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(a) TL+AS (Baseline) (b) TL+AS+GOR (Ours)

Figure 5. Histogram of cosine similarity of matching pairs and

non-matching pairs on “Liberty”. The model is trained on “Notre

Dame”. When trained with GOR, the non-matching pairs are more

close to being orthogonal.

α

0.01 0.1 1 10

F
P

R
9

5
(%

)

4

5

6

7

8

9
TL+AS+GOR (Ours)

(a) FPR95(%) with different val-

ues of α (#dimension= 128).
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(b) FPR95(%) with different feature

dimensions (α = 1).

Figure 6. FPR95(%) with different α and embedding dimensions.

α trades off the regularization term and the triplet loss. Training

set: Notre Dame, Test set: Liberty.

other training/test combinations.

The histogram of the similarity of the matching and non-

matching pairs of the baseline method is shown in Fig-

ure 5(a), while those of model trained with the proposed

regularization is shown in Figure 5(b). The histogram in

blue is for matching pairs, while the histogram in orange

is for non-matching pairs. The histogram of the similar-

ity of non-matching pairs trained with GOR has a much

sharper shape than that without the proposed regularization,

which means when trained with GOR, non-matching pairs

are more likely to be close to orthogonal. With the proposed

GOR, the empirical error (overlapped area in Figure 5(b))

decreases by 15% relatively in comparison with the base-

line (Figure 5(a)).

Trade-off parameter. α in (6) controls the trade-off be-

tween the triplet loss and GOR. We use Notre Dame as

training set and Liberty as test set and show the FPR95

of different models trained with different α values (from

0.01 to 10) in Figure 6(a). When α = 0, (6) becomes stan-

dard triplet loss. When α is large, the network will enforce

the descriptor of all the non-matching pairs (including “hard

negatives”) to be close to orthogonal.

Embedding dimension. We investigate how the proposed

GOR affects the training of descriptors of different dimen-

sionalities. We change the output node number in final

fully-connected layer from [32, 64, 128, 256, 512, 1024].
The result is shown in Figure 6(b). The proposed GOR

achieves significant performance gain when training a high-

dimensional descriptor (d ≥ 64). The low dimensional case

(d = 32) does not work as well. One possible reason is that

the descriptors of two non-matching patches are harder to

be spread-out, and forcing non-matching patches to be or-

thogonal may lead to error. Finally, both our method and

the baseline degrade for very high dimensions. We conjec-

ture this is due to over-fitting. One may think that when d
is large, the network may not be able to force the second

moment to a very small 1/d. However, the proposed GOR

is only a regularization not a hard constraint. And we can

always make a trade-off by changing the value of α in (6).

5.4. Descriptor extraction efficiency

Since there are hundreds of patches in one image, the

speed of descriptor extraction is also very important. The

proposed GOR only affects the training stage, adding no

additional cost in extraction pipeline. Based on our imple-

mentation on TensorFlow, when running a Titan X GPU, the

extraction speed is about 10K patches per second, which is

comparable to the conventional local descriptor extraction

method like SIFT [10] and descriptor learning techniques

using “shallow” structure such as TFeat and DeepDesc.

6. Extension to image-level embedding

Although GOR is proposed to learn local descriptors, the

method can also be used in other applications where a fea-

ture embedding is learned. As an example, we show that it

can also be used to improve the performance of image-level

embedding. We compare our method to LSSS [14], which,

as reviewed in Section 2.3, outperforms triplet and pairwise

losses.

6.1. Dataset and evaluation metric

The image level feature embedding experiment is con-

ducted on Stanford Online Products dataset [14]. Stanford

Online Products dataset contains 120,053 product images

crawled from eBay.com. There are a total of 22,634 prod-

ucts belonging to 12 categories. Each product is an individ-

ual class and has an average of 5.3 images. We strictly fol-

low the same experiment setting in [14], that using 11,318

classes with a total of 59,551 images for training and an-

other 11,316 classes with 60,502 images for test. The train-

ing and test splits have no overlap and are predefined in the

dataset. We choose this dataset due to its realistic setting

and rich variations within classes.

As in [14], we perform both clustering and retrieval

tasks. For the clustering task, the F1 and NMI scores are

used as the evaluation metrics [11]. F1 metric computes the
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(c) Recall@K

Figure 7. F1, NMI (for clustering) and Recall@K (for retrieval) scores for image-level descriptor learning using Stanford Online Product

dataset.

harmonic mean of precision and recall. NMI metric equals

to the mutual information divided by the average value

of the entropy of clusters and the entropy of labels. For

retreival task, the performance is evaluated by Recall@K

score as in [14]. For each query image, we first remove the

query from the test set and then retrieve its K nearest neigh-

bors from the test set. The recall of the test image is set to

1 if any image in the same class with the query is retrieved

and 0 otherwise.

6.2. Implementation details

The proposed GOR is embedded with the lifted struc-

tured similarity softmax loss (LSSS), which is one of the

best performing losses used in learning feature embedding.

The network structure follows GoogLeNet [22] up to the

“pool5” layer. The final descriptor is generated by a fully

connected layer. All the convolutional layers are initial-

ized from the network pre-trained on ImageNet ILSVRC

dataset [16]. All convolutional layers are fine-tuned with a

learning rate that is 10 times smaller than that of the fully-

connected layer. The batch size is set to 128 and the training

iteration is set to 20,000.

6.3. Result

Figure 7(a) and Figure 7(b) further show the F1 score

and NMI score for the clustering task with different embed-

ding sizes. By combining the proposed GOR with LSSS,

our method shows better performance especially in high-

dimensional cases (d ≥ 128). The reason is discussed in

Section 5.3. Figure 7(c) shows the Recall@K score for 512

dimensional descriptor.

We also test the proposed regularization on small met-

ric learning datasets such as Car196 and CUB-200-2011.

The proposed regularization does not show clear improve-

ment. One possible explanation is that the numbers of

the classes in Car196 (196) and CUB-200-2011 (200) are

much smaller than that of UBC (>100k) and Stanford on-

line dataset (>22k). The assumption of uniform distribution

for non-matching samples is not ideal for such situations.

To understand this, one can imagine an extreme case of only

two classes in a high dimensional space, putting them on

opposite positions of the unit sphere (instead of orthogonal)

is optimal.

7. Conclusion

We proposed a regularization technique named Global

Orthogonal Regularization (GOR) that makes the local fea-

ture descriptor more spread-out in the descriptor space. In-

spired by the properties of uniform distribution, the regu-

larization achieves the desired property by making the non-

matching pairs close to orthogonal. We showed the pro-

posed regularization can be easily used to improve the per-

formance of various feature embedding losses such as the

pairwise and triplet losses.

In the future, we plan to extend the proposed regu-

larization technique to non-Euclidean distance. We also

plan to apply our method to more general metric learning

settings. Our prototype implementation can be downloaded

from https://github.com/ColumbiaDVMM/

Spread-out_Local_Feature_Descriptor.
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