
PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise

R-FCN

Hanwang Zhang†, Zawlin Kyaw‡, Jinyang Yu†, Shih-Fu Chang†

†Columbia University, ‡National University of Singapore

{hanwangzhang, kzl.zawlin, yjy941124}@gmail.com; shih.fu.chang@columbia.edu

Abstract

We aim to tackle a novel vision task called Weakly

Supervised Visual Relation Detection (WSVRD) to detect

“subject-predicate-object” relations in an image with ob-

ject relation groundtruths available only at the image level.

This is motivated by the fact that it is extremely expensive to

label the combinatorial relations between objects at the in-

stance level. Compared to the extensively studied problem,

Weakly Supervised Object Detection (WSOD), WSVRD is

more challenging as it needs to examine a large set of re-

gions pairs, which is computationally prohibitive and more

likely stuck in a local optimal solution such as those in-

volving wrong spatial context. To this end, we present a

Parallel, Pairwise Region-based, Fully Convolutional Net-

work (PPR-FCN) for WSVRD. It uses a parallel FCN ar-

chitecture that simultaneously performs pair selection and

classification of single regions and region pairs for object

and relation detection, while sharing almost all computa-

tion shared over the entire image. In particular, we propose

a novel position-role-sensitive score map with pairwise RoI

pooling to efficiently capture the crucial context associated

with a pair of objects. We demonstrate the superiority of

PPR-FCN over all baselines in solving the WSVRD chal-

lenge by using results of extensive experiments over two vi-

sual relation benchmarks.

1. Introduction

Visual relation detection (VRD) aims to detect objects

and predict their relationships in an image, especially

subject-predicate-object triplets like person-

hold-ball (verb), dog-on-sofa (spatial), car-with-

wheel (preposition), and person1-taller-person2

(comparative) [20]. As an intermediate task between low-

level object detection [23] and high-level natural language

modeling [42], VRD has received increasing attention re-

cently, in areas of new benchmarks [29, 20], algorithms [24,

48, 7, 49], and visual reasoning [17, 15, 44]. VRD is ex-
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Figure 1. The illustration of WSVRD training and testing stages. It

includes weakly supervised object detection (WSOD) and weakly

supervised predicate prediction (WSPP). Note that the key differ-

ence from WSOD is that WSVRD requires pairwise region mod-

eling for many weakly labeled region pairs in WSPP.

pected to become an important building block for the con-

nection between vision and language.

Like any other visual detection task, VRD is also data-

hungry. However, labeling high-quality relation triplets is

much more expensive than objects as it requires the te-

dious inspection of a combinatorial number of object in-

teractions. On the other hand, collecting image-level rela-

tion annotation is relatively easier. For example, there are

abundant image-caption data [20, 26] and Web image-text

pairs [40], where image-level relation descriptions can be

automatically extracted from the text using state-of-the-art

text parsers [37, 1]. Therefore, to make VRD of practical

use at a large scale, it is necessary to study the novel and

challenging task: weakly supervised visual relation detec-

tion (WSVRD), with triplet annotation available only at the

image level.

Figure 1 shows the WSVRD problem studied in this pa-

per. As there are no instance-level object annotations (e.g.,

bounding boxes), we first exploit region proposal genera-

tors [50, 41] for a set of candidate proposals (or RoIs) and

then predict their object classes. This step is also known

as Weakly Supervised Object Detection (WSOD) [3, 6].

Then, as the image-level relation does not specify which

pairs of objects are related, it exhaustively enumerates ev-

ery RoI pairs as candidate subject-object pairs for

predicate prediction (e.g., relationships), which results

in that WSVRD is more challenging than WSOD. More

specifically, first, as the spatial context annotation of pair-

wise regions is missing, we should carefully model the spa-
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tial constraints in WSVRD otherwise the relationships will

be easily confused by incorrect subject-object con-

figurations, e.g., one can detect hat-on-person correctly

but the hat is on someone else; second, for N regions,

WSVRD has to scan through O(N2) region pairs, thus,

the weakly supervised learning based on alternating be-

tween instance selection and classification (i.e., predicate

prediction) in WSVRD is more easily trapped in bad lo-

cal optimal solution than that in WSOD [21]; third, the

O(N2) computational cost in WSVRD would become pro-

hibitively expensive if per-RoI fully-connected subnetwork

is still adopted [48, 49], since WSVRD usually uses many

more object regions (e.g., >100 regions and >10,000 pairs)

than supervised VRD (e.g., <20 regions and <400 pairs) to

ensure high recall of object instances.

We present a Parallel, Pairwise Region-based, end-to-

end Fully Convolutional Network (PPR-FCN) to tackle the

above challenges in WSVRD. The architecture is illustrated

in Figure 2 and detailed in Section 3. It consists of a

WSOD module for weakly supervised object detection and

a Weakly Supervised Predicate Prediction (WSPP) module

for weakly supervised region pair modeling. PPR-FCN is

a two-branch parallel network, inspired by the recent suc-

cess of using parallel networks to avoid bad local optima in

WSOD [3]. We use FCN [23] as our backbone network to

exploit its advantages in sharing computation over the en-

tire image, making efficient pairwise score estimation pos-

sible [23, 28]. The WSPP module has two novel designs:

1. Position-Sequence-Sensitive Score Map. Inspired by

the position-sensitive score map in R-FCN [23], we de-

velop a set of position-role-sensitive conv-filters to gener-

ate a score map, where every spatial pixel encodes the ob-

ject class-agnostic spatial context (e.g., subject is above

object for predicate sit on) and roles (e.g., the first

part of the pixel channels is subject and the rest is

object).

2. Pairwise RoI Pooling. To shepherd the training of the

position-role-sensitive conv-filters, we append a pairwise

RoI pooling layer on top of the score map for fast score es-

timation. Our pooling design preserves the spatial context

and subject/object roles for relations.

To the best of our knowledge, PPR-FCN is the first de-

tection network for the WSVRD task. We believe that PPR-

FCN will serve as a critical foundation in this novel and

challenging vision task.

2. Related Work

Fully Convolutional Networks. A recent trend in deep

networks is to use convolutions instead of fully-connected

(fc) layers such as ResNets [13] and GoogLeNet [39]. Dif-

ferent from fc layers where the input and output are fixed

size, FCN can output dense predictions from arbitrary-

sized inputs. Therefore, FCN is widely used in segmenta-

tion [28, 27], image restoration [9], and dense object detec-

tion windows [34]. In particular, our PPR-FCN is inspired

by another benefit of FCN utilized in R-FCN [23]: per-RoI

computation can be shared by convolutions. This is appeal-

ing because the expensive computation of pairwise RoIs is

replaced by almost cost-free pooling.

Weakly Supervised Object Detection. As there are no

instance-level bounding boxes for training, the key chal-

lenge of WSOD is to localize and classify candidate RoIs

simultaneously [6, 43, 38, 16]. The parallel architecture in

PPR-FCN is inspired by the two-branch network of Bilen

and Vedaldi [3], where the final detection score is a product

of the scores from the parallel localization and classifica-

tion branches. Similar structures can be also found in et

al. [18, 35]. Such parallel design is different from MIL [30]

in a fundamental way as regions are selected by a local-

ization branch, which is independent of the classification

branch. In this manner, it helps to avoid one of the pitfalls

of MIL, namely the tendency of the method to get stuck in

local optima.

Visual Relation Detection Modeling the interactions

between objects such as verbs [11, 4], actions [12, 33, 45],

and visual phrases [46, 2, 36, 8] are not new in literature.

However, we are particularly interested in the VRD that

simultaneously detects generic subject-predicate-

object triplets in an image, which is an active research

topic [29, 24, 48, 49, 7, 25] and serves as a building block

for connecting vision and language [20, 17, 15, 44]. But,

a key limitation is that it is very expensive to label rela-

tion triplets as the complexity is combinatorial. Perhaps

the most related work to ours is done by Prest et al. [32]

on weakly-supervised learning human and object interac-

tions. However, their spatial configurations and definitions

of relations are limited to one person and one object while

our relations include generic objects and diverse predicates.

There are recent works on referring expression groundings,

e.g., localizing an object by its relationship to another ob-

ject [14, 47, 31]. However, they require stronger supervi-

sion, i.e., at least one of the objects is labeled with bounding

box. We also notice that we are not the only work towards

the efficiency of VRD. Li et al. [24] and Zhang et al. [49]

proposed to use groundtruth pairwise bounding boxes to

learn triplet proposals to reduce the number of region pairs;

however, these methods are fully supervised.

3. PPR-FCN

As illustrated in Figure 2, PPR-FCN consists of two

modules: 1) WSOD module for object detection and 2)

WSPP module for predicate prediction. At test time, PPR-

FCN first detects a set of objects and then predicts the pred-

icate for every object pairs. In this section, we will detail

each module.
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Figure 2. The overview of the proposed PPR-FCN architecture for WSVRD. It has two modules: WSOD for object detection (Section 3.1)

and WSPP for predicate prediction (Section 3.2), each module is composed by a pair selection branch and a classification branch.

3.1. WSOD Module

The goal of WSOD module is to predict the object class

score Sc(P ) for a RoI P of any class c ∈ {0, 1, ..., C}.
Then, NMS is performed to generate the final detection re-

sult: subject and object RoIs (i.e., bounding boxes), and

their classes. It is worth noting that any state-of-the-art

WSOD method can be used as the WSOD module in PPR-

FCN. In this paper, we adopt a parallel design similar in

WSDDN [3] as it achieves the state-of-the-art results on

benchmarks (cf. Section 4.3) and it is easy to replace the

backbone network with R-FCN [23], which is also com-

patible with the subsequent WSPP module. During train-

ing and test, we first use EdgeBox [50] to generate N ob-

ject RoIs, where N is initially 4,000 and then reduced to

1,000 by NMS with IoU>0.4 and discard those with ob-

jectness score<0.2; the objectness score for a region is the

sum over all class scores from a 3-epoch pre-trained WSOD

with the initial 4,000 RoIs. Then, given the 1,000 RoIs,

for each class, we perform NMS with IoU>0.4 and score

threshold>0.7 to select 15∼30 RoIs, resulting ∼100 de-

tected objects, where this number is significantly larger than

that in supervised detection (e.g.,∼20), since we need to en-

sure enough recall for true objects. Please see Section 3.3

for the training loss of this module.

3.2. WSPP Module

WSPP module predicts the predicate score Sr(Pi, Pj)
of any predicate r ∈ {1, ..., R} for two RoIs detected by

the previous WSOD module. As shown in Figure 2, it is

a two-branch network with independent parameters for pair

selection (i.e., which pair of regions are related) and clas-

sification. In particular, the input feature map for WSPP is

the same as WSOD, which is the base CNN feature map

followed by a trainable conv-layer as in R-FCN [23]. The

predicate score, i.e., the likelihood of subject-object

pair being associated with predicate r, is defined as:

Sr(Pi, Pj) = Ssel
r (Pi, Pj) · S

cls
r (Pi, Pj), (1)

where we split the challenging estimation of the predicate

score using only image-level annotation into two simpler

problems: one is responsible for pair selection and the

other is for predicate classification. In particular, Ssel
r (or

Scls
r ) is the predicate score from the selection (or classifi-

cation) branch. Ssel
r is softmax normalized over all pos-

sible region pairs with respect to a predicate class, i.e.,

Ssel
r (Pi, Pj) ← softmaxi,jS

sel
r (Pi, Pj); while Scls

r is soft-

max normalized over possible predicate classes for a re-

gion pair, i.e., Scls
r (Pi, Pj) ← softmaxrS

cls
r (Pi, Pj). Note

that such normalizations assign different objectives to two

branches and hence they are unlikely to learn redundant

models [3]. Essentially, the normalized selection score can

be considered as a soft-attention mechanism used in weakly

supervised vision tasks [35, 5] to determine the likely RoIs.

Next, we will introduce how to calculate the scores before

normalization. Without loss of generality, we use Scls
r as

the example and discard the superscript.

3.2.1 Position-Sequence-Sensitive Score Map

First, predicate score should be position-sensitive as the

spatial context of two objects is informative for the relation-

ship. Second, as the predicate score is usually dependent on

the role-sequence of two RoIs, the score should be also role-

sensitive to ensure asymmetric scores of Sr(Pi, Pj) and

Sr(Pj , Pi). For example, for ride score, person-ride-

bike is more likely than bike-ride-person; person-

on-bike is different from bike-on-person, as the for-

mer usually indicates “person riding a bike” while the latter

suggests “person carrying a bike”. Inspired by the position-

sensitive score map design in R-FCN [23], we propose to

use two sets of trainable size 1×1 and stride 1 conv-filters to

generate 2 ·k2R-channel position-role-sensitive score maps

from the input feature map. As illustrated in Figure 3, the

first k2R-channel score map encodes R predicate scores

at k2 spatial positions for subject and the second k2R-

channel map encodes scores for object. By using these

filters, the computation of predciate prediction is amortized

over the entire image. Note that the score maps are class-

agnostic, i.e., they are only aware of whether a spatial lo-

cation is subject or object but not aware of whether
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it is “dog” or “car”. This is scalable to relation detection

for many classes and predicates as the complexity is only

O(C +R) but not O(C2R).

3.2.2 Pairwise RoI Pooling

To sheperd the training of the above position-role-sensitive

filters, we design a pairwise RoI pooling strategy to obtain

the predicate score Sr(Pi, Pj) for a RoI pair. It includes

three pooling steps: 1) subject pooling, 2) object pooling,

and 3) joint pooling. Thus, the final Sr(Pi, Pj) is the sum

of these steps:

Sr(Pi, Pj) = Ssub
r (Pi) + Sobj

r (Pj) + Sjoint
r (Pi, Pj). (2)

Next, we will detail the three pooling steps as illustrated in

Figure 3.

Subject/Object Pooling. This pooling aims to score

whether an RoI is subject or object in a relation.

Without loss of generality, we use subject pooling as the

walk-through example. We first divide the RoI P into k×k

spatial grids. Suppose (x, y) ∈ g(i, j) is the set of pix-

els within the grid g(i, j) ∈ P , where 1 ≤ i, j ≤ k, and

Xx,y,g(i,j),r is the score of the r-th predicate at the position

(x, y) inside grid g(i, j) in the subject score map X , then

the subject pooling for P is defined as:

Ssub
r (P ) = vote

g(i,j)∈P

(

pool
(x,y)∈g(i,j)

(

Xx,y,g(i,j),c

)

)

, (3)

where k = 3, pool(·) is mean pooling, and vote(·) is aver-

age voting (e.g., average pooling for the scores of the grids).

Ssub
r (P ) is position-sensitive because Eq. (3) aggregates re-

sponses for a spatial grid of RoI subject to the correspond-

ing one from the k2 maps (e.g., in Figure 3 left, the dark

red value pooled from the top-left grid of the RoI) and then

votes for all the spatial grids. Therefore, the training will

shepherd the k2R subject filters to capture subject position

in an image.

Joint Pooling. The above subject/object pooling does not

capture the relative spatial context of a predicate. There-

fore, we use joint pooling to capture how two RoIs inter-

acts with respect to a predicate. As shown in Figure 3

right, different from the single RoI pooling where the k2

spatial grids are over the entire RoI, the pairwise RoI pool-

ing is based on the grids over the joint region and the pool-

ing result for the subject Pi or object Pj is from the

intersected grids between Pi (or Pj) and Pi ∪ Pj , where

the latter joint RoI is divided into k × k spatial grids.

Denote (x, y) ∈ g(i′, j′) as the pixel coordinates within

the grid g(i′, j′) ∈ Pi ∪ Pj , where 1 ≤ i′, j′ ≤ k,

and Xs
x,y,g(i′,j′),r (or Xo

x,y,g(i′,j′),r) is the score of the r-

th predicate at the position (x, y) within g(i′, j′) from the

k2R R

k x k x R subject
object

Joint R
oI

Vote
Vote

Joint Pooling

Subject/Object 
Pooling

Sco
re 

Map

Sco
re 

Map

Sub. RoI

Obj. RoI

Figure 3. Illustrations of pairwise RoI pooling with k
2(k = 3)

spatial grids and R predicates. Left: subject/object pooling for a

single RoI. Right: joint pooling. For each score map, we use k
2

colors to represent different position channels. Each color channel

has R predicate channels. For the joint pooling, uncolored pooling

results indicate zero and the back-propagation is disabled through

these grids. Note that the score maps in subject/object pooling and

joint pooling are different, i.e., there are 2 · 2 · k2
R conv-filters.

subject (or object) score map. Therefore, the joint

RoI pooling is defined as:

Sjoint
r (Pi, Pj) = vote

g(i′,j′)∈Pi∪Pj

(

pool
(x,y)∈g(i′,j′)∩Pi

(

Xs
x,y,g(i′,j′),r

)

+ pool
(x,y)∈g(i′,j′)∩Pj

(

Xo
x,y,g(i′,j′),r

)

)

,

(4)

where g(i′, j′) ∩ Pi denotes the intersected pixels between

g(i′, j′) and Pi; in particular, if g(i′, j′)∩Pi = φ, pool(·) is

zero and the gradient is not back-propagated. We set k = 3,

pool(·) to average pooling, and vote(·) to average voting.

For example, for relation person-ride-bike, the pool-

ing result of person RoI is usually zero at the lower grids

of the joint RoIs while that of bike RoI is usually zero at

the upper grids.

3.3. Loss Functions

We follow the conventional image-centric training strat-

egy [34], i.e., a training mini-batch arises from the set

of region proposals in a single image. We resized im-

ages to the longer side of 720 pixels. Multiple scales at

{0.6,0.8,1.0,1.2,1.4} and random horizontal flips are ap-

plied to the images during training.

WSOD Loss. Suppose C is the set of image-level object

class groundtruth, Sc =
∑

i Sc(Pi) is the image-level class

score2 , the loss is defined as:

Lobj
img = −

C
∑

c=1

(

1[c∈C] logSc + 1[c/∈C] log (1− Sc)
)

, (5)

where 1[x] is 1 if x is true and 0 otherwise. However,

the above image-level loss does not guarantee the spatial

2Note that Sc is also a sum of element-wise product of softmax nor-

malized scores, i.e., Sc(Pi) = Sloc
c (Pi) · S

cls
c (Pi) and thus it is < 1.
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smoothness of detection scores. Inspired by the positive

and negative bounding box sampling in supervised object

detection [10], we regularize the smoothness as: 1) for each

foreground class c ∈ {1, ..., C}, the top high-scored regions

(e.g., top 5) and their neighborhood with IoU ≥ 0.5 should

both have high scores; we consider them as the pseudo pos-

itive regions; and 2) the neighborhood of the pseudo posi-

tive regions with 0.1 ≤ IoU ≤ 0.5 should be pseudo back-

ground regions (c = 0). In this way, our spatial smoothness

regularization loss is:

Lobj
reg = −

∑

c∈C

∑

i∈Cc

logSc(Pi)−
∑

i∈B

logS0(Pi), (6)

where Cc is the set of pseudo positive regions for class

c 6= 0, and B is the set of pseudo background regions. We

follow a similar sampling strategy as in [34]: 256 regions

are sampled, where at least 75% are the pseudo background

regions.

WSPP Loss. Suppose R is the set of the image-level

relation groundtruth triplets, specifically, (s, r, o) ∈ R,

where s, o ∈ {1, ..., C} are the labels of the subject

and object. Suppose Cs and Co are the region sets of

subject s and object o, respectively. Denote Sr =
∑

i∈Cs,j∈Co
Sr(Pi, Pj) as the image-level predicate score,

the image-level predicate prediction loss is defined as:

Lpred
img =−

R
∑

r=1

(

1[(s,r,o)∈R] logSr+1[(s,r,o)/∈R] log(1−Sr)
)

.

(7)

Overall Loss. The overall loss of PPR-FCN is a multi-task

loss that consists of the above WSOD and WSVRD losses:

LPPR−FCN = Lobj
img + L

pred
img + αLobj

reg, (8)

where α is empirically set to 0.2. We train the PPR-FCN

model by SGD with momentum [19].

4. Experiments

4.1. Datasets

We used two recently released datasets with a wide range

of relation annotation. Every image from the above two

datasets is annotated with a set of subject-predicate-

object triplets, where every instance pair of subject

and object is labeled with bounding boxes. At training

time, we discarded the object bounding boxes to conform

with the weakly supervised setting.

VRD: the Visual Relationships Dataset collected by Lu et

al. [29]. It contains 5,000 images with 100 object classes

and 70 predicates, resulting in 37,993 relation annotations

with 6,672 unique relations and 24.25 predicates per object

class. We followed the official 4,000/1,000 train/test split.

VG: the latest Visual Genome Version 1.2 relation dataset

constructed by Krishna et al. [20]. VG is annotated by

crowd workers and thus the relations labeling are noisy,

e.g., free-language and typos. Therefore, we used the

pruned version provided by Zhang et al. [48]. As a result,

VG contains 99,658 images with 200 object categories and

100 predicates, 1,174,692 relation annotations with 19,237

unique relations and 57 predicates per object category. We

followed the same 73,801/25,857 train/test split.

4.2. Evaluation Protocols and Metrics

Since the proposed PPR-FCN has two modules: WSOD

and WSPP, we first evaluated them separately and then over-

all. Thus, we have the following protocols and metrics that

are used in evaluating one object detection task [3, 6, 18]

and three relation-related tasks [29, 48]:

1) Object Detection. We used the WSOD module trained

with image-level object annotations to detect objects in

VRD and VG. We followed the Pascal VOC conven-

tions that a correct detection is at least 0.5 IoU with the

groundtruth.

2) Predicate Prediction. Given the groundtruth objects

with bounding boxes, we predict the predicate class be-

tween every pair of regions. This protocol allows us to

study how well the proposed position-role-sensitive score

map and pairwise RoI pooling perform without the limita-

tions of object detection.

3) Phrase Detection. We predict a relation triplet with a

bounding box that contains both subject and object.

The prediction is correct if the predicted triplet is cor-

rect and the predicted bounding box is overlapped with the

groundtruth by IoU>0.5.

4) Relation Detection. We predict a relation triplet with

the subject and object bounding boxes. The predic-

tion is correct if the predicted triplet is correct and both of

the predicted subject and object bounding boxes are

overlapped with the groundtruth by IoU>0.5.

Note that both the objects and relations in VRD and VG

are not completely annotated. Therefore, the popular Aver-

age Precision is not a proper metric as the incomplete an-

notation will penalize the detection if we do not have that

particular groundtruth3. To this end, following [29, 48],

we used Recall@50 (R@50) and Recall@100 (R@100)

for evaluation. R@K computes the fraction of times a

groundtruth is in the top K confident predictions in an im-

age.

4.3. Evaluations of Object Detection

Comparing Methods. We compared the proposed

WSOD module named WSOD with three state-of-the-

3For example, even though R-FCN is arguably better than than Faster

R-CNN, R-FCN only achieves 6.47% mAP while Faster-RCNN achieves

13.32% mAP on VRD.
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Table 1. Weakly supervised object detection performances

(R@K%) of various methods on VRD and VG. The last row is

supervised object detection performances by R-FCN.
Dataset VRD VG

Metric R@50 R@100 R@50 R@100

WSDDN [3] 15.08 16.37 6.22 6.89

ContextLocNet [18] 9.74 11.27 4.74 4.91

WSL [22] 13.10 13.59 5.43 6.28

WSOD 25.34 26.54 8.85 9.12

R-FCN [23] 57.64 58.31 18.37 18.90

art weakly supervised object detection methods: 1) WS-

DDN [3], the weakly-supervised deep detection network.

It has a two-branch localization and classification struc-

ture with spatial regularization; 2) ContextLocNet [18],

the context-aware localization network. Besides it is also a

two-branch structure, the localization branch is further sub-

branched to three context-aware RoI pooling and scoring

subnetworks; 3) WSL [22], the weakly supervised object

localization model with domain adaption. It is a two-stage

model. First, it filters out the noisy object proposal col-

lection to mine confident candidates as pseudo object in-

stances. Second, it learns a standard Faster-RCNN [34]

using the pseudo instances. We used their official source

codes as implementations on the VRD and VG datasets in

this paper. For fair comparison, we used the same ResNet-

50 [13] as the base network. We also provided the fully-

supervised detection model R-FCN [23] as the object de-

tection upper bound.

Results. From Table 1, we can see that our WSOD is

considerably better than the state-of-the-art methods. This

is largely contributed by the parallel FCN architecture. It

is worth noting that the quality of the top 1,000 proposal

RoIs is significant to WSOD; if we directly used the orig-

inal scores of EdgeBox, the performance will drop signif-

icantly by about 5 points. Note that we are still far be-

hind the fully supervised method such as R-FCN, which

shows that there is still a large space to improve WSVRD

by boosting WSOD. As illustrated in Figure 5, WSOD usu-

ally detects the discriminative parts of objects, which is a

common failure in state-of-the-art models. We also com-

pared WSOD with other methods on the completely anno-

tated Pascal VOC 2007, where we also achieved the best

39.8% mAP, surpassing WSDDN (39.3%), ContextLocNet

(36.3%), and WSL (39.5%).

4.4. Evaluations of Predicate Prediction

Comparing Methods. Note that the task of predicate

prediction is in the supervised setting given the groundtruth

of subject and object. Thus, we removed the WSOD

module and the localization branch from the WSPP mod-

ule. In this experiment, our goal is to compare our proposed

position-role-sensitive score map and pairwise RoI pooling,

namely PosSeq+Pairwise with other three ablated meth-

Table 2. Predicate prediction performances (R@K%) of various

methods on VRD and VG. The last two rows are fc-based methods.
Dataset VRD VG

Metric R@50 R@100 R@50 R@100

Pos+Pairwise 24.30 24.30 43.30 43.64

Pos+JointBox 29.57 29.57 45.69 45.78

PosSeq+Pairwise 42.74 42.74 61.57 61.71

PosSeq+Pairwise+fc 47.43 47.43 64.17 64.86

VTransE [48] 44.76 44.76 62.63 62.87

ods: 1) Pos-Pairwise denoting position-sensitive score map

followed by pairwise RoI pooling; 2) Pos+JointBox denot-

ing position-sensitive score map followed by joint boxes

RoI pooling, where the joint RoI is the tight groundtruth

regions that cover both subject and object; and 3)

PosSeq+Pairwise+fc denoting position-role-sensitive score

map followed by pairwise RoI pooling, but the score is ob-

tained by fully-connected subnetworks. Note that this fc-

based method is also comparable to 4) VtransE [48] using

the concatenated RoI features from subject and object

as the input to its fc prediction network.

Results. From Table 2, we can see that our Pos-

Seq+Pairwise outperforms the baselines with non-order

score maps and non-pairwise pooling significantly. As illus-

trated in Figure 4, compared to the conventional position-

sensitive score maps and pooling, we can observe that

PosSeq+Pairwise can capture the contextual configuration

better. For example, for the relation bus-on-road, the

subject responses are more active at upper positions

while the object response are more active at lower po-

sitions, and thus the spatial context of on is depicted by

adding the pairwise pooling; however, Pos+JointBox seems

agnostic to relations but more likely sensitive to objects.

It is worth noting that pooling-based methods are

worse than fc-based methods such as VTransE and

PosSeq+Pairwise+fc, which contains region-based fully-

connected (fc) subnetworks for relation modeling. We

noticed that some prepositions such as of and by, and

verbs such as play and follow, contain very diverse

visual cues and may not be captured by only spatial con-

text. Therefore, fc layers followed by the concatenation

of subject and object RoI features might be neces-

sary to model such high-level semantics. Nevertheless,

the fact that PosSeq+Pairwise+fc considerably outperforms

VTransE demonstrates the effectiveness of exploiting the

pairwise spatial context. Note that such unshared region-

based subnetworks will lead to inefficient learning in WSPP

as there are tens of thousands candidate RoI pairs and mil-

lions of fc parameters.

4.5. Evaluations of Phrase & Relation Detection

Comparing Methods. We evaluate the overall perfor-

mance of PPR-FCN for WSVRD. We compared the follow-

ing methods: 1) GroundR [35], a weakly supervised vi-
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Figure 4. Two illustrative examples (without the base ResNet-50 fine-tuned) of 9 (k = 3) position-role-sensitive score maps trained by

pairwise RoI pooling (Subject and Object) and the position-sensitive score maps trained by joint boxes pooling (JointBox). Dashed grids

are the joint RoI of subject and object. In Subject and Object score maps, subject and object RoIs are in solid rectangles. The

solid grids denotes pooling at corresponding positions. Note that position-role-sensitive pooling is defined as null if the RoI has no overlap

with the joint RoI at a position, e.g., road at top left. Please view in color and zoom in.

Figure 5. Illustrative top 5 relation detection results from VRD. Red and green borders denote incorrect and correct detections, respectively.

Most of the failed cases are due to the wrongly detected objects.

sual phrase grounding method. We used the image-level

triplets as the input short phrases for their language em-

bedding LSTM; 2) VisualPhrase-WSDNN, its idea was

originally proposed in [36] that considers a whole relation

triplet as a class label. As it can be reduced to a weakly

supervised object detection task, we used WSDDN [3]

pipeline to implement VisualPhrase. Note that our par-

allel FCN architecture cannot be adopted in VisualPhrase

since the number of relation classes is too large to construct

the conv-filters. 3) VTransE-MIL, we followed the same

pipeline of VTransE [48] but using the NoisyOR Multiple

Instance Learning (MIL) [30] as the loss function for ob-

ject and relation detections. 4) PPR-FCN-single, we only

use the classification branch to implement PPR-FCN. We

also compared three fully supervised models as baselines

VTransE[48], Lu’s-VLK [29], and Supervised-PPR-FCN,

which is our proposed PPR-FCN applied in the supervised

setting. Note that GroundR and VisualPhrase are based

on joint boxes prediction and thus they can only perform

phrase detection.

Results Table 3 and 4 reports the phrase and relation de-

tection performances of various methods. We have the fol-

lowing observations:

1) For phrase detection, GroundR and VisualPhrase-

WSDDN perform much poorly than VTransE-MIL and

PPR-FCN. The reason is two-fold. First, EdgeBox is not

designed to generate joint proposals of two interacted ob-

jects and thus we limited the number of proposals to 300

to handle 90,000 region pairs, where the top 300 propos-

als may be low recall of objects. Second, as discovered

in [29, 48], once we consider the relation as a whole class

label, the training samples for each relation class are very

sparse, which will worsen the training of WSPP.

2) PPR-FCN outperforms VTransE-MIL in both phrase and

relation detections. The reason is that VTransE does not ex-

plicitly model the spatial context in relation modeling while

our PPR-FCN does. Note that this is crucial since the con-

text can remove some incorrect subject-object con-

figurations, especially when the supervision is only at the

image level. For example, Figure 6 shows that the position-

role-sensitive score map and pooling design in PPR-FCN

can correct misaligned subject and object when there

are multiple instances.

3) Our parallel design of PPR-FCN is significantly better
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Table 3. Phrase detection performances (R@K%) of various meth-

ods in weakly supervised and supervised settings (bottom three

rows) on VRD and VG.
Dataset VRD VG

Metric R@50 R@100 R@50 R@100

GroundR [35] 0.15 0.18 0.33 0.81

VisualPhrase-WSDDN 0.26 0.37 0.21 0.78

VTransE-MIL 4.09 6.15 1.53 2.02

PPR-FCN-single 3.56 4.31 0.87 0.98

PPR-FCN 6.93 8.22 2.41 3.23

Lu’s-VLK [29] 16.17 17.03 – –

VTransE [48] 19.42 22.42 9.46 10.45

Supervised-PPR-FCN 19.62 23.15 10.62 11.08

than its counterpart PPR-FCN-single. This demonstrates

that for weakly supervised learning with many candidate

instances (i.e., region pairs), the parallel design without pa-

rameter sharing can prevent from bad solutions.

4) There is a large gap between WSVRD and supervised

VRD, e.g., PPR-FCN can only achieve less than a half of

the performance of supervised VRD such as Supervised-

PPR-FCN and VTransE. We believe that the bottleneck is

mainly due to the WSOD module that tends to detect small

discriminative part instead of the whole object region. As

shown in Figure 5, most of the failed relation detection is

due to the failure of object detection. For example, for large

and background-like objects such as mountain, sky and

building, only small regions are detected; for tower,

only the most discriminative “spire” is detected.

5) Even though the fully-connected subnetworks is very

helpful in predicate prediction as we discussed in Sec-

tion 4.4, Supervised-PPR-FCN can still outperform the fc-

based VTransE due to the effectiveness of the pairwise RoI

pooling, which can correct wrong spatial context (Figure 6)

Note that since PPR-FCN is designed for WSVRD, we

cannot remove bad RoI pairs using pairwise groundtruth

bounding boxes, which may lead to significant improve-

ment in supervised settings [24].

6) Thanks to the FCN architecture introduced in PPR-FCN,

it can not only speed up the WSOD, but also efficiently han-

dle tens of thousands region pairs in WSVRD. For exam-

ple, as reported in Table 5, PPR-FCN is about 2× faster

than VTransE-MIL using per-region fc subnetworks. It is

worth noting that the number of parameters of PPR-FCN

is much smaller that VTransE-MIL (e.g., millions of fc pa-

rameters) as we only have O(k2(C + 1 + R)) conv-filters.

Our current bottleneck is mainly due to the EdgeBox [50]

proposal generation time, as we strictly stick to the weak su-

pervision setting that any module should not exploit bound-

ing boxes. However, in practice, we can use generic class-

agnostic RPN [34] to generate proposals in 100 ms/img.

5. Conclusion

We presented a parallel, pairwise region-based, fully

convolutional network: PPR-FCN, for the challenging task

Figure 6. Qualitative examples of relation detection on VG. Com-

pared to the results of PPR-FCN (solid green bounding boxes),

VTransE-MIL (dashed green bounding boxes) is more likely to

misalign subject to object if there are multiple instances of

subject.

Table 4. Relation detection performances (R@K%) of various

methods in weakly supervised and supervised settings (bottom

three rows) on VRD and VG.
Dataset VRD VG

Metric R@50 R@100 R@50 R@100

VTransE-MIL 4.28 4.54 0.71 0.90

PPR-FCN-single 3.56 4.15 1.08 1.63

PPR-FCN 5.68 6.29 1.52 1.90

Lu’s-VLK [29] 13.86 14.70 – –

VTransE [48] 14.07 15.20 5.52 6.04

Supervised-PPR-FCN 14.41 15.72 6.02 6.91

Table 5. Titan X GPU test time (ms/img) of the fc subnetwork

based weakly supervised method, VTransE-MIL and PPR-FCN

(excluding the proposal generation time cost by EdgeBox, which is

700 ms/img). Both VTransE-MIL and PPR-FCN adopts ResNet-

50 as the base CNN and 100 detected object proposals, i.e., 10,000

region pairs for predicate prediction.
VTransE-MIL PPR-FCN

270 150

of weakly supervised visual relation detection (WSVRD).

PPR-FCN has two novel designs towards the optimization

and computation difficulties in WSVRD: 1) PPR-FCN is a

parallel FCN network for simultaneous classification and

selection of objects and their pairwise relations, and 2) the

position-role-sensitive conv-filters and pairwise RoI pool-

ing that captures the spatial context of relations. Thanks

to the shared computation on the entire image, PPR-FCN

can be efficiently trained with a huge amount of pairwise

regions. PPR-FCN provides the first baseline for the novel

and challenging WSVRD task, which can foster practical

visual relation detection methods for connecting computer

vision and natural language. We found that the bottleneck

of PPR-FCN is the WSOD performance. Therefore, future

research direction may focus on jointly modeling WSOD

and WSVRD by incorporating relations as the contextual

regularization for objects.
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