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Abstract

Deep convolutional neural networks have achieved sig-

nificant improvements on face recognition task due to their

ability to learn highly discriminative features from tremen-

dous amounts of face images. Many large scale face

datasets exhibit long-tail distribution where a small number

of entities (persons) have large number of face images while

a large number of persons only have very few face samples

(long tail). Most of the existing works alleviate this problem

by simply cutting the tailed data and only keep identities

with enough number of examples. Unlike these work, this

paper investigated how long-tailed data impact the train-

ing of face CNNs and develop a novel loss function, called

range loss, to effectively utilize the tailed data in training

process. More specifically, range loss is designed to re-

duce overall intrapersonal variations while enlarge inter-

personal differences simultaneously. Extensive experiments

on two face recognition benchmarks, Labeled Faces in the

Wild (LFW) [11] and YouTube Faces (YTF) [33], demon-

strate the effectiveness of the proposed range loss in over-

coming the long tail effect, and show the good generaliza-

tion ability of the proposed methods.

1. Introduction

Recent years witnessed the remarkable progresses of ap-

plying deep learning models in various computer vision

tasks such as classification [14, 26, 29, 10, 9] , scene un-

derstanding [37, 36], and action recognition [13]. As for

face recognition, deep CNNs like DeepID2+ [28], FaceNet

[24], DeepFace [30], Deep FR [21], exhibit excellent per-

formance, which even surpass human recognition ability at

certain dataset such as LFW [11].

To train an effective deep face model, abundant training

∗The corresponding author: yu.qiao@siat.ac.cn

data [4] and well-designed training strategies are indispens-

able. Unlike large scale datasets like ImageNet [22] where

each category contains almost the same number of images,

most large scale face datasets exhibit long-tailed distribu-

tion, that is, only limited number of classes (persons) ap-

pear frequently, while most of the other classes have spares

examples. This fact is shown in Figure 1, which illustrates

the distribution of MS-Celeb-1M. Only a small number of

persons have large number face images, while many per-

sons have very few examples. Empirical studies and anal-

ysis show that classes with more samples will pose greater

impact on the feature learning procedure [38, 22] and in-

versely cripple the models ability on tailed part. As a re-

sult, the model trained under an extremely imbalanced dis-

tributed dataset is lean to overfit the rich classes with large

samples, and spare samples from poor classes tends to ex-

hibit large intra-class dispension after training. Clearly, this

fact will harm recognition performance of the final model.

Most previous works handled this problem by removing

the samples from poor classes to achieve the class balance

of training dataset. According to [20], the performance can

improve slightly if one just preserves 40% of positive sam-

ples to make the training samples more uniform. However,

such disposal strategys flaw is obvious: to simply abandon

the data partially, information contained in these data may

also be omitted. Poor classes can include complementary

knowledge to rich classes which can boost the performance

of the final models.

This paper addresses the long tail problem in the context

of deep face recognition from two aspects. Note here “long

tail” is used to describe the imbalanced distribution of train-

ing set, of which most identities have rare samples while a

few identities have most samples. This is different from the

classical definition of heavy-tailed distributions in probabil-

ity theory[1]. Firstly, we deeply investigate how long tailed

data impacts current deep CNN models for face recogni-

tion. Secondly, we propose a new loss function, namely
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Figure 1. Long tail distributed data set of human faces, examples

selected from MS-Celeb-1M [6]. Number of face images per per-

son falls drastically, and only a small part of persons have large

number of images. Cutting line in red represents the average num-

ber of images per person. Best viewed in color.

range loss to effectively enhance the model’s learning abil-

ity towards tailed data. Specifically, this loss identifies the

maximum Euclidean distance between all sample pairs as

the range of this class. During training process, range loss

encourages to minimize the range of each class for each

mini-batch while preserves inter-class range large. To the

best of our knowledge, this is the first work in the literature

to discuss and address the long tail problem for deep face

recognition models.

The main contributions of this paper are summarized as

follows:

1) We empirically find that popular training losses of

deep face recognition, i.e. contrastive loss [27], triplet loss

[24], and center loss [32], all suffer from long tail distri-

butions, while removing long tailed data can improve the

recognition performance.

2) Extensive experiments and analysis on two famous

face benchmarks (LFW [11] and YTF [33]) demonstrate the

proposed range loss can largely relieve the long-tail effect

and achieve superior performance than previous methods.

2. Related Work

Deep neural networks with great ability to learning rep-

resentation from data, achieve remarkable successes in a se-

ries of vision tasks like recognition and detection [7, 25, 16,

8, 29], face recognition [21, 24, 27, 3, 34, 19, 31]. By in-

creasing the depth, VGG [26] and GoogLeNet [4] achieved

significant improvements on ImageNet [22] and VOC Pas-

cale dataset [5]. More recently, Residual Network exploits

shortcut connections to ease the training of substantially

deeper networks [9]. Deep architectures like DeepID2+

[27], FaceNet [24], DeepFace [30], Deep FR [21], signifi-

cantly boost the face recognition performance than previous

shallow models. Loss function is important to train power-

ful deep models. DeepID2 utilized both verification and

identification loss to enhance the training of CNNs [28].

FaceNet further shows that triplet loss contributes to im-

prove the performance. More recently, [32] proposed center

loss which takes account of class-clusters in CNN training.

Different from these loss functions, range loss is defined on

a new measure to minimize the within-person variations of

deep representations.

Long tailed distribution of the data has been studied in

scene parsing [34], and zero-shot learning [19]. In a work-

shop talk 2015, Bengio described the long tail distribution

as the enemy of machine learning [23] . [20] investigates

several factors that influence the performance of object de-

tection with long tailed distribution of samples. Their anal-

ysis and empirical results indicate that classes with more

samples will pose greater impact on the feature learning.

And it is better to make the sample number more uniform

across classes. Our work differs with these works in two

aspects. Firstly, we study long tailed distribution for deep

face recognition where the number of categories (persons)

is huge. Secondly, instead of introducing data sampling

strategies to balance training data, we propose novel loss

functions which allows to exploit tailed data to improve the

recognition performance.

3. The Proposed Approach

In this section, we firstly elaborate our empirical inves-

tigation and analysis on the effect of long tailed training

data for deep face recognition, with VGG [26] and AlexNet

[14] on LFW [11] and YTF [33] benchmarks. We also an-

alyze the statistics of the deep representations learned with

or without long tailed data. Based on these analysis, we

propose a new loss function namely, range loss, to improve

model robustness toward highly imbalanced dataset.

3.1. Problem formulation

In statistics, a long tail refers to the portion of a distri-

bution having a large number of occurrences far from the

“head” or central part of the distribution [2]. To inves-

tigate the long-tail property thoroughly in the context of

deep learning face recognition, we first constructed a long

tail distributed training set from MS-Celeb-1M [6] data set,

which consists of 1.7 million face images with almost 100k

identities. In this set, there are 700k images for roughly 10k

identities, and 1 million images for the remaining 90k iden-

tities. The distribution of our training data is illustrated in

Figure 2. We further divide the dataset into several groups

according to the proportions of tailed data in Table 1. As

shown in Figure 2, identities that contain less than 20 face
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Figure 2. Our constructed data set with long-tailed distributions.

The cutting lines represent the division proportions of tailed data.

Groups Num of Identities Images Tail Ratio

A-0 99,891 1,687,691 100.00%

A-1 81,913 1,620,526 80.00%

A-2 54,946 1,396,414 50.00%

A-3 26,967 1,010,735 30.00%

A-4 10,000 699,832 0.00%

Table 1. Training Set with Long-tail Distribution. Control group’s

division proportion can be viewed in Fig. 2

images are regarded as poor classes (tailed data). In Table1,

group A-0 contains all tailed data while A-4 includes no

tailed data. A-1, A-2, A-3 have tailed data ratios as 80%,

50%, 30%, respectively.

We train the popular VGG-Face [14] with softmax cross-

entropy loss, and then examine their performances on LFW

[11] and YTF [33] s tasks. The accuracy are compared in

Table 2. Training with A-1 and A-2 (with 80% and 50%
tailed data) leads to better performance than training with

A-0, even A-0 has more training examples than A-1 and A-

2. On the other hand, if we remove too much tailed data

like A-3 and A-4, the performance drops. These facts indi-

cate the long tailed data can harm the training of deep face

model, but it might not be good idea to remove all tailed

data, since they may contribute too.

The above experiments are conducted using VGG-Face

net with relatively large dataset. It might be interested to ex-

plore shallower networks with smaller datasets. We selected

the AlexNet [14] as basic architecture and constructed new

dataset as follows. We random sampling 4,000 identities

from almost 100,000 identities of A-0 and use their images

to construct dataset B-0. B-0 has similar distribution as A-0.

By removing 1000, 2000 and 3000 identities from the tailed

part of B-0, we get training sets B-1, B-2 and B-3. Then we

train AlexNet [14] on these four training sets. The results

of LFW [11] are shown in Table 3. B-3 has the highest

Groups Acc. on LFW Acc. on YTF

A-0 (100% tail) 97.87% 92.0%

A-1 (80% tail) 98.03% 92.2%

A-2 (50% tail) 98.25% 92.9%

A-3 (30% tail) 97.18% 91.7%

A-4 (0% tail) 95.97% 89.4%

Table 2. Performances comparison of softmax loss on LFW and

YTF with/without long-tail data. VGG Net is used.

Groups Acc. on LFW

B-0 (4000, with long-tail) 78.73%

B-1 (3000 identities) 79.57%

B-2 (2000 identities) 81.52%

B-3 (1000 identities) 83.77%

Table 3. Performances comparison of softmax loss on LFW

with/without long-tail data. AlexNet is used. Since AlexNet has

fewer layers and weights than VGG Net, its baseline is low, which

makes long tail effect more obvious.

accuracy with least number of identities while B-0 receives

the lower result. These facts again verify the negative effect

of the long-tailed data, especially for shallow networks with

small training sets.

3.2. Explorations with contrastive, triplet and Cen­
ter Losses

Recent studies has demonstrated that contrastive loss

[27], triplet loss [24], and center loss [32] can help to

improve the face recognition performance of deep CNNs.

Contrastive loss [27] help to discriminate between positive

face pairs of the same person and negative face pairs from

different persons. Triplet loss [24] aims to minimize the

distance between an anchor and a positive sample and maxi-

mize the distance between the anchor and a negative. Center

loss [32] keeps the average feature vector (center) for every

identity and optimizes the distance between the center and

its associated feature vectors. Considering the characteris-

tics of long tailed distributions, a small number of generic

objects/entities appear very often while most others present

more rarely. So there is a question whether these loss func-

tions help to relieve the effect of tailed data.

We apply contrastive loss, triplet loss, and center loss to-

gether with softmax on VGG-16 with the same long tailed

distributed datasets constructed in Section 3.1. We exam-

ine the face verification performance of the trained models

on LFW and YTFs. As for the training pairs of contrastive

and triplet loss, we divide the dataset into two parts with

the same number of identities firstly. Positive pairs are ran-

domly selected from the former part and negative pairs are

generated in the latter part. The results are summarized in

Table 4. Although these results are higher than those of soft-
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Groups
Contrastive Loss Triplet Loss Center Loss

Acc. on LFW Acc. on YTF Acc. on LFW Acc. on YTF Acc. on LFW Acc. on YTF

A-0 (with long-tail) 98.35% 92.7% 98.10% 92.3% 98.22% 92.4%

A-1 (cut 20% tail) 98.45% 93.1% 98.13% 92.3% 98.50% 92.7%

A-2 (cut 50% tail) 98.47% 93.3% 98.40% 93.2% 98.57% 93.2%

A-3 (cut 70% tail) 96.23% 91.1% 97.87% 91.7% 97.85% 92.0%

A-4 (cut 100% tail) 95.97% 89.4% 97.33% 91.1% 97.33% 91.1%

Table 4. Long-tail effect of contrastive Loss, triplet Loss and center loss. Eveluated on LFW and YTF with VGG Nets.

max loss only, long tail effect still exist. With 291,277 more

tailed images than A-2, A-0 receives worse performance on

LFW with accuracy down 0.12%, 0.30% and 0.3% for con-

trastive loss, triplet loss, and center loss, respectively. Sim-

ilar tendency can be observed on YTF.

3.3. Analysis of Deep Feature Vectors

Well-trained CNN can map the input face image to fea-

ture vectors with rich identity information. For recognition

tasks, we expect CNN model to output similar deep feature

vectors for same persons and far apart vectors for differ-

ent persons. In this subsection, we analyze the deep feature

vectors calculated with and without tailed data. We ran-

domly select 10 identities and 20 face images for each iden-

tity from the testing dataset. Each face image is mapped to a

4096-dimensional feature by VGG-Nets trained with above

loss functions. Since it is hard to analyze high dimension

vectors, we use t-SNE [18] to transform these vectors into

2-D vectors, as shown in Figure 3.

We also calculate the standard deviation (SD), average

Euclidean metric (EM), and kurtosis of these 2-D feature

vectors for intra-class and inter-class pairs. Kurtosis can be

calculated by,

Kurt(X ) =
m4

m2
2

− 3 =
1

n

∑n
i=1

(xi − x̄)4

( 1
n

∑n
i=1

(xi − x̄)2)2
− 3, (1)

where mk is the kth central moment of X and the value

of kurtosis is no less than −2.

Among these statistics, SD and EM represent sample

variations, and Kurtosis indicates the existence of infre-

quent extreme samples. Thus it is expected that SD and EM

are large for inter-class samples, while Kurtosis is small for

intra-class samples. The statistics are summarized in Table

5. From these results, we firstly found long tailed dataset A-

0 leads to larger Kurtosis than A-2 (fewer tailed data). This

means that by removing tailed samples from training set,

we can suppress extreme features in testing examples. Sec-

ondly, for inter-class evaluation, A-2 always exhibits larger

SD and EM values than A-0 for all loss functions. This

partly explains why training with A-2 leads to better testing

performance than A-0. Similar conclusions can be drawn

on results on B-0 to B-3. Finally, contrastive loss, triplet

loss, and center loss although achieve higher accuracy, ex-

hibit similar tendency as softmax loss. They cannot resolve

the long-tail effect well.

Motivated by the above analysis, we find the necessity to

propose novel loss function for handling training data with

long tail distribution. Such loss function should be designed

for better utilizing the infrequent extreme deviated data and

preventing the increase of kurtosis, which we believe has

been submerged by the richer classes information and poses

negative impact in learning discriminative inter-class fea-

tures.

3.4. The Range Loss

In long tail distributed data, samples of the tailed data are

usually extremely rare, in other words, there are only very

limited images for each person in the tailed parts. Con-

trastive loss optimizes the model in such a way that intra-

class samples are pulled together and inter-class samples

are pushed apart. In the training phase, it needs to construct

positive pairs and negative pairs. It is difficult to obtain suf-

ficient positive pairs of the same person on long tailed data.

Moreover, as we discussed, richer classes will pose greater

impact on the models training and may easily cause overfit-

ting. Similar problems exist for triplet loss and center loss

due to insufficient samples in the tailed parts.

This paper addresses this challenge by proposing range

loss to handle imbalanced data. This new loss can help

to reduce kurtosis (infrequent extreme deviation) while en-

large the inter-class distances. Inspired by contrastive loss,

range loss penalizes intra-personal variations (especially for

infrequent extreme deviated value) while enlarges the inter-

personal differences simultaneously. Unlike contrastive loss

defined on individual positive and negative pairs, range loss

is defined on the overall distances between all sample pairs

within one minibatch. In other words, we use statistics over

the minibatch to define loss other than individual samples.

Our range loss function is also partly inspired by the hard

negative mining method which is widely used in the train-

ing of object detectors. Samples at classification bound-

aries deliver more important information for training classi-

fiers. Here we use intra-class distance as a measure to iden-

tify these hard samples within one minibatch. In summary,
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Figure 3. The fig (a) shows features trained with A-2 (50% tailed data) and softmax loss. The middle picture show features trained with

full tailed data (A-0) and softmax loss. Both inter and intra class distances in middle picture are shorter than the left picture due to long

tail impact. The fig (b) show features trained with full tailed data (A-0) and range loss, in which intra-samples locate nearly and intra-class

distances are relatively large. Letters of the same color show samples of the same identity. Best viewed in color.

Model Loss Data
Intra-Class Evaluation Inter-Class Evaluation

SD EM Kurtosis SD EM Kurtosis

VggNet

Softmax
A-2 56.9768 77.9928 -1.3590 285.6691 342.0850 -1.4122

A-0 22.8880 33.3013 0.3803 71.5123 88.4179 -1.9884

Contras.
A-2 26.3160 36.4437 -1.4130 122.3764 150.9392 -1.7051

A-0 22.8497 31.5918 -1.0697 109.9323 134.6600 -1.6276

Triplet
A-2 26.0807 36.7853 -0.9714 113.1263 134.5524 -1.0984

A-0 23.0050 31.9569 -0.9448 106.7124 129.6840 -1.4492

Center
A-2 18.9627 25.7436 -0.9558 180.4223 136.4760 -1.2578

A-0 15.2288 18.9850 -0.5807 118.6627 92.2623 -1.3320

Range
A-2 42.2881 63.4769 -1.3308 125.4162 153.2813 -1.3468

A-0 27.2868 39.5968 -1.4060 208.1743 249.8967 -1.0050

AlexNet

Softmax

B-3 341.7141 464.1585 -1.5825 570.6800 685.8148 -1.6795

B-2 226.0212 308.4232 -1.5487 474.1194 561.4882 -1.7595

B-1 217.6945 296.9807 -1.2813 343.4455 415.3786 -1.7131

B-0 110.4576 149.8750 -1.1898 177.3861 218.8029 -1.9336

Range

B-3 240.3164 222.8551 -1.1285 541.4603 454.6582 -1.2935

B-2 227.1426 202.5412 -1.1413 476.1393 466.5233 -1.5659

B-1 177.6785 169.0733 -1.4545 525.6785 399.7669 -1.3811

B-0 142.5243 155.7600 -1.4412 486.4360 458.0701 -1.5008

Table 5. The intra-class and inter-class statistics expose differences between long-tail model and cut-tail model. Here SD is standard

deviation and EM is the average Euclidean metric. Good CNN models are expected to have small intra-class standard deviation and

average Euclidean metric while large for inter-class. Kurtosis describes the 4
th order statistics of feature distribution. Infrequent extreme

deviated vectors lead to high kurtosis. We always expect a low kurtosis because infrequent extreme deviation is harmful for face recognition

task. Range loss resists the increase of kurtosis and restrains the extension of inter-class distance.

range loss should be designed to enlarge the distance among

hard negative samples and thus lessen the largest intra-class

variations. More specially, we identify the k largest dis-

tances (ranges) of the intra-class pairs and use their har-

monic mean value as a measure of intra-class loss. The final

range value is determined by the intra-classs most distant

sample pairs. For the inter-class loss, the shortest distance

of class feature centers is used.

Mathematically, range loss can be formulated as,

LR = αLRintra
+ βLRinter

, (2)

where α and β are two weights, LRintra
denotes the

intra-class loss and LRinter
represents the inter-class loss.

LRintra
penalizes the maximum harmonic range within

each class:

LRintra
=

∑

i⊆I

Li
Rintra

=
∑

i⊆I

k
∑k

j=1

1

Dj

, (3)
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Figure 4. An illustration of rang loss for one minibatch in 2D

space. There are 4 classes in this mini-batch, and Class B rep-

resents one typical tail-part class. D1 denotes Class B’s great-

est intra-class distance. L2 represents the center distance between

Class D and Class A. The range loss is determined by the short-

est center distances( L2 in these 4 classes) and the harmonic mean

value of the k greatest ranges( D1 as for Class B) in each class.

(Best viewed in color).

where I denotes the complete set of identities in current

mini-batch, and Dj is the j-th largest distance. For exam-

ple, let D1 = ‖x1 − x2‖
2

2
and D2 = ‖x3 − x4‖

2

2
. D1 and

D2 are the largest and second largest Euclidean range for a

specific identity i respectively. Input x1 and x2 denote two

face samples with the longest distance, and similarly, in-

put x3 and x4 are samples with the second longest distance.

Equivalently, the overall cost is the harmonic mean of the

first k-largest ranges within each class. Experiments show

that k = 2 yields good performance. k = 3 has slightly im-

provement with 0.03% for LFW on average but much hard

to train while even get worse results for k = 4 and k = 5.

Thus we set k = 2 without special notification.

LRinter
represents the inter-class loss that

LRinter
= max(M −DCenter, 0)

= max(M − ‖x̄Q − x̄R‖
2

2
, 0),

(4)

where DCenter is the shortest distance between the cen-

ters of two classes, and M is the max optimization margin

of DCenter. Q and R are the two nearest classes within the

current mini-batch, while x̄Q and x̄R represents their cen-

ters.

In order to enlarge the discriminative ability at the same

time, we use range loss joint with the softmax loss as the su-

pervisory signals. The final loss function can be formulated

as:

L = LS + λLR = −

M
∑

i=1

log
e
WT

yi
xi+byi

∑n
j=1

eW
T
j
xi+bj

+ λLR, (5)

where LS is the softmax cross entropy loss function.

In the above expression, M refers to the mini-batch size

and n is the number of identities within the training set. xi

denotes the features of identity yi extracted by the last fully

connected layers of CNN. Wj and bj are the parameters of

softmax function. Softmax loss and range loss are comple-

mentary to each other. Softmax is designed and widely used

in classification task while range loss is introduced to reduce

the long-tail effect. λ is used as a scaler to balance the two

supervisions. If λ is set to 0, the overall loss function can be

seen as the conventional softmax loss. In our experiments,

the weights for softmax loss, intra class part, and inter class

part of range loss are set as 1, 5 × 10−5, and 1 × 10−4,

respectively. Because these parts of range loss have forms

of Euclidean metrics, they should have lower weights com-

pared with softmax loss, logarithms of probabilities.

According to the chain rule, gradients of the range loss

with respect to xi can be computed as:

∂LR

∂xi

= α
∂LRintra

∂xi

+
∂LRinter

∂xi

(6)

For a specific identity, let S =
∑k

i=1

1

Di
, Dj is the dis-

tance xj1 between xj2. In Eq(8), xQ and xR are 2 classes

that have the shortest distance between their center, we have

∂LRintra

∂xi

=
2k

(DjS)2







|xj1 − xj2| , if xi = xj1

|xj2 − xj1| , if xi = xj2

0, if xi 6= xj1, xj2

(7)

∂LRinter

∂xi

=















∂L
∂xQ

= 1

2nR

∣

∣

∣

∑
xR

nR
−

∑
xQ

nQ

∣

∣

∣
, if xi = xQ

∂L
∂xR

= 1

2nQ

∣

∣

∣

∑
xQ

nQ
−

∑
xR

nR

∣

∣

∣
, if xi = xR

0, if xi 6= xQ, xR

(8)

where ni denotes the number of samples in class i of

current mini-batch. And we summarize the computation of

loss functions and gradients in Algorithm 1.

Range loss requires very few computational cost. The

gradients of range loss can be calculated efficiently as

shown in Eq(6), Eq(7) and Eq(8). We found experimen-

tally that training with range loss only requires additional

0.2422% time than that without range loss, which can be

almost ignored in the training process.

3.5. Discussions on Range Loss’s Effectiveness

Generally speaking, range loss adopts two stronger iden-

tifiability statistical parameters than contrastive loss and

65414



Algorithm 1 Calculate gradient for range loss

Require: Feature set {xi} extracted from the last fully con-

nected layer. Hyper parameter m and λ.

Ensure: The intra-class part of range loss LRintra
and the

inter-class part of range loss LRinter
. The gradient of

intra-class
∂LRintra

∂xi
and inter-class

∂LRinter

∂xi
.

for each class i ⊆ I in one mini-batch do

Compute the arithmetic mean feature as feature center

ci of class i.

Compute the k largest Euclidean distances {Dj}
among features {xi} of class i.

Compute the harmonic mean of {Dj} as the intra-class

loss of class i, Li
R = k∑

k
j=1

1

Dj

.

end for

Compute the intra-class loss LRintra
=

∑

i⊆I L
i
R =

∑

i
k∑

k
j=1

Dj
.

Compute the intra-class gradient Eq(8).

Compute the shortest distances Dcenter among all feature

centers {cP }.

if M −Dmin > 0 then

Output the inter-class gradient
∂LRinter

∂xi
.

else
∂LRinter

∂xi
= 0.

end if

others: distance of the peripheral points in the intra-class

subspace, and the center distance of different classes. Both

the range value and the center value is calculated based on

samples with one minibatch. The mini-batch of range loss

is constructed by selecting samples to balance the intra and

inter class variations. Specially, each mini-batch has a size

of 256, where we first randomly select 16 identities/classes

and then select 16 images for each identity. Statistically

speaking, range loss utilizes those training samples of one

mini-batch in a joint way instead of individually (Softmax)

or pairly (Contrastive), thus ensure the model’s optimiza-

tion direction comparatively balanced. Center loss calcu-

lates loss with one minibatch but lacks inter-class optimiza-

tion. To give an intuitive explanations of the range loss, we

have simulated a 2-D feature distribution graph in one mini-

batch with 4 classes (see Fig. 4) and the real effect can be

seen in the right of Fig. 3.

4. Experiments

In this section, we evaluate our range loss based models

on two well known face verification benchmarks, LFW [11]

and YTF [33] data sets. We firstly implemented our range

loss with VGGs [26] architecture and train CNN models

with 50% (A-2) and 100% (A-0) tailed datasets constructed

in Section 3.1. We also conducted experiments with the

deep architecture proposed by [32] for fair comparison with

center loss which achieved the state-of-art performances on

LFW and YTF.

4.1. Performances on LFW and YTF Data sets

LFW [11] is a database of face photographs designed for

unconstrained face recognition, which consists of more than

13,000 facial images collected from the web. YouTube face

(YTF) database [33] is designed for studying the problem

of unconstrained face recognition in videos, which contains

3,425 videos of 1,595 different people.

We implement our customized range loss layer using the

Caffe [12]. For comparison, we trained CNN models un-

der the supervision of softmax loss only, contrastive loss,

joint triplet loss, center loss, and range loss, respectively

(the last four are jointly used with softmax loss). The re-

sults are summarized in Table 6. As can be seen, when

trained with long tailed dataset A-0, range loss clearly out-

performs baseline model with softmax loss, from 97.87%
to 98.63% in LFW and 92.0% to 93.50% in YTF. Contrary

to the experimental results of softmax loss, contrastive loss

and triplet loss with full tailed data leads to lower accu-

racy, while our range loss can effectively exploit the tailed

data part to enhance the training, with accuracy increase by

0.18% in LFW and 0.3% in YTF from A-2 to A-0. More-

over, range loss can prevent kurtosis rising and extend the

inter-class distance with long tailed data from the statistics

in Table 5.

For fair comparison, we compared the performance of

these loss without hard mining. We extra trained VG-

GNets on long-tailed data with the hard mining strategy

of FaceNet. The results are 96.55% in LFW and 90.1% in

YTF, which are still lower than range loss without hard min-

ing, 98.13% in LFW and 90.07% in YTF under the same

training data.

Range loss performs well with stronger nets like ResNets

for long tail training. We train ResNets (Fig 5) on long-

tailed data with and without range loss, and test these two

models on BLUFER dataset[15]. ResNet with range loss

obtained accuracies of 92.10% in verification (FAR=0.1%)

and 63.69% in Open-Set Identification (Rank=1, FAR=1%)

while version without range loss gets 90.03% and 60.02%,

respectively.

These results indicate that range loss can largely relieve

the negative effect caused by tailed data. One can even

boost the performance of trained model with the tailed parts

with our new loss.

4.2. Comparison with state­of­the­art methods

To further examine the ability of range loss, we utilize

a residual CNN [9] for the next experiments, whose ar-

chitecture is shown in Figure 5. Different from our pre-

vious practice, the model is trained under 1.5M filtered
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Figure 5. Residual Network’s structure adopted in Section 4.2. The whole CNN is trained under the joint supervisory signals of soft-max

and our range loss.

Groups
Contrastive Loss Triplet Loss Center Loss Range Loss

LFW YTF LFW YTF LFW YTF LFW YTF

A-0 (100% tail) 98.35% 92.7% 98.10% 92.3% 98.22% 92.4% 98.63% 93.5%

A-2 (50%) 98.47% 93.3% 98.40% 93.2% 98.57% 93.2% 98.45% 93.2%

Table 6. Verification accuracy of Range Loss, Contrastive Loss, Triplet Loss, and Center Loss on LFW and YTF. A-0 contains all tailed

data while A-2 includes 50% tailed data.

Methods LFW YTF

DeepID-2+ [27] 99.47% 93.20%

FaceNet [24] 99.63% 95.10%

Baidu [17] 99.13% -

Deep FR [21] 98.95% 97.30%

DeepFace [30] 97.35% 91.40%

Center Loss [32] 99.28% 94.90%

Softmax Loss 98.27% 93.10%

Range Loss 99.52% 93.70%

Table 7. Comparison with state of the art methods on LFW and

YTF datasets.

data from MS-Celeb-1M [6] and CASIA-WebFace [35].

The intention of this experiment is to examine the poten-

tial ability and generalization of rang loss with deeper net-

works and cleaner data. We make comparison with a num-

ber of state-of-the-art methods, including DeepID-2+ [28],

FaceNet [24], Baidu [17], DeepFace [30], and our resid-

ual net structure trained with softmax loss only. The re-

sults are given in Table 7. We have the following observa-

tions. Firstly, range loss again achieves better performance

than baseline softmax with a clear margin (from 98.27% to

99.52% in LFW, and 93.10% to 93.70% in YTF). This in-

dicates that the joint supervision of range loss and softmax

loss can always enhance the deep networks ability to extract

discriminative representations. Secondly, residual network

integrated with range loss exhibits excellent performance on

the two datasets and even outperforms most of previous fa-

mous networks. Although FaceNet has better performance

than ours, it is trained on a super large datatsets, 133 times

than ours.

5. Conclusions

In this paper, we deeply explore the effects the long

tailed data in the context of training deep CNNs for face

recognition. Contrary to our intuitiveness, long tailed data,

if tailored properly, can contribute to boost the trained mod-

els performance. We propose a new loss function, namely

range loss, to effectively exploit the tailed data in train-

ing deep networks. Our range loss contributes to reduce

the intra-class variations and enlarge the inter-class dis-

tance for imbalanced and long tailed datasets. Experi-

ments on two large scale face benchmarks, i.e. LFW and

YTF, demonstrate the effectiveness of the proposed meth-

ods which clearly outperform baseline methods under long

tailed conditions.
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