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Abstract

Traditional Structure-from-Motion (SfM) uses images

captured by cameras as inputs. In this paper, we explore us-

ing light fields captured by plenoptic cameras or camera ar-

rays as inputs. We call this solution plenoptic SfM or P-SfM

solution. We first present a comprehensive theory on ray

geometry transforms under light field pose variations. We

derive the transforms of three typical ray manifolds: rays

passing through a point or point-ray manifold, rays passing

through a 3D line or ray-line manifold, and rays lying on a

common 3D plane or ray-plane manifold. We show that by

matching these manifolds across LFs, we can recover light

field poses and conduct bundle adjustment in ray space. We

validate our theory and framework on synthetic and real

data on light fields of different scales: small scale LFs ac-

quired using a LF camera and large scale LFs by a camera

array. We show that our P-SfM technique can significantly

improve the accuracy and reliability over regular SfM and

PnP especially on traditionally challenging scenes where

reliable feature point correspondences are difficult to obtain

but line or plane correspondences are readily accessible.

1. Introduction

Structure from motion (SfM) estimates three-

dimensional structures from two-dimensional image

sequences by simultaneously recovering camera parame-

ters (intrinsics, extrinsics, and poses) and 3D geometry of

feature points. The problem is critical for computer vision

and brings important insights on human visual perception.

Tradition SfM is composed of three steps: extracting

features and matching them across images, using the inlier

features for camera intrinsic/extrinsic estimation, and

bundle adjustment. Tremendous efforts have been made in

the past decade [9, 16, 29, 38] on recovering indoor and

outdoor scenes [2, 8, 15] with stunning performance in

speed and quality [7] [30] etc.

In this paper, we investigate changing the input of the

SfM problem: instead of using images captured by cameras,

we use light fields captured by plenoptic cameras. Com-

modity plenoptic systems such as the Lytro light field cam-

era and portable camera arrays can now record in a snapshot

the radiance of nearly all rays emitting from every location

and along every direction from the scene. We show that the

4D light fields provide a number of extremely useful ray ge-

ometric attributes that are not accessible in 2D images. Fur-

ther we show that the use of these ray geometry attributes

enable feature matching beyond 3D points as well as im-

prove pose estimation and bundle adjustment. We call this

technique plenoptic SfM or P-SfM.

A brute-force approach to P-SfM is to modify the regular

SfM to handle the light field input data.

P-SfM vs. SfM. The most straightforward approach is to

treat the recorded light fields as a set of (perspective) cam-

era views or subaperture images1 and directly apply regu-

lar SfM on subaperture views as shown in Fig.6. Such an

approach, however, fails to use rich geometric constraints

embedded in the ray space. For example, the subaperture

cameras are confined to a plane and are regularly sampled

on the grid. However, traditional SfM treats the relatively

poses of subaperture images as unknown and hence does not

effectively utilize this important constraint. Second, light

fields provide some unique geometry properties over a 2D

image, e.g., rays passing through a 3D line lie on a bilin-

ear subspace (Fig.2) and one can derive pose variations by

analyzing how this subspace transforms.

P-SfM vs. PnP. Another alternative is to first estimate the

3D position of feature points using, for example, one light

field, and then apply the perspective-n-point algorithm [19]

by matching them to feature pixels in the second light field.

1We adopt the subaperture image notation to be consistent with the light

field camera terminologies.
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Figure 1. Plenoptic SfM (P-SfM) using point vs. line features.

Top: Regular SIFT point feature matching produces insufficient

inliers, Bottom: Our technique produces sufficient line matching

for reliable P-SfM with 16 inliers out of 25 matches.

A strong assumption there is that the scene contains abun-

dant feature points lying at different depths to ensure robust-

ness in PnP estimation. When only a sparse set of reliable

feature points are available or the estimated depths at scene

points are less accuracy (which occurs rather often in a light

field due to the ultra-small microlenslet baseline), the PnP-

based approaches can introduce large errors, as shown in

Fig.8.

In contrast, our P-SfM directly exploits how ray geom-

etry transforms under light field pose variations. We first

derive the transforms of typical ray manifolds. Specifi-

cally we consider three types of ray manifolds: rays passing

through a point or point-ray manifold, rays passing through

a 3D line or ray-line manifold, and rays lying on a com-

mon 3D plane or ray-plane manifold. We show if we are

able to match these manifolds across LFs, we can conduct

robust pose estimation and bundle adjustment in ray space

in terms of ray manifold transforms. To validate our the-

ory and framework, we experiment on synthetic and real

data on light fields of different scales: small scale ones ac-

quired using a light field camera and large scale ones by

a camera array (Fig.5). We show that our technique ex-

hibits some unique advantages over regular SfM and PnP,

and when combined with point fusion, it provides a new

state-of-the-art passive 3D scanning technique. For exam-

ple, we show the line-ray manifold transforms enable high

fidelity reconstruction on traditionally challenging scenes

such as unfolliaged trees where reliable feature pixel cor-

respondences are difficult to obtain but line constraints are

readily available.

2. Related Work

Our work combines recent advances on light field stereo

matching with SfM. For the scope of our work, we only

discuss most relevant works.

SfM is one of the most studied techniques in computer

vision. The very early root of SfM can be traced back to

1980s when Higgins [22] introduced a relative orientation

estimation technique. A SfM pipeline includes feature de-

tection and matching [23], camera pose estimation [26], tri-

angulation and bundle adjustment [12]. Modern SfM has

shown great success in obtaining extremely realistic models

[5, 25]. With immerse computational powers, SfM can now

be used to recover very large scale 3D models [13, 33, 35],

e.g., by using community photo collections shared on the

internet [32].

Reliable feature correspondences is the basis for the

success of SfM. Traditional SfM technique uses the lo-

cal maximums of the scale space (SIFT [23], Harris [11])

for robust matching. However for scenes with textureless

surfaces(Walls, Indoor environment), the results are often

less satisfactory since only a small number of reliable fea-

ture correspondences can be established across views and

thereby be reconstructed, as shown in Fig.1. Instead of fo-

cusing on point features, we show that ray geometry can

enable uses of other types of geometric features, e.g., lines

and planes that exist independent of texture [3, 14, 39].

Although they are also used in Manhattan World, to our

knowledge, they have not yet been thoroughly explored in

ray space. Zhang et al. [42] proposed to estimate the poses

of LFs from ray correspondences instead of fully more in-

formative ray space features. A notable exception is the

work by Yu et al. [41] that employed the bilinear constraint

3D lines in a LF for stereo matching. We, in contrast, show

that such ray manifolds also help with pose estimation and

bundle adjustment.

Our work is also enabled by the availability of commod-

ity plenotpic cameras. In contrast to perspective cameras,

which capture a centric bundle of rays, a plenoptic camera

can record nearly all rays emitting from the scene [1]. More

recently, there have been significant advances on light field

stereo matching by exploiting specific attributes of the light

field [18, 37]. Tao et al. estimated dense depth from defocus

and correspondence cues of EPI [34]. Chen et al. explored

the ray statistics and used a bilateral consistency metric for

reliable stereo matching [6]. Most related to our approach

is the work by Johannsen et al. [17] that derived the ray-

point structure under the Plucker ray coordinates for image

registration. However, their technique first recovers the 3D

point position and then use the ray constraints to estimate

pose. In other words, it resembles the PnP approach dis-

cussed above. In this paper, we apply ray geometry analysis

to a broader class of primitives and directly conduct pose

estimation in the ray space.
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Figure 2. Line-ray manifold. A 3D line projects to 2D lines in

individual images (a) but maps to a bilinear surface in a 3D LF

(b).

3. Ray-Manifold Transformation

Before proceeding, we first clarify our notions. We use

superscripts, such as px, py and pz to represent the x, y

and z coordinates of a point or a vector. We use the classi-

cal two-plane-parameterization (2PP) [20] to describe a ray

in 3D space, where each ray is parameterized by its inter-

section with two parallel planes - [s, t] with the first plane

Πst and [u, v] with the second plane Πuv . We further use

[σ, τ, 1] to represent the direction of a ray, where σ = s− u

and τ = t− v. To simplify our derivation, we first consider

two LFs, namely the reference LF L and the target LF L′,

we assume L is aligned with the world coordinates. We use

R ∈ SO(3) and T ∈ R
3 to represent the transformation

from L to L′:

R =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 ,T =





b1
b2
b3



 (1)

3.1. Point­Ray Manifold

We firstly reiterate the point-ray manifold in ray space:

given a 3D point Ṗ [x, y, z] in the light field L and a ray

r = [u, v, s, t] passing though Ṗ , we have:







x = u+ λ(s− u)

y = v + λ(t− v)

z = λ

(2)

This implies all rays passing through Ṗ lie on a 2D affine

linear manifold LP :

Lp :

{

Apu+ Bps+ Cp = 0

Apv + Bpt+ Dp = 0
(3)

where Ap = 1− pz,Bp = pz,Cp = −px,Dp = −py repre-

sent the coefficients of the point-ray manifold.

Now consider the same manifold in the target LF.

The manifold should remain as a linear manifold but

its coefficients [A′

p,B
′

p,C
′

p,D
′

p] are transformed from

[Ap,Bp,Cp,Dp] as:







A
′

p

B
′

p

C
′

p

D
′

p






= Mp[R,T]M−1

p







Ap

Bp

Cp

Dp







(4)

where

Mp =







0 0 −1 1
0 0 1 0
−1 0 0 0
0 −1 0 0







(5)

We call this transform point-ray manifold transform. Us-

ing this transform, Johannsen et al. [17] derived how to con-

duct SfM on light fields.

3.2. Line­Ray Manifold

Next, we consider a different type of ray manifold: all

rays passing through a common 3D line. [27] [40][41] have

previously explored this manifold but not its transform. To

briefly reiterate, consider a line r0 that is not parallel to Πuv

and Πst. r0 hence will intersect with the 2PP and hence can

be directly parameterized as if it were a ray [u0, v0, s0, t0].
Any ray r = [u, v, s, t] intersect with r0 should satisfy that:







u0 + λ1(s0 − u0) = u+ λ2(s− u)

v0 + λ1(t0 − v0) = v + λ2(t− v)

λ1 = λ2

(6)

Eliminating λ1 and λ2 we obtain a bi-linear manifold

Bl(r, r0):

Bl(r, r0) :
s− s0

t− t0
=

u− u0

v − v0
(7)

Alternatively, we can write Bl(r, r0) as a conic function

Fl:

Alu+ Blv + Cls+ Dlt+ ut− vs+ El = 0 (8)

where El = AlDl − BlCl and







Al

Bl

Cl

Dl






=







0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0







︸ ︷︷ ︸

Ml







u0

v0
s0
t0







(9)

A sample line-ray manifold is shown in Fig.2.

Next, we study how the coefficients transform under

light field pose variations. Since El is directed computed

from Al,Bl,Cl,Dl, we only need to derive their transform

to [A′

l,B
′

l,C
′

l,D
′

l]. Similar to the the point-ray manifold
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transform, we can derive the line-ray manifold transform

as: 





A
′

l

B
′

l

C
′

l

D
′

l






= MlΓ(R,T,M−1

l







Al

Bl

Cl

Dl






) (10)

where Γ is the corresponding transform that maps

the 3D line r[σ, τ, u, v] parameterized under reference to

r∗[σ, τ, u, v] under the target as:

σ∗ =
a11σ + a12τ + a13

a31σ + a32τ + a33

τ∗ =
a21σ + a22τ + a23

a31σ + a32τ + a33

u∗ = a11u+ a12v + b1 − (a31u+ a32v + b3)σ
∗

v∗ = a21u+ a22v + b2 − (a31u+ a32v + b3)τ
∗

(11)

The transform above reveals how line-ray manifold trans-

forms between the reference and target manifold Γ(R,T).
This is an important transform in plenoptic SfM : for scenes

where it is difficult to establish point-ray manifold matching

across the light fields, we can still use line-ray manifolds for

reliable extrinsic estimation.

3.3. Plane­Ray Manifold

The third class of ray manifold is plane-ray manifold,

i.e., all rays lying on a plane. Assume a 3D plane has normal

[nx, ny, nz] and is d distance away from the origin has form
nx

nz x + ny

nz y + z + d
nz = 0 (we assume nz 6= 0 so that

the plane is not parallel to the 2PP). We use [Aπ, Bπ, 1] to

represent the normal, where Aπ = nx

nz ,Bπ = ny

nz and Cπ =
d
nz . Aπ,Bπ,Cπ correspond to the coefficients of the plane-

ray manifold. Any ray [σ, τ, u, v] lying on the plane should

satisfy two linear constraints:

{

Aπu+ Bπv + Cπ = 0

Aπs+ Bπt+ Cπ + 1 = 0
(12)

The first indicates the origin of the ray lies on the plane and

second indicates the direction of the ray is perpendicular to

the normal.

Consider how this manifold transforms under R and T

from [Aπ,Bπ,Cπ] of light field L, we have:

λ





A
′

π

B
′

π

1



 = R





Aπ

Bπ

1





C
′

π =< (RCπ

[Aπ,Bπ, 1]
T

‖[Aπ,Bπ, 1]T ‖
+T),

[A′

π,B
′

π, 1]
T

‖[A′

π,B
′

π, 1]
T ‖

>

(13)

where λ is a scalar and < ȧ, ḃ > is the dot product of ȧ and

ḃ. The ray-plane transform allows us to derive the planar

homography across light fields as follows.

3.4. Light Field Planar Homography

Planar homography matrix between 2D perspective cam-

eras is well-known [12] [24]: given two cameras c and c′

where c is aligned to the world coordinates and a plane with

unit normal vector N ∈ R
3 and d > 0 corresponding to

the distance from the plane to the optical center of c, the

point coordinates X,X′ of same 3D point Ṗ on the plane

under c and c′ ’s coordinate systems satisfy a homography

constraint:

X
′ = RX+T = (R+

1

d
TNT )X (14)

where H = R+ 1

d
TNT as the homography matrix. Further,

the corresponding two images x, x′ of Ṗ also satisfy:

x′ ∼ Hx (15)

where ∼ refers to equality up to a scale. If a 3D line on the

plane is projected to c as l, and to c′ as l′, l and l′ satisfy:

l ∼ H
T l′ (16)

Now that we can substitute the 2D images with two LFs, and

explore the planar homography constraint between LFs.

We assume all light field sample views (subaperture

views if a plenoptic camera) are pinhole camera with iden-

tical intrinsic parameters. The transform between views

within the same LF is merely a translation without rotation.

We first model the homography constraint between the cen-

ter views S0 and S′

0
in respective LFs. The transform clearly

follows Eq.15 and Eq.16. Let S′

i be any view within L′, and

the translation between S0
′ and Si

′ is tSi
′ . Now assume a

3D point Ṗ on the plane whose coordinates are XS0
, XS′

0
,

and XSi
′ with respect to S0, S′

0
, and Si

′. For XS′

i
and XS0

,

they satisfy:

XSi
′ = RXS0

+T+ tSi
′ =

[

R+
1

d
(T+ tSi

′)NT
]

︸ ︷︷ ︸

Hi

XS0

(17)

where N is the unit normal of the plane and d is the

distance from the optical center of S0 to the plane within

L. Recall that d and N can be directly mapped to the ray-

plane manifold [Aπ,Bπ,Cπ] described in Sec.3.3. We can

write the transform function above as:

XS′

i
= RXS0

+T+tS′

i
=

(

R+
1

Cπ

(T+ tS′

i
)





Aπ

Bπ

1





T
)

︸ ︷︷ ︸

Hi

XS0

(18)

Notice that we can obtain tS′

i
via calibration. Therefore,

any matched lines lS0
in S0 and lS′

i
in S′

i that corresponds

to a 3D line on the plane should satisfy:

lS0
∼ H

T
i lS′

i
(19)
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Figure 3. Our line matching results on a 3× 3 LF.

We call this constraint light field planar homography and we

show in the following sections how to use them for P-SfM.

4. Validation and Experiments

To conduct P-SfM, we combine point-ray manifold

transform, line-ray manifold transform and light field pla-

nar homography. Specifically, to utilize the line-ray man-

ifold transform, we first need to solve for the coefficients

[Al,Bl,Cl,Dl] for a line in respective LFs.

4.1. Ray Manifold Parameterization within Light
Field

The Lytro light field camera uses a regularly arranged

microlenslet array and can record the scene as a grid sub-

aperture image array in one single shot. Consequently, the

disparities of a 3D point between vertical or horizontal pair

of subaperture images are identical.

To recover the line-ray manifold of a 3D line in a LF, we

need to first conduct 2D line segment maching across all

subaperture images within the LF. For simplicity, we use a

row of subaperture images {S1, S2, ..., Sn} as an example

(n is the number of subaperture images in a row) although it

can easily extended to 2D arrays as for all our experiments.

We start with the LSD algorithm [10] to detect all avail-

able line segments in each subaperture image. Next, we

compute the disparity between two line segments in adja-

cent subaperture images. We locate two scanlines passing

though endpoints of the line segment in the first image. We

further extend the line segment in the second image to in-

sect with the two scanlines. The pixel difference between

the two intersection points on the same scanline should cor-

respond to the disparity. Therefore, we can obtain two dis-

parities d1, d2 for each pair line segments, one for each end-

point.

Next, we use a predetermined disparity range to con-

duct initial line matching between pairwise adjacent sub-

aperture images (S1, S2), (S2, S3), etc. We gather all po-

tential matches as tracks across the row subaperture images,

such as one track [l1ti , l
2

ti
, l3ti , ..., l

n
ti
] where l

j
ti
, j = 1...n re-

Figure 4. The charts shows error on the estimated rotation (left)

and translation (right) vs. the number of inliers.

fer to the matched line number of subaperture image Sj in

track ti. We use a cost function to determine whether the

reliability of a track:

Em =

n−1∑

i=1

(||d1(i, i+1)−d1h||+ ||d2(i, i+1)−d2h||) (20)

where d1h, d
2

h are two hypothesized disparities calculated

from a pair line segments in a track, and d1(i, i+1), d2(i, i+
1) are the computed disparities from rest pairs. If we find

the right track matches, Em should be very small due to

LF regular sampling. We hence choose tracks that yield to

minimum cost as our line segment matching results. We

further apply the same matching process along the vertical

direction. Finally, we merge the line matching results from

rows and columns to obtain final line matching across all

subaperture images. Fig.3 shows our matching result in a

3 × 3 LF. Our technique is able to effectively remove the

outliers.

Recall that each track is a group of 2D projected lines

that correspond to a 3D line l. Each endpoint [x, y] of the 2D

line maps to a ray [u, v, s, t] that passes though l using the

calibration intrinsic parameters as K−1[x, y, 1]T . There-

fore, we can use Eq.8 in Sec.3.2 to compute the line-ray

manifold [Al,Bl,Cl,Dl] that minimizes Fl.

The similar process can be applied to compute the line-

ray manifolds on the target LF and directly seek out to find

the optimize line-ray transform. To further improve robust-

ness, we use the SMSLD algorithm [36] to match the 2D

lines on the center subaperture images of LFs. The matched

2D lines pairs help match line-ray manifolds. Finally, we

combine the transform error measures from line-ray mani-

fold and corresponding 2D lines (using light field homogra-

phy) computed from Eq.10, 13,19 to solve for the optimal

R,T.

4.2. Light Field Bundle Adjustment

Once we estimate the pose of the light fields, we further

employ a LF bundle adjustment step to refine LF pose esti-

mation and 3D line localization. Similar to classical bundle

4635



Figure 5. Our camera array that can capture 7× 7 large scale LFs.

We mount a pre-calibrated Canon 760D camera on an electrically

controlled rig.

adjustment that minimizes the 3D point reprojection error,

we set out to use reprojection error of estimated 3D lines.

We assume each light field has s subaperture images and

we obtain m 3D lines seen in n light fields. Let rl,i,k be the

projection of kth line in the ith subaperture Sl,i of lth light

field, the objective function for bundle adjustment is:

Eba =
n∑

l=1

s∑

i=1

m∑

k=1

wl,i,kd(P (Sl,i, Rk), rl,i,k)
2 (21)

where wl,i,k is the visibility of a 3D line Rk in Sl,i. Func-

tion d measures the Euclidean distance. P (Sl,i, Rk) de-

notes the projection from the 3D ray Rk to Sl,i. We use

Levenberg-Marquardt to find the optimal solution.

Table.1 compares our P-SfM results with Iterative Clos-

est Point (ICP) [43], PnP [19], point-ray manifold method

(LF-SfM) [17] on simulate data. Our algorithm is able to

handle highly challenging scenes where point-ray manifold

transforms are difficult to obtain. Fig.4 shows how our esti-

mation error changes with respect to the number of inliers.

With only a small number of inliers (10), our technique can

already produce reliable pose estimations.

We further generate two synthetic light fields of a book

scene and a plant scene using 3ds Max. The book scene

contains piles of books that lack point features but exhibit

strong line features. The plant scene exhibit heavy occlu-

sions and similar features that are difficult to separate using

point-based approaches. Fig.7 shows the recovered point

clouds using our technique.

4.3. Real Scenes

For real scenes, we validate our framework on two se-

tups, a small scale LF captured by a Lytro light field camera

and a large scale one captured by a light field camera array.

For the camera array, we designed an electrically controlled

Figure 6. VisualSFM results from our light field data of real

scenes. The results show that VisualSFM can’t generate dense

point clouds from light field inputs.

rig so that images can be captured at a regularly sampled

grid at a high accuracy.

We calibrate the Lytro camera’s intrinsic using the ge-

ometric calibration [4] toolkit. After our calibration, each

pixel [i, j] in a subaperture image [k, l] can be mapped to

a ray [u, v, s, t] using 2PP parameterization. The resolution

of each subaperture image is 552 × 383 and we obtain a

5 × 5 LF extracted from the Lytro toolkit. We select three

highly complex scenes to test our P-SfM, a tower and two

flower scenes with heavy occlusions. We use the calibrated

Lytro to capture multiple LF images facing towards the tar-

get object.

Then We use our P-SfM to estimate LF poses and ap-

ply the focal stack symmetry based depth algorithm [21]

to generate depth maps from respective LFs. Finally, we

fuse the results. We compare our method with the E-PnP

algorithm, Colmap [31] and commercial SfM software Re-

alityCapture [28]. Fig.8 shows that our P-SfM algorithm is

able to handle very complex scenes where state-of-the-art

solutions fail.

We further validate our P-SfM method on a large scale

scene. We mount a pre-calibrated Canon 760D camera on

an electrically controlled rig. Then we use this device to

capture the LFs of a room scene consists of layers of chairs.

We capture 3 LFs at different positions and then use our P-

SfM to estimate their poses. We use the computed poses to

register the 3 LFs. Fig.9 shows that our P-SfM method is

still robust for large scale LFs.

5. Conclusions and Future Work

We have presented a new P-SfM framework for multi-

view light field reconstruction. Our approach is based on

a new ray manifold transform theory that studies how ray

manifolds of points, lines, and planes transform under pose

variations. We have further developed robust algorithms
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Figure 7. Our P-SfM results on synthetic 5 × 5 LFs rendered using 3dx Max. From left to right: the synthetic scene, our depth fusion

results using 2, 3, and 5 LFs.

Figure 8. Comparison on real scenes captured by a Lytro camera. (a) shows our reconstruction results from 5 LFs. (b) shows the results

of the commercial software RealityCapture. (c) shows the EPnP results. (d) shows the Colmap results.

Figure 9. Our P-SfM results on large scale scenes. We captured LFs using a camera array at 3 different positions, we estimate poses of the

LFs, and show the fused stereo results. From left to right: single point cloud, fused two point clouds and fused three point clouds.
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GT R:14, T:33mm R:19, T:60mm R:22, T:87mm

Noise 0.2 0.5 1.0 2.0 0.2 0.5 1.0 2.0 0.2 0.5 1.0 2.0

Rot.

Err

[deg]

ICP 0.809 1.164 0.693 4.694 0.628 1.275 2.808 4.499 0.994 2.546 1.486 5.797

PnP 0.333 1.208 1.826 1.760 1.540 2.353 3.348 1.242 1.296 0.988 2.378 2.769

LF-SfM 0.372 0.347 0.644 0.174 0.861 1.019 1.512 0.450 1.053 0.648 0.439 1.258

Ours 0.326 0.314 0.520 0.808 0.126 0.971 1.094 0.428 0.189 0.214 0.675 0.614

Tran.

Err

ICP 0.098 0.140 1.232 0.663 0.028 0.065 0.143 0.204 0.052 0.095 0.062 0.216

PnP 0.043 0.141 0.198 0.170 0.118 0.125 0.210 0.048 0.062 0.040 0.093 0.102

LF-SfM 0.047 0.049 0.096 0.087 0.077 0.083 0.114 0.041 0.057 0.026 0.017 0.068

Ours 0.023 0.015 0.076 0.034 0.021 0.096 0.037 0.166 0.006 0.018 0.006 0.025

GT R:26, T:112mm R:31, T:146mm R:37, T:163mm

Noise 0.2 0.5 1.0 2.0 0.2 0.5 1.0 2.0 0.2 0.5 1.0 2.0

Rot.

Err

[deg]

ICP 0.368 5.231 1.232 20.758 0.521 1.633 1.700 17.323 2.782 3.042 6.521 27.965

PnP 0.904 1.467 3.779 7.856 3.539 1.968 0.898 6.504 2.307 3.926 2.672 9.692

LF-SfM 0.232 0.668 0.916 3.512 1.947 1.006 0.705 2.086 1.515 1.728 6.427 1.373

Ours 0.131 0.307 0.103 1.268 0.090 0.438 0.347 0.771 0.352 0.624 0.298 0.763

Tran.

Err

ICP 0.013 0.157 0.029 0.370 0.015 0.037 0.047 0.609 0.050 0.085 0.117 0.160

PnP 0.046 0.087 0.137 0.248 0.108 0.049 0.012 0.334 0.046 0.198 0.087 0.220

LF-SfM 0.020 0.051 0.032 0.135 0.052 0.022 0.015 0.030 0.032 0.077 0.120 0.037

Ours 0.011 0.006 0.009 0.072 0.008 0.025 0.014 0.024 0.007 0.054 0.011 0.020

Table 1. Comparisons on accuracy using our technique vs. the state-of-the-art methods. Rotation errors are computed using the difference

between the measured and the ground truth angle (in degrees) and translation errors are measured as relative distance.

that use the transform for recovering LF poses as well as

a companion LF bundle adjustment step to refine the esti-

mation. Experiments on small and large scale LFs show

that our technique can handle very complex scenes where

reliable point feature correspondences are difficult to obtain

but line features are readily available.

Although our work is largely theoretical, we have

demonstrated practical uses on specific types of scenes.

Clearly, it would be ideal to automatically decide when to

use the point-ray manifolds and when to use the line-ray

manifolds, a problem closely related to scene understand-

ing. Therefore, we plan to investigate integrating machine

learning approaches with our framework to improve the ac-

curacy and reliability. Further, by estimating LF poses, we

can potentially fuse multiple LFs into a bigger LF. This can

benefit applications such as virtual navigation of real envi-

ronments, e.g., on a VR headset. In the future, we plan to

integrate our work with LF fusion techniques for achieving

this goal.
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