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Abstract

In light of the powerful learning capability of deep neu-

ral networks (DNNs), deep (convolutional) models have

been built in recent years to address the task of salient ob-

ject detection. Although training such deep saliency models

can significantly improve the detection performance, it re-

quires large-scale manual supervision in the form of pixel-

level human annotation, which is highly labor-intensive and

time-consuming. To address this problem, this paper makes

the earliest effort to train a deep salient object detector

without using any human annotation. The key insight is

“supervision by fusion”, i.e., generating useful superviso-

ry signals from the fusion process of weak but fast unsuper-

vised saliency models. Based on this insight, we combine an

intra-image fusion stream and a inter-image fusion stream

in the proposed framework to generate the learning curricu-

lum and pseudo ground-truth for supervising the training

of the deep salient object detector. Comprehensive exper-

iments on four benchmark datasets demonstrate that our

method can approach the same network trained with full

supervision (within 2-5% performance gap) and, more en-

couragingly, even outperform a number of fully supervised

state-of-the-art approaches.

1. Introduction

With the goal of discovering the object regions that can

attract human visual attention in images, salient object de-

tection has been gaining intensive research interest in re-

cent years. Due to its capability in automatically reveal-

ing important and informative parts in each given image, it

has been widely applied in image retrieval [7], object detec-

tion [43], event detection [3, 40], and so on.

1.1. Previous Works

The salient object detection approaches proposed in ear-

ly ages mainly explored image saliency by evaluating the
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distinctiveness of each image region or image pixel with

respect to the corresponding local context or global image

scene [1, 13, 5, 8, 10]. For example, Achanta et al. [1]

proposed to estimate center-surround contrast based on col-

or and luminance features in the frequency domain. K-

lein et al. [13] proposed to calculate the Kullback-Leibler-

Divergence (KLD) between the visual feature distribution

at a center location and the surround context. In [5], Cheng

et al. calculated the global contrast on the superpixel level

where each superpixel’s contrast is measured by a weighted

integration of the differences between itself and all other su-

perpixels in the image. These approaches can usually per-

form with little time cost. However, they generally suffer

from the bottleneck in detection accuracy.

More recently, in light of the cutting edge learning capa-

bility of deep neural networks (DNNs), researchers have in-

vestigated several deep (convolutional) models for address-

ing the task of salient object detection [17, 32, 46, 25, 4, 16].

These approaches can usually obtain more promising per-

formance due to the informative feature representation and

hidden patterns learnt from the large-scale annotated train-

ing data. Specifically, Wang et al. [32] adopted a convolu-

tional neural network (CNN) to predict saliency scores for

each pixel in local context firstly and then refined the salien-

cy score for each object proposal over the global view. Sim-

ilarly, Zhao et al. [46] proposed a multi-context deep learn-

ing framework for salient object detection, which jointly

modeled global context and local context in a unified frame-

work. In [25], a coarse global prediction was generated by

learning the global structured saliency cues firstly and then

a hierarchical recurrent convolutional neural network was

adopted to progressively integrate local context details.

1.2. Motivation and Contributions

Studies in this field have demonstrated that the DNN-

based salient object detectors are highly effective and can

achieve top results on modern benchmark datasets (see

Fig. 1). However, all current DNN-based salient objec-

t detectors require the large-scale manual supervision in

the form of pixel-level human annotation. Collecting such
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Figure 1. Illustration of our motivation. (A) shows some examples of the salient object detection results generated by the existing approach-

es, where the first row are the original images, the second row are the saliency maps obtained by the traditional salient object detector [12],

and the third row are the saliency maps obtained by the deep salient object detector [46]. In (B), we show some statistics on five benchmark

datasets, where the blue histograms indicate the average performance of the traditional salient object detectors [31, 27, 47, 35, 18, 45] and

the red histograms indicate the average performance of the deep salient object detectors [17, 46, 25, 32, 16]. The performance gap between

the traditional salient object detectors and the deep salient object detectors is mainly caused by (i) the powerful deep learning technique

and (ii) the large-scale manually annotated training data, as shown in (C). Since collecting manual annotations is highly time-consuming

and labor intensive, this paper makes the earliest attempt to train deep convolutional saliency model without using any human annotation.

annotated training data tends to be highly labor-intensive

and time-consuming. In contrast, traditional unsupervised

salient object detectors can be obtained much more cheap-

ly. However, the shortcoming is that they cannot achieve

satisfactory detection performance. In this paper, we make

the earliest effort to explore: “Is pixel-level human annota-

tion indispensable for building strong salient object detec-

tor?” and moreover, “Can deep salient object detectors be

trained entirely without using human supervision?” Specif-

ically, we propose a unsupervised learning framework1 to

train deep salient object detector by only using the raw im-

age data, which can hopefully combine the advantages of

the existing supervised DNN-based approaches (i.e., high

performance) and the traditional unsupervised approaches

(i.e., high convenience). The key is “supervision by fusion”.

Training deep salient object detector without using any

human annotation is very challenging. Unlike[22], where

the motion discontinuities among video sequences can be

used to guide the unsupervised learning of the edge de-

tectors, there is no such external information source that

can be readily used to provide effective supervision in our

task. Thus, in this paper, we propose to take advantage

of the existing unsupervised salient object detector to pro-

vide the needed pseudo supervision. Along this direction,

one naive strategy is to adopt the saliency maps generat-

ed by an existing unsupervised salient object detector to

provide the initial pseudo ground-truth, and then train the

DNN-based salient object detector in iterations by using the

saliency prediction results of the current learning iteration

as the supervision of the next learning iteration. Unfortu-

nately, as shown in Fig. 2, this strategy cannot work well

in practice. The underlying reasons are two folds: First-

ly, only using one unsupervised salient object detector is

1In this paper, unsupervised learning refers to learning without using

human annotation.

not able to provide strong enough supervision. Training

deep models under the generated pseudo ground-truth maps

would inevitably lead the learner to build trivial feature rep-

resentation and capture less informative saliency patterns.

Secondly, the aforementioned learning strategy lacks a con-

fidence weighting scheme, which plays an important role

in guiding the learner gradually aggregating faithful knowl-

edge from the confident training samples while refusing the

noisy ones. As we know, due to the different ambiguities

of the included contents, different images (or image region-

s) would have different difficulties for obtaining the truth-

ful ground-truth. Treating all such training samples equally

will introduce non-neglectable noise (the samples with to-

tally wrong pseudo ground-truth label) to the learning pro-

cedure and thus further confuse the learner.

To address these problems, this paper proposes a nov-

el unsupervised learning framework to train desirable deep

salient object detector based on the “supervision by fusion”

strategy: generating reliable supervisory signals from the

fusion process of weak saliency models. As we know, the

fusion process itself is a unsupervised inference procedure.

Moreover, some modern fusion models can not only inte-

grate the weak saliency models to obtain stronger salien-

cy prediction but also automatically infer the reliabilities

for each weak saliency model under the condition of the

given image context at the same time. By involving such

fusion process into the unsupervised learning framework,

we can, on one hand, improve the overall strength of the

pseudo ground-truth and, on the other hand, develop a dy-

namic learning curriculum to guide a robust learning pro-

cedure with the confidence weighting scheme. Specifically,

the aforementioned problems can be addressed in the fol-

lowing ways:

Firstly, instead of directly adopting the saliency maps ob-

tained from one weak saliency model to provide the pseu-
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Figure 2. Examples to show that directly training the deep salient

object detector in the native way cannot work well, while the pro-

posed “supervision by fusion” strategy can guide a more robust

unsupervised learning procedure.

do ground-truth for the training of the DNN-salient object

detector, we propose to fuse the saliency maps of multi-

ple weak but fast saliency models to obtain stronger pseudo

supervision (both in the initialization stage and the subse-

quent learning iterations). As such saliency maps can be

extracted in parallel, which is efficient, and the fusion pro-

cess itself is not time-consuming2, this strategy tends to be

a cost-effective way to improve the unsupervised learning

performance.

Secondly, during the fusion process, we can simultane-

ously infer the difficulty of each training data (both training

images and more detailed superpixel regions), which pro-

vides a natural way to reflect their corresponding learning

confidence. Basically, such difficulty is inferred based on

the inconsistency of the fused weak salient object detectors.

Thus, the training data inferred with less difficulty tends to

obtain more consistent predictions and thus be more con-

fident for the learning process and vice versa. Such infor-

mation can help us to build an informative learning curricu-

lum, which selects confident training samples against the

noisy ones and assigns various important weights for the s-

elected training samples (both in image level and superpixel

level) during the learning procedure. In addition, after each

learning iteration, the fusion process will again be used to

update the difficulties of the training samples based on the

current weak saliency predictions, which essentially forms

the learning curriculum dynamically.

Based on the aforementioned strategies, we propose a

novel unsupervised learning framework (see Fig. 3) to train

deep salient object detector without using any human an-

notation. Specifically, we first use some fast unsupervised

saliency models to extract the weak saliency maps of each

training image (the blue blocks in Fig. 3). Then, intra-image

fusion is performed within each individual image to obtain

the superpixel-level confidence and superpixel-level fusion

map (the pink blocks in Fig. 3) and inter-image fusion is

performed on all the training images to obtain the image-

level confidence and image-level fusion map (the green

2The GLAD fusion model [36] takes 10 minutes for 1 million images

using a single core of a Xeon 2.8 GHz processor.

Figure 3. The proposed unsupervised learning framework for train-

ing deep salient object detector under the supervision by fusion.

blocks in Fig. 3). Afterwards, the dynamic learning curricu-

lum and pseudo ground-truth maps are generated to provide

supervision for training the deep salient object detector (the

yellow blocks in Fig. 3). Finally, the obtained deep salien-

t object detector is used to update the weak saliency map

collection for the next learning stage.

To sum up, we mainly have three-fold contributions:

1) We make the earliest effort to train powerful deep

salient object detector without using any pixel-level human

annotation. It is of great significance as it can integrate

the advantages of the supervised DNN-based approaches

(i.e., high performance) and the traditional unsupervised ap-

proaches (i.e., high convenience).

2) We reveal the insight of “supervision by fusion”, i.e.,

generating reliable supervisory signals from the fusion pro-

cess of weak saliency models in iterative learning stages.

Through fusion, we can use the obtained fusion map to pro-

vide more reliable supervision and the sample confidence

weights to generate the dynamic learning curriculum.

3) Through comprehensive experiments on four bench-

mark datasets, we demonstrate that our insight can be suc-

cessfully implemented via a novel unsupervised learning

framework based on the two-stream fusion.

2. The Proposed Approach

Given N training images {In}, n ∈ [1, N ], we use

three unsupervised salient object detectors [29, 45, 44]3 to

generate the initial weak saliency maps {WSMm
n },m ∈

[1,M ],M = 3 due to their efficiency. Then, the superpixel-

level confidence maps {bn} and superpixel-level fusion

maps {SFMn} are obtained by intra-image fusion (see

Sec. 2.1), while the image-level confidence weights {βn}
and image-level fusion maps {IFMn} are obtained by inter-

image fusion (see Sec. 2.2). Afterwards, {bn}, {SFMn},

{βn}, {IFMn} are used to guide the training of deep salient

object detector (see Sec. 2.3). The saliency maps generat-

ed by the method that inferred as having the lowest predic-

tion reliability (in inter-image fusion) are then replaced by

3Here we choose to use three unsupervised salient object detectors by

considering the tradeoff of the effectiveness and efficiency in fusing differ-

ent number of weak models.
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the saliency maps generated by the learnt deep salient ob-

ject detector, which forms the new weak saliency maps for

guiding the learning in the next iteration. The above pro-

cess is iterated until convergence (typically 4 to 5 iterations

suffice). Based on our observation, after 4 to 5 learning iter-

ations, the weak saliency maps tend to converge to a single

map, and the complementarity among them becomes weak.

2.1. Intra-Image Fusion

Given each training image In and the corresponding

weak saliency maps {WSMm
n }Mm=1, the goal of intra-image

fusion is to infer the superpixel-level reliability of each

weak salient object detector to integrate the weak salien-

cy maps with considering the different difficulties of vari-

ous local image regions. Specifically, we first extract Nr

superpixel regions spn,i, where i ∈ [1, Nr], from the n-th

image using [6]4. For each weak saliency map, the weak

saliency value of each superpixel region smn,i is the mean

value of the pixels residing in the superpixel. Denoting

the average saliency value for each superpixel region as

asvn,i =
1
M

∑

m smn,i, we use τmn,i = |smn,i− asvn,i|/asvn,i
to reflect the agreement between each weak saliency predic-

tion and the average saliency value. Then, the weak saliency

label of each superpixel lmn,i is obtained by:

lmn =

{

1, τmn,i ≤ tn
0, others

, tn =
1

MRn

Nr
∑

i=1

M
∑

m=1

τmn,i. (1)

Afterwards, for inferring the superpixel-level reliabilities of

the weak salient object detectors {amn } and the difficulties

of various superpixel regions {bn,i}, we adopt the GLAD

fusion model [36], which is a probabilistic model providing

a principled way to approach the fusion problem. Basically,

it models the superpixel-level reliability and difficulty as la-

tent variables. The probability of correct labeling is defined

as:

p(lmn,i = zn,i|a
m
n , bn,i) =

1

1 + e−am
n bn,i

, (2)

where zn,i indicates the underlying true saliency label of

the i-th superpixel, bn,i ∈ [0,∞) and amn ∈ (−∞,+∞).
In this model, bn,i = 0 means the superpixel region is very

ambiguous and hence even the best weak salient object de-

tector has a 50% chance of predicting it correctly, while

bn,i = ∞ means the superpixel region is so easy that even

the most obtuse salient object detector can always predict

it correctly. Thus, a larger bn,i indicates a higher learning

confidence. For amn , a very large value that closes to +∞
means the weak salient object detector always predicts cor-

rectly, while a very small value that closes to −∞ means the

salient object detector always predicts incorrectly. Given

the observed weak saliency labels {lmn,i}, GLAD infers the

4The intra-image fusion can also perform on pixel-level, while this pa-

per uses superpixels for pursuing lower computational cost.

values of the involved variables {zn,i}, {amn }, and {bn,i}
by maximizing the likelihood estimates using Expectation-

Maximization approach. Finally, the superpixel-level learn-

ing confidence maps {bn} can be formed by the inferred

{bn,i} and the superpixel-level fusion maps can be obtained

by5:

SFMn =

M
∑

m=1

amn · WSMm
n , (3)

2.2. Inter-Image Fusion

Different from intra-image fusion, inter-image fusion in-

tegrates the weak saliency maps from the entire training im-

age collection instead of the content of each single image,

and the fusion process considers the global image scenes

rather than the local superpixel regions. During the fusion

process, it infers the image-level reliability of each weak

salient object detector and the difficulties of various global

image scenes. Specifically, given the training image collec-

tion {In} and the weak saliency map collection {WSMm
n },

we first calculate the average saliency map {ASMn} of each

image and the distance {Γm
n } between each weak saliency

map and the average saliency map as:

ASMn =
1

M

M
∑

m=1

WSMm
n ,

Γm
n = |WSMm

n − ASMn|1/|ASMn|1.

(4)

Then, the binary label of the m-th weak salient object de-

tector on the n-th training images {Lm
n } is obtained by:

Lm
n =

{

1, Γm
n ≤ T

0, others
, T =

1

MN

N
∑

n=1

M
∑

m=1

Γm
n , (5)

which reflects the agreement between the weak saliency

map and the corresponding average saliency map. After-

wards, we adopt the GLAD fusion model to infer the image-

level reliabilities of the weak salient object detectors {αm}
and the difficulties of various training images {βn}. Finally,

the image-level fusion maps can be obtained by6:

IFMn =

M
∑

m=1

αm · WSMm
n , (6)

2.3. Training Deep Salient Object Detector under
Supervision by Fusion

2.3.1 The Network Architecture

We build our deep salient object detector based on the

DHSNet [25] due to its effectiveness and efficiency. The

5Here we name the fusion results obtained from the intra-image fusion

process as the superpixel-level fusion maps because the basic computation-

al unit in the intra-image fusion is each superpixel region.
6Here we name the fusion results obtained from the inter-image fusion

process as the image-level fusion maps because the basic computational

unit in the inter-image fusion is each image.

4051



Figure 4. The architecture of the network for the adopted deep salient object detector.

network architecture is shown in Fig. 4. Specifically, it

takes an rescaled image of size 224 × 224 as input, then

the 13 convolutional layers of VGG 16-layer network [30]

is adopted to extract deep feature maps. Afterwards, on

top of the last convolutional feature map (with the size of

14 × 14 × 512), a fully connected layer with sigmoid acti-

vation function and 28 × 28 × 1 nodes is deployed, which

can generate the coarse saliency prediction. To progressive-

ly render image details to improve the spatial resolution, 4

recurrent convolutional layers [25] are used subsequently.

For each recurrent convolutional layer, the input is the 65-

channel feature maps which concatenate a fully connected

layer/up-sampling layer and a corresponding convolutional

layer squashed by a 64 convolutional kernels and a sigmoid

activation function (shown as the black arrows in Fig. 4).

The output is the 1-channel refined saliency map with the

same size of the input feature maps. The final predicted

saliency map is obtained by the last recurrent convolution-

al layer, with the size D = 224 × 224. For training such

deep salient object detector without using any human anno-

tation, we introduce three channels of supervisory signal-

s, including the superpixel-level fusion maps {SFMn}, the

image-level fusion maps {IFMn}, and the learning confi-

dence maps {LCMn}, where LCMn = bn · βn
7.

2.3.2 The Learning Strategy

Denote the trainable parameters of the network as W, which

can be optimized using the back propagation algorithm [28]

via minimizing the cost function L(W):

L(W) =−
1

B

B
∑

n=1

D
∑

d=1

[LCMn,d ·H(SFMn,d,Ψ(In|W)d)

+ LCMn,d ·H(IFMn,d,Ψ(In|W)d)] + λr(W),

(7)

where H(p, q) = p log(q) + (1 − p) log(1 − q) is the

cross-entropy loss, B indicates the size of the minibatch,

7Before calculating {LCMn}, values in each bn are normalized to

[0,1] and {βn} are normalized to [0,1].

LCMn,d ∈ [0, 1] indicates the d-th element of the learning

confidence map LCMn, SFMn,d ∈ {0, 1} and IFMn,d ∈
{0, 1} indicate the d-th element of the binarized superpixel-

level fusion map SFMn and image-level fusion map IFMn,

respectively, Ψ(In|W)d ∈ [0, 1] indicates the d-th element

of the predicted saliency map Ψ(In|W), r(·) is the squared

ℓ2-norm, and λ is the weight decay factor, d indicates the

pixel index for the fusion maps and the confidence maps. To

facilitate learning, we also adopt the deep supervision [15]

scheme, where the supervisory signals are applied to super-

vise each of the recurrent convolutional layer.

In Eq. (7), the first term penalizes the predictions which

are inconsistent with the superpixel-level fusion maps,

while the second term penalizes the predictions which are

inconsistent with the image-level fusion maps. As either

the superpixel-level fusion maps or the image-level fusion

maps are not perfect, collaborating these two kinds of fusion

maps could provide supervision that is complementary to

each other, leading to more effective learning performance

as demonstrated in Sec. 3.3. The learning confidence maps

are used to provide the superpixel-wise learning weight for

the learning process, which naturally compiles to the mod-

ern self-paced learning (SPL) and curriculum learning (CL)

regimes [14, 42, 9, 2]. Specifically, SPL and CL are the

weighting-based robust learning regime. The core of SPL

is to alternately infer the learning confidence of each train-

ing sample and learn the model in iterations while the core

of CL is to use a pre-defined learning curriculum to guide

the learning from easy examples to more complex ones. Be-

sides, the proposed learning scheme also has some interest-

ing differences compared with SPL and CL: 1) Instead of

inferring the self-paced learning weights via the “internal

force” (the learnt classifier itself), the learning weights of

the proposed learning scheme are inferred by the “external

force” (the fusion process). 2) Rather than pre-defining a

learning curriculum and fixing it during the entire learning

procedure, the learning curriculum formed by the learning

weights are updated along the learning iterations. More-

over, SPL and CL are usually used under the supervision
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Figure 5. Some visualization examples of the saliency maps obtained by the proposed unsupervised learning framework as well as the other

supervised state-of-the-art methods. Yellow columns indicate the examples when our method outperforms the supervised state-of-the-arts.

in some forms of the human annotation, while the proposed

learning scheme works in unsupervised learning scenario.

3. Experiments

3.1. Experimental Settings

We implemented comprehensive experiments by using

five widely used salient object benchmark datasets, which

are the MSRA10K [5], ECSSD [37], SOD [26], DUT-

O [38], and PASCAL-S [21], respectively. Specifically, M-

SRA10K is the largest dataset which contains 10,000 im-

ages with various object categories. SOD, ECSSD, DUT-O,

and PASCAL-S consist of 300, 1000, 5168, and 850 images,

respectively. We used the MSRA10K dataset for training

our network as well as all the compared baseline networks

and used the rest four for testing.

To quantitatively evaluate the experimental results, we

utilize five evaluation metrics, which are the Precision-

Recall (PR) curve, AP score, F-measure, mean absolute

error (MAE), and SOV, respectively. Specifically, the PR

curve reflects the mean precision and recall of saliency map-

s at different thresholds, while AP score is obtained by ac-

cumulating the area of the PR curve. The F-measure is cal-

culated by Fι =
(1+ι2)Precision×Recall

ι2×Precision+Recall
, where Precision

and Recall are obtained using twice the mean saliency val-

ue of saliency maps as the threshold and ι2 is set to 0.3

according to [25, 38]. The MAE is the average pixel-wise

difference between the predicted saliency map and the cor-

responding ground truth. The SOV [19] is the intersection-

over-union overlap between the ground truth mask and the

predicted saliency map binarized by using the same adap-

tive threshold as during the calculation of F-measure.

Before training, we increased the training set through im-

age augmentation implemented by horizontal-flipping and

image cropping as suggested by [25]. During the training

process, the parameters in the 13 convolutional layers were

initialized by the VGG net while other parameters were ini-

tialized randomly. As suggested by [25], we set the mini-

batch size to 12 and the iteration step to 50,000. The learn-

ing rate was set to 0.03 in the 4 recurrent convolutional lay-

ers while 1/1000 smaller in the 13 convolutional layers. It

was halved every 5,000 iterations. The momentum was set
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Figure 6. Comparison with other state-of-the-art methods on four saliency detection datasets in terms of the PR curve.

Table 1. Comparison with other state-of-the-art methods on four saliency detection datasets in terms of AP, Fι, SOV (higher values indicate

better results), and MAE (lower values indicate better results). The results listed in the top block are obtained from the state-of-the-art

unsupervised methods. The results listed in the bottom block are obtained from the state-of-the-art supervised methods (using deep models).

The bold numbers indicate the best unsupervised performance.
SOD ECSSD DUT-O PASCAL-S

AP Fι MAE SOV AP Fι MAE SOV AP Fι MAE SOV AP Fι MAE SOV

MBS .636 .580 .222 .419 .750 .674 .168 .534 .598 .519 .199 .426 .665 .608 .202 .443

BMS .594 .530 .255 .375 .695 .637 .204 .480 .564 .487 .228 .392 .626 .564 .235 .400

HS .638 .498 .252 .333 .750 .627 .189 .454 .614 .513 .245 .397 .660 .528 .237 .353

MCA .645 .570 .240 .413 .780 .702 .173 .556 .602 .509 .235 .422 .677 .600 .218 .434

MST .662 .583 .205 .423 .758 .677 .155 .539 .624 .517 .172 .417 .690 .609 .194 .453

WSC .661 .590 .191 .431 .743 .680 .149 .529 .593 .496 .146 .395 .633 .568 .192 .424

wCtr .641 .584 .202 .429 .727 .676 .157 .531 .616 .528 .183 .433 .667 .600 .197 .439

GS .612 .546 .247 .405 .664 .608 .205 .477 .553 .465 .227 .383 .626 .562 .226 .416

GBMR .638 .569 .243 .403 .751 .689 .163 .524 .589 .527 .228 .424 .670 .607 .217 .438

OURS .789 .676 .140 .545 .889 .787 .085 .677 .715 .583 .135 .505 .791 .680 .141 .549

DHS .860 .724 .121 .578 .916 .832 .070 .720 .728 .637 .104 .552 .823 .729 .115 .597

MTDS .822 .708 .138 .570 .915 .817 .083 .707 .751 .606 .132 .529 .842 .726 .120 .591

ELD .798 .706 .134 .555 .913 .806 .081 .698 .754 .607 .110 .522 .818 .716 .125 .578

LEGS .747 .674 .169 .506 .868 .783 .100 .632 .694 .586 .152 .483 .791 .694 .147 .530

MDF .779 .687 .139 .523 .846 .749 .108 .612 .686 .596 .132 .487 .767 .721 .146 .500

MCDL .721 .667 .151 .513 .849 .777 .097 .649 .678 .605 .110 .511 .742 .674 .144 .524

to 0.9 and weight decay factor was set to 0.0005. The whole

network was implemented by using the caffe [11] toolbox.

3.2. Comparison with the State-of-the-arts

In this section, we compare the proposed approach with

other 15 state-of-the-art approaches, which include the un-

supervised approaches such as MBS [45], BMS [44], H-

S [29], MCA [27], MST [31], WSC [18], wCtr [47],

GS [35], GBMR [38], and the supervised deep saliency

models such as DHS [25], MTDS [20] MCDL [46], MD-

F [17], LEGS [32], ELD [16]. Some of the reported results

might differ from those in other papers due to the usage of

different training data. Some results are visualized in Fig. 5.

For quantitative evaluation, we report comparison result-

s with PR curves in Fig. 6 and those with AP, F-measure,

MAE, and SOV scores in Table 1. In Table 1, the methods

listed in the top block are the state-of-the-art unsupervised

methods. “OURS” and DHS listed in the middle block are

the proposed approach as well as its supervised baseline,

respectively. More specifically, “OURS” and DHS utilized

the same network architecture. The only difference is that

the supervision of DHS comes from the pixel-wise human

annotation whereas the supervision of our approach is auto-

matically generated by the “supervision by fusion” frame-

work. Thus, by training with the human labelled ground

truth, DHS actually provides the upper boundary perfor-

mance of the proposed approach. The methods listed in

the bottom block are a number of state-of-the-art supervised

deep saliency models, which were trained on the same im-

age data with our approach but with additional human anno-

tation. From the comparison with the unsupervised method-

s, we can observe that the proposed approach could signif-

icantly improve the performance in terms of all the evalua-

tion metrics on all datasets. Notably, by only using addition-

al unlabelled images, our approach can outperform the best

unsupervised approach by more than 10% in terms of the

AP score. From the comparison with DHS, we can observe

that the proposed method can approach the supervised base-

line within 2% to 5% performance gap, which indicates that

our method can tremendously alleviate the human labor in

annotating the training data8 while only obtaining relative-

ly insignificant performance drop. Thus, it demonstrates

the cost-effectiveness of the proposed approach. More en-

couragingly, when compared with a number of other state-

of-the-art supervised deep salient object detectors, our un-

8Based on our statistics, manual annotation needs around 31 seconds

per-image, while our approach only needs around 0.7 second to obtain the

weak saliency maps for each training image.
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Table 2. Evaluation of the supervisory signals on four saliency detection datasets in terms of AP, Fι, SOV (higher values indicate better

results), and MAE (lower values indicate better results).
SOD ECSSD DUT-O PASCAL-S

AP Fι MAE SOV AP Fι MAE SOV AP Fι MAE SOV AP Fι MAE SOV

-SFM .750 .647 .154 .520 .852 .760 .099 .657 .640 .541 .162 .471 .754 .649 .151 .528

-b .754 .658 .150 .526 .864 .768 .093 .662 .667 .561 .148 .487 .759 .664 .148 .541

-IFM .749 .649 .150 .525 .844 .757 .096 .657 .649 .552 .152 .481 .750 .653 .149 .534

-β .754 .674 .148 .534 .876 .781 .095 .660 .677 .579 .142 .498 .777 .679 .144 .549

OURS .789 .676 .140 .545 .889 .787 .085 .677 .715 .583 .135 .505 .791 .680 .141 .549

Figure 7. Evaluation of the supervisory signals on four saliency

detection datasets in terms of PR curve.

supervised learning framework can still obtain competitive

performance. Notably, in terms of AP, our approach can

even outperform LEGS, MDF, and MCDL.

3.3. Ablation Studies

In this section, we conducted ablation studies on four

saliency detection datasets to comprehensively evaluate the

importance of different supervisory signals used in the pro-

posed unsupervised learning framework. Specifically, we

in turn removed a certain supervisory signal and used the

performance drop to estimate the importance of the cor-

responding supervisory signal to the full system. The ex-

perimental results are shown in Table. 2 and Fig. 7, where

“-SFM”, “-b”,“-IFM”,“-β” indicate the learning frame-

work without using the supervisory signal of the superpixel-

level fusion map, the superpixel-level confidence map, the

image-level fusion map, and the image-level confidence

weight, respectively. From the experimental results, we can

observe that:

1) All the four types of supervisory signals are beneficial

to the proposed learning framework as without using each

of them can cause obvious performance drop, especially in

terms of AP and Fι; 2) Basically, the average performance

drop (i.e., the importance) of the used supervisory signal-

s follows: SFM (0.4839) > IFM (0.431) > b (0.312) >
β (0.186), which demonstrates that the superpixel-level fu-

sion map and the image-level fusion map provide the ma-

jor supervision for the network while the superpixel-level

confidence map and the image-level confidence weight pro-

vide additionally helpful supervision; 3) Consistent and ob-

vious performance gain can be obtained by the full learn-

ing framework as compared with other baselines, which

9The reported number is the average performance drop across all the

evaluation metrics and datasets.

demonstrates the rationality of the proposed “supervision

by fusion” strategy as well as the established unsupervised

learning framework. 4) The performance drop on the rel-

atively more challenging salient object detection datasets,

e.g., DUT-O, tends to be more significant than it on the rel-

atively less challenging ones, e.g., ECSSD, which indicates

that the explored supervisory signals are more valuable in

dealing with more challenging scenarios.

4. Conclusion

This paper has proposed a novel unsupervised learning

framework to train the DNN-based salient object detector.

It revealed the insight of “supervision by fusion” and estab-

lished a novel two-stream framework to generate useful su-

pervisory signals through the intra-image fusion and inter-

image fusion processes. Comprehensive experiments on

four benchmark datasets have demonstrated the effective-

ness of the proposed approach as well as each of the used

supervisory signal. Notably, our method can approach the

the same network trained with full supervision (within 2-5%

performance gap) and, more encouragingly, outperformed a

number of fully supervised state-of-the-art approaches. For

future work, we will apply the proposed unsupervised deep

learning technique into solving a wide range of computer

vision tasks, such as co-saliency detection [39, 41], seman-

tic segmentation [33, 34], and object parsing [23, 24].
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