This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Truncating Wide Networks using Binary Tree Architectures

Yan Zhang, Mete Ozay', Shuohao Li'* and Takayuki Okatani'®
"Tohoku University, *National University of Defense Technology, *RIKEN Center for AIP

{zhang, mozay, lishuohao, okatani}@vision .is.tohoku.ac. jp

Abstract

In this paper, we propose a binary tree architecture
to truncate architecture of wide networks by reducing the
width of the networks. More precisely, in the proposed ar-
chitecture, the width is incrementally reduced from lower
layers to higher layers in order to increase the expres-
sive capacity of networks with a less increase on param-
eter size. Also, in order to ease the gradient vanishing
problem, features obtained at different layers are concate-
nated to form the output of our architecture. By employ-
ing the proposed architecture on a baseline wide network,
we can construct and train a new network with same depth
but considerably less number of parameters. In our exper-
imental analyses, we observe that the proposed architec-
ture enables us to obtain better parameter size and accu-
racy trade-off compared to baseline networks using various
benchmark image classification datasets. The results show
that our model can decrease the classification error of a
baseline from 20.43% to 19.22% on Cifar-100 using only
28% of parameters that the baseline has. Code is available
atlhttps://github.com/ZhangVision/bitnet,

1. Introduction

Recently, Deep Neural Networks (DNNs) have achieved
impressive results for many image classification tasks [}
6, 14l 118 123 25} 126, [27]]. Various architectures of DNNs
have been proposed in order to improve classification ac-
curacy. One approach used to improve accuracy of a DNN
is to widen each layer while keeping the depth unchanged.
For instance, it is empirically shown in [28]] that a wide but
relatively shallow DNN can obtain an accuracy compara-
ble to a narrow but relatively deep DNN on several clas-
sification tasks. There are two crucial benefits of wide-
shallow DNNs. First, they usually run faster than narrow-
deep DNNs on parallel computing devices, e.g. GPUs, as
illustrated in [28]. Also, a deep DNN with many layers may
suffer from the gradient vanishing problem. Reducing the
depth can ease this problem as shown in [7]. However, pa-

. |
I ' Concatenation

N
v
(2]

output
Iy output

— forward propagation block
— = =» backward propagation /1 layer

Figure 1. Left: A conventional architecture [S]]. Right: Proposed
binary tree architecture. Arrows indicate flow of data. The num-
bers depicted in the rectangle denote the width of the layer. Depth
of both architectures is 3, and their output width is 256. Our ar-
chitecture has considerably less number of parameters.

rameter size of DNNs may significantly increase with re-
spect to improvement of accuracy by widening each layer.

In this paper, we address a problem of improvement of
the parameter size and accuracy trade-off of the aforemen-
tioned wide-shallow DNNs. Specifically, given a baseline
wide-shallow DNN, we aim to construct and train a new
DNN equipped with the following two desirable properties:
1) The depth of the new DNN is not greater than that of the
baseline wide-shallow DNN so that it can keep the afore-
mentioned two benefits, and 2) the new DNN can achieve
comparable accuracy using relatively less number of param-
eters compared to the baseline DNN, or can achieve better
accuracy by using the same number of parameters that the
baseline DNN has.

Toward this end, we propose a binary tree architecture
for implementation of DNNs with a better trade-off. An
illustrative comparison of our proposed binary tree archi-
tecture and conventional architectures [J5, 28] is given in
Figure|l} In conventional architectures, layers having same
width (number of channels) are sequentially stacked. In the
proposed binary tree architecture, the width of the k" layer
is 2:%1, where D is the width of the first layer (k = 1, in-

2097

https://github.com/ZhangVision/bitnet

put layer). Additionally, connections between layers of the
proposed architecture are established as connections used
in an asymmetric binary tree. At each k'” layer of a binary
tree architecture, we have C), = 21@% channels. Then, %
of channels are connected to the channels of the (k + 1)
layer. In addition, the remaining % channels are directly
concatenated to form the output of the architecture. Note
that our binary tree architecture can be generalized to fully
connected layers in which the width is equal to the number

of neurons used at the layer.

Our motivation for employment of the proposed binary
tree architecture is twofold. First, we aim to increase the ex-
pressive capacity of DNNs with a relatively small increase
of parameter size. In this paper, we use the definition of ex-
pressive capacity proposed in [21}19]], where it is defined to
be the maximal number of linear regions of (decision) func-
tions computable by the given DNN. As shown in [21} [19],
it reflects the complexity of class decision boundary com-
putable by the DNN. Their results state that the maximal
number of linear regions of a fully connected feed forward
neural network endowed with ReLLU [20]] activation func-
tions grows exponentially with respect to the depth of the
network, and polynomially with respect to the width of the
network (i.e., the number of neurons used at each layer of
the network). Following this theoretical result, one can in-
crease the expressive capacity with a small increase of the
parameter size by simply stacking more layers with small
width. This leads to the first characteristic structure of our
binary tree architecture, which is obtained by continuous
decrease of the width from the input layer to the higher lay-
ers by a factor of 271, With this specific structure, the ex-
pressive capacity grows with small increase of the parame-
ter size. In our experiments, a binary tree used at convolu-
tional layers of a DNN can increase classification accuracy
with a small increase of parameter size of the DNN.

The second motivation for employment of our binary
tree architecture is to ease a vanishing gradient problem
observed in DNNs. While training DNNs, the magnitude
of gradient can be cumulatively reduced when it is prop-
agated from higher layers to lower layers. Therefore, the
more layers are used for propagation, the weaker gradient
will be obtained at the lower layers, which makes it diffi-
cult to train a DNN with many layers [1, 4]. Consequently,
the gradient vanishing problem suggests reduction of the
depth of a DNN, while increasing the depth may lead to effi-
cient improvement of the expressive capacity as mentioned
above. Thus, we need to trade-off between easing the gra-
dient vanishing problem and increasing the expressive ca-
pacity, which motivates our second characteristic structure
of our proposed binary tree architecture that is obtained by
concatenation of features obtained at different layers. With
this specific structure, gradients can propagate through short
path to lower layers. An illustration is given in Figure [T}

where flow of gradient propagation during backpropagation
is depicted by red dash line. For a better illustration of van-
ishing gradients, we use thicker red line to show stronger
gradient. Our empirical analyses given in Section [4.4] show
that concatenation of features at lower layers can ease the
gradient vanishing problem.

Our contributions are summarized as follows.

(1) We propose a binary tree architecture which can
be used to improve the trade-off between parameter size
and classification accuracy of baseline wide-shallow DNNss.
Meanwhile, the depth of the wide-shallow DNNss is not in-
creased using the proposed architecture in order to keep the
benefit of running speed on parallel computing devices.

(2) Our experimental results show that, on the Cifar
datasets, one can construct a DNN using the proposed bi-
nary tree architecture to achieve better accuracy but using
considerably less number of parameters. On the Cifar-100
dataset, our models can outperform corresponding baselines
by using only approximately 50% of baseline’s parameter
size. One of our models decreases the classification error
of a baseline from 20.43% to 19.22% by using only 28% of
parameters that the baseline has. On ILSVRCI?2 task, we
construct and train two DNNs using the proposed binary
tree architecture which also provide better parameter size
and classification accuracy trade-off than baseline models.

(3) We also provide a theoretical analysis of the ex-
pressive capacity of DNNs endowed with our proposed bi-
nary tree architecture as a function of its depth and width.
The theoretical results indicate that expressive capacity of
DNNs endowed with our proposed binary tree architecture
can grow with small increase of the parameter size.

Our paper is organized as follows. The second section
provides the related work. In Section 3, we introduce our
binary tree architecture. Experimental results and analyses
are given in Section 4. Section 5 concludes the paper.

2. Related Work

Recently, various architectures of convolutional neural
networks (CNNs) have been proposed [[14} [18} 26, 23} 27,
25]. In [8]], connections between random forests [2] and
CNNs are investigated. Inspired by random forests, they
embedded routing functions to CNNs, and obtained Condi-
tional CNNs. As shown in their experiments, Conditional
CNNs with highly branched tree architectures can improve
the accuracy-efficiency trade-off. Conditional CNNs can
be considered as symmetric full tree architectures. On the
other hand, we use an asymmetric tree architecture, and
concatenate features from different layers. In [15], a frac-
tal architecture used by FractalNet was proposed. The re-
lationship between FractalNets and our architecture is as
follows. Fractal architecture can also be considered as a
tree architecture. In addition, they both aim to ease the gra-
dient vanishing problem by joining lower-layer features to

2098

higher-layer features. The difference is that our architecture
aims to reduce the parameter size by incrementally reduc-
ing the width as depth increases, while FractalNets do not.
As a result, FractalNets have more number of parameters
compared to our proposed architecture for the same depth.
The motivation for development of our proposed architec-
ture considers the expressive capacity which is not inves-
tigated in FractalNets. Experimental results on benchmark
datasets also show that proposed architecture outperforms
FractalNets by using less number of parameters.

In previous works [10, [12} [16], various tree structures
were explored in the context of DNNs. All these related
work and our work enable an end-to-end training of tree
structures in DNNs. Our method is different from them in
the following aspects. In [12], a decision forest classifier
was introduced to replace a classifier used at the last classifi-
cation layer (usually Softmax) of a baseline DNN; other lay-
ers, e.g., convolutional layers, were left untouched. Thus,
the parameter size was not reduced unlike our method. In
[[10]], encoding and decoding functions of Auto-Encoders
were implemented using soft decision trees. Their motiva-
tion was to recursively direct samples from parent nodes to
all its child nodes according to probabilities computed by
gating functions, and the output of tree was the average of
output of all leaves weighted by gating values. In [16]], a tree
structure was used in pooling layer, the region being pooled
was fed into the leaves of a tree structure, and results were
obtained at the root of tree structure. Therefore, they em-
ployed a tree architecture different from (in an inverse way
to) our tree structure.

As shown in [11} 29], the parameter size of a trained
CNN can be reduced by constructing a new CNN with less
redundant weights. However, these methods may cause a
decrease of accuracy after compression of models. With
our architecture, we can boost the accuracy using less num-
ber of parameters. In [5]], a residual architecture was pro-
posed to construct CNNs (ResNets). ResNets enable us to
train considerably deeper CNNs. The deepest ResNets em-
ployed for classification using the ILSVRC12 [22] and Ci-
far datasets had 200 and 1000 layers, respectively [3,16], and
achieved impressive performance. However, a deep ResNet
with many layers may suffer from two problems. First, the
running speed on parallel computing devices may be slow
compared to the speed of shallower ones. Thus, it takes
more time to train a very deep ResNet. Also, the gradient
vanishing problem [1} 4] may also be observed on a very
deep ResNet with many layers. To address these problems,
a novel training procedure called stochastic depth was in-
troduced in [[7]. It enables one to train shallow ResNets
during training, and to use deep ResNets for testing. Shal-
low ResNets can ease the gradient vanishing problem dur-
ing training, and reduce the training time. Their experimen-
tal results show that their proposed training procedure can

improve the test accuracy of baseline ResNets with constant
depth. This indicates that easing the gradient vanishing
problem is crucial to train a very deep ResNet. However,
during the test time, the depth of ResNets is kept as same as
the depth of baseline, which decreases inference speed.

Intuitively, a simpler way to avoid gradient vanishing
problem and accelerate the running speed during train-
ing and inference is to use a shallow network. In [28],
Zagoruyko and Komadakis used a shallow ResNet, and in-
creased the width to make the expressive capacity com-
parable with narrow-deep ones. Interestingly, they ob-
served that wide-shallow CNNs can outperform its deeper-
narrower peer CNNs which have the same parameter size on
the Cifar-10/100 classification datasets. On the ILSVRC12
classification task, wide ResNets can also obtain compa-
rable accuracy with smaller depth. Their results draw our
attention to consider the wide-shallow DNNs. In their
method, the width of each layer was symmetrically in-
creased by the same factor. This significantly increases the
parameter size. Therefore, in this work, the proposed bi-
nary architecture truncate architecture of wide networks by
reducing width of the networks considering their parameter
size and accuracy trade-off. Our motivation for employ-
ment of binary tree architecture also considers the gradient
vanishing problem, which has been shown to be crucial for
training DNNss in [7].

3. Binary Tree Architecture

In this section, we give an overview of conventional
blocks used in previous works [5, 28], and introduce our
proposed binary tree architecture. Then, we theoretically
analyze expressive capacity and parameter size of our pro-
posed binary tree architecture considering its depth and
width.

3.1. Conventional Blocks

In various CNNs [23], 15} 16, 28], a block is constructed
by a stack of K convolutional layers. At each k** layer,
k=1,2,..., K, we compute

X = fro(Xp—1; Wh), (D

where X := X € R¥*"*¢ X is an input tensor of features
given to the block, X, € R ¥ %% %D i the tensor of features
obtained at the output of k'" layer, c is the number of chan-
nels, w is the width and h is the height of a feature map.
We assume that the number of convolutional filters used at
each layer is D, and down-sampling is performed at the
first convolutional layer by stride s. fi(Xy; Wy) is com-
puted by a composition of a convolution operation, batch
normalization [9] and nonlinear function o, where W, de-
notes a set of trainable parameters used at the k*” layer, e.g.
the filter weights. The output feature tensor of the block

2099

is obtained at the last layer Y := X i € REXExD I (@,
we omit a shortcut connection and an element-wise addition
used in [3]] to simplify the notation. We refer to the block
defined in (I) as a conventional block (ConvenBlock) with
width D and depth K in the following sections. An illustra-
tion of ConvenBlock with width 256 and depth 3 is given in
Figure[T] (left).

3.2. Binary Tree Blocks

We define a binary tree block (BitBlock) by a binary tree
T = (V,€), where V is the set of nodes residing in the
block, and £ is the set of edges that connect the nodes. The
architecture of a BitBlock is determined by its width D and
depth K, where D is the channel number, i.e. number of
feature tensors provided by the BitBlock at the output, and
K is the depth of the binary tree T, as follows.

e At the root of a BitBlock 7 denoted by
vo € V, we have a feature tensor denoted by
Xo, = X € R¥X"*¢ where X is given as an input
to the block.

e At each k'" layer (level) of a BitBlock, we apply two
mapping functions fj; and f; , to the input feature
tensor X1 ;. Then, we compute a feature tensor X, ;
having % channels on a left child node of v;_1, and a
feature tensor Xy, ,- having 2% channels on a right child
node of vj_1 at the k" layer of 7. The feature tensor
X, is further fed to the next (k 4 1)5* layer. More
precisely, at each k" level, we compute

Xt = froi(Xp—1,1Wr,1),

X = [ror(Xi—1,0 Wi r)- @

e Finally, feature tensors computed at all right child

nodes at each k" level of T, and the feature tensors

computed at the left child node at the last K*" level

of T are concatenated across channels to construct the
output feature tensor of the BitBlock by

Y = CODC&t(XLl] X2,l ®:---0 XKJ [] XK,T)- (3)

The size of concatenated tensor Y is (% x 2 x D). In
the case of down-sampling, we apply a stride s at the
first layer as utilized in ConvenBlocks.

We note that D is divided by 2K Moreover, if K = 1,
then the BitBlock 7 reduces to a single convolution layer.
Our BitBlocks can also be applied to fully connected lay-
ers using a feature tensor X € R'*1XC We denote it by
a fully connected BitBlock. An illustration of our proposed
BitBlock with width of 256 and depth of 3 is given in Fig-
ure[T] (right). We can construct a DNN by stacking multiple
BitBlocks. In this paper, a DNN endowed with BitBlocks is
called a BitNet.

3.3. A Theoretical Analysis of Expressive Capacity
of Binary Tree Blocks

In this section, we theoretically analyze expressive ca-
pacity and parameter size of the proposed binary tree block
with respect to its depth and width, when it is used at fully
connected layers. We use the definition of expressive capac-
ity proposed in the previous work [21}[19]. More precisely,
expressive capacity of a DNN is defined by the maximal
number of linear regions of (decision) functions computable
by the given DNN. The formal definition of linear regions
of a function is given as follows.

Definition 3.1 (Linear Region). Given a function f(-) with
n-dimensional input space R™, a linear region R? of f(-) is
a subspace of its input space, such that f(-) computes a lin-
ear mapping on that linear region, i.e. f(x):= w;x+ b,
Vx € R?, and f(x) :# w;x + b;, Vx ¢ R}

Suppose that a decision function f(-) is computed by a
DNN. Then, the more number of linear regions f(-) has,
the more complex input-output mapping the DNN can com-
pute. In other words, the DNN can be used to compute
more complex decision boundary, and to solve more com-
plex classification tasks. A multilayer perceptron network
implementing a linear activation function computes a lin-
ear mapping between input and output. Thus, it only has 1
linear region, i.e. the whole input space.

We provide the following two theoretical results regard-
ing i) computation of the parameter size, and ii) computa-
tion of the maximal number of linear regions of functions
computable by a fully connected conventional network and
a BitNet. Proofs of the theorems are given in the supple-
mental material. We first provide the results for conven-
tional networks that can be easily derived using the results
given in [19].

Corollary 3.2. Suppose that we are given a fully connected
neural network stacked by L fully connected ConvenBlocks
each having width D and depth K. The parameter size
of the given network is (’)(LK DQ). The maximal number
of linear regions of functions that can be computed by the
given network in an n-dimensional (D > n) input space is
lower bounded by O ((2)"KL). |

n

The expressive capacity of our proposed BitNet is given
as follows.

Proposition 3.3. Suppose that we are given a BitNet
stacked by L fully connected BitBlocks each having width
D and depth K. The parameter size of the given BitNet is
O (%L (1 — 4%() D2) . The maximal number of linear regions
of functions that can be computed by the given BitNet in an
n-dimensional (D > 25n) input space is lower bounded by

o((#:)"") .

2100

As we observe from these theoretical results, if D and L
are fixed, then the expressive capacity of BitNets can grow
with a small increase of the parameter size as K increases.
Although the expressive capacity of a fully connected con-
ventional network can grow faster as K increases, its pa-
rameter size also grows faster than that of a BitNet. Al-
though these theoretical results are obtained for fully con-
nected layers, our experimental observations reflect that the
results can be applied also for the convolutional layers. In
our experiments, we observe that a binary tree used at con-
volutional layers of a DNN can increase classification accu-
racy with a small increase of parameter size of the DNN.

4. Experimental Results

We empirically analyze the proposed binary tree archi-
tecture using various baseline ResNets and several bench-
mark image classification datasets. We also analyze the gra-
dient vanishing problem of the proposed binary tree archi-
tecture. In the implementation of BitNets, given a baseline
ResNet, we can construct a BitNet of the same depth and the
same block width with considerably fewer parameters com-
pared to the baseline (ResNet). We can also increase the
block width but keep the depth of baseline model using the
proposed binary tree architecture, and obtain a BitNet with
a similar number of parameters. The configuration details
of BitNets are given for each classification task.

4.1. Cifar-10 and Cifar-100

Cifar-10 and Cifar-100 [13]] are image datasets consist-
ing of 50,000 training images and 10,000 test images. The
spatial size of each image is 32 x 32. Cifar-10 and Cifar-100
consist of 10 and 100 categories, respectively. The architec-
tures of BitNets and ResNets used to perform analyses on
the Cifar datasets are given in Table|l} As we can see from
the table, the depth of a net is determined by the number of
blocks in each group (n), and the depth of each block (k).
The width of each block is denoted by d.

We first compare performance of our proposed BitNets
and that of Wide ResNets [28] by constructing nets with
same depth and block width. Specifically, given a Wide
ResNet with fixed value of d, k, and n, we use the same
block width d for a BitNet. Then, we set values of &k and n
for the BitNet, such that the total depth of the BitNet equals
to the total depth of the given Wide ResNet. We can use
different value combinations of k& and n for the BitNet as
long as k x n value for the BitNet equals to & x n for the
given Wide ResNet. For example, given a 38-layer Wide
ResNet with (d = 4,k = 2,n = 6), we can construct
a BitNet with (d = 4,k = 3,n = 4) or a BitNet with
(d =4,k = 4,n = 3), both having 38 layers.

For fare comparison with Wide ResNets, we use the
same training and testing setting as employed in [28]. The
details of the setting are given in the supplemental material.

’ Group Name ‘ Configuration ‘ Output Size
convl conv, 16 channels 32 x 32
conv2 block(d x 16, k) x n 32 x 32
conv3() block(d x 32,k) x n 16 x 16
conv4(]) block(d x 64, k) x n 8 x8
gap global average pooling 1x1
fc 10 or 100-way softmax

Table 1. The CNN architecture employed for classification using
the Cifar-10 and Cifar-100. BitNets use BitBlock as block type,
and ResNets use ConvenBlock with residual connection. k de-
notes the depth of each block (k = 2 for all ResNets used in this
paper). d denotes the width of each block. n denotes a stack of
n blocks. All convolutional layers use filters of size 3 x 3. Batch
Normalization is used at every convolutional layer before ReL.U.
Down-sampling is performed by applying stride 2 at the first con-
volutional layer of the first block in Group conv3 and conv4.

Table 2] provides the comparative results for several Wide
ResNets and BitNets, which are designed using the same
width and depth. As we can see from the results, using the
same depth and width, BitNets have considerably less num-
ber of parameters and FLOPs. Moreover, BitNets can out-
perform Wide ResNets using considerably less number of
parameters. We compare BitNets with four baseline Wide
ResNets. In the analyses, we obtained the following results:

(1) A Wide ResNet having (d = 4,k = 2,n = 6) is
the deepest and narrowest architecture among four baseline
architectures. The BitNet (d = 4,k = 4,n = 3) and the
BitNet (d = 4,k = 3,n = 4) can obtain performance
comparable to this baseline, and their parameter size is only
30% and 41% of that of this baseline, respectively. The
BitNet (d = 4,k = 2,n = 6) is constructed by using larger
number of blocks, but reducing the depth of each block. As
shown in Section [4.4] this BitNet suffers from the gradient
vanishing problem during the training due to use of small k&
and large n. As a result, the performance slightly degrades.
BitNet (d = 4,k = 6,n = 2) has the least parameter size,
i.e. has only 19% of the baseline’s parameter size. However,
it also performs worst.

(2) Compared with the first baseline ResNet (d = 4, k =
2,n = 6), the baseline ResNet (d = 10,k = 2,n = 2) is
wider and shallower. The BitNet (d = 10,k = 2,n = 2)
outperforms it by 1% for the Cifar-100 dataset by using ap-
proximately 56% of the baseline ResNet’s parameter size.
Another configuration of BitNet (d = 10,k = 4,n = 1)
uses only one BitBlock at each group, resulting in only
23% of the baseline’s parameter size. However, the perfor-
mance is also degraded by more than 1% using the Cifar-
100 dataset. For the Cifar-10 dataset, both BitNets obtain
similar performance compared to the baseline.

(3) For the Wide ResNet (d = 10,k = 2,n = 3), both

2101

Model Depth Number of Parameters FLOPs Cifar-10 Cifar-100
NIN [18]] - - - 8.81 35.67
ELU [3] - - - 6.55 24.28
DSN [17] - - - 7.97 34.57
AIICNN [24] - - - 7.25 33.71
ResNet [S] 1202 10.2M - 4.91 —
preact-ResNet [6] 1001 10.2M - 4.62 22.71
Stochastic Depth ResNet [7]] 110 1.7"™M - 5.25 24.98
FractalNet [15] 40 22.9M - 5.24 22.49
Wide ResNet (d=4,k=2,n=06) [28] 38 8.9M 1.34 x 10° 4.97 22.89
BitNet (d=4,k=3,n=4) 38 3.™ 0.53 x 10° 4.82 22.19
BitNet (d=4,k=4,n=3) 38 2.™ 0.39 x 10° 4.65 22.60
BitNet (d=4,k=2,n=0) 38 5.4M 0.78 x 10° 5.31 23.22
BitNet (d=4,k=6,n=2) 38 1.7M 0.24 x 10° 4.77 23.87
Wide ResNet (d=10,k=2,n=2) [28] 14 17.1M 2.64 x 10° 4.56 21.59
BitNet (d=10,k=2,n=2) 14 9.6M 1.32 x 10° 4.17 20.48
BitNet (d=10,k=4,n=1) 14 3.9M 0.49 x 10° 4.97 23.88
Wide ResNet (d=10,k=2,n=3) [28] 20 26.8M 4.06 x 10° 4.44 20.75
BitNet (d=10,k=2,n=3) 20 15.6M 2.21 x 10° 3.78 19.29
BitNet (d=10,k=3,n=2) 20 10.2M 1.41 x 10° 3.81 19.37
Wide ResNet (d=12,k=2,n=4) [28] 26 52.5M 7.87 x 10° 4.33 20.43
BitNet (d=12,k=2,n=4) 26 31.2M 4.45 x 10° 4.07 19.06
BitNet (d=12,k=4,n=2) 26 14.9M 2.06 x 10° | 4.11 19.22

Table 2. Classification error (%) of CNNss for the Cifar-10/100 datasets. Using the same depth and block width, our BitNets can outperform
Wide ResNets using considerably less number of parameter size. Underlined numbers indicate the best performance among models having
the same depth and same block width. Bold numbers denote the best performance obtained for all models. Definitions of d, k and n are
given in Table[I] All of Wide ResNets and our BitNets are trained using data augmentation, and without using dropout.

BitNets obtain more than 1% performance boost using the
Cifar-100 dataset. For the Cifar-10 dataset, the performance
boost is more than 0.5%. Notably, the parameter size of the
BitNet (d = 10, k = 3,n = 2) is only 38% of the parameter
size of the baseline.

(4) The Wide ResNet (d = 12,k = 2,n = 4) has the
largest parameter size among four baseline models. Our
two BitNets both outperform the baseline by more than 1%
accuracy. Note that the parameter size of the BitNet (d =
12,k = 4,n = 2) is only 28% of that of the baseline.

We emphasize that the performance of baseline Wide
ResNets are already close to the state-of-the-art. Thus,
more than 1% boost of the accuracy is obtained. To sum-
marize, most of our BitNets can achieve better or approx-
imately equal accuracy using less number of parameters,
which indicates that our binary tree architecture can im-
prove the parameter size and accuracy trade-off of baseline
Wide ResNets. There are two BitNets whose accuracy are
roughly 1% lower than that of their baselines. This is possi-
bly because they use too less number of BitBlocks causing
insufficient expressive capacity. The rest of BitNets obtain

sufficient expressive capacity using relatively less number
of parameter size. Compared with other previous models,
such as Stochastic Depth ResNet [7] and FractalNet [15]],
our BitNets can outperform them using less number of pa-
rameters.

4.2. ILSVRC12

In order to evaluate the proposed architecture on a large
scale image classification dataset, we also use the training
and validation dataset of ILSVRC12 [22]], which consists
of 1.3 million training images and 50,000 validation images
belonging to 1000 categories. The details of training and
testing settings are given in the supplemental material.

In this task, we construct two BitNets (BitNet-26 and
BitNet-34) in order to compare their performance with that
of ResNet-34 [5]]. The details of models are given in Ta-
ble |3} The classification results are given in Table 4| The
results show that our BitNets have better parameter size
and accuracy trade-off compared to ResNets. In the re-
sults, BitNet-34 outperforms ResNet-34 B by 1% using the
same parameter size, while their depth is the same. An-

2102

Group BitNet-26 ‘ BitNet-34 Output Size

convl conv 7 X 7, 64 channels, stride 2 112 x 112

conv2 max pooling 3 X 3, stride 2 56 x 56
b(128,3) x 2 | b(256,4) x 2

conv3 b(192,3) x 1 | b(384,4) x 2 98 x 98
b(256,3) x 1

convd | b(384,3) x 2 | b(512,4) x 2 14 x 14

convSs b(512,3) x 1 | b(768,4) x 2 77
b(768,3) x 1

gap global average pooling 1x1

fc 1000-way softmax

Param. 12.79M 22.99M

FLOPs | 2.8 x 10° 7.8 x 10°

Depth 26 34

Table 3. Structures of BitNets used for classification of the
ILSVRCI2 dataset. b(d, k) x n refers to a stack of n BitBlocks
with width d and depth k. All convolutional layers employed in
each BitBlock use filters of size 3 x 3. The output size is reduced
by applying stride 2 at the first convolutional layer of the first block
in some groups.

Model Sclrrl(%;e CTre clvlp Number of Parameters
ResNet-18 B [5]] 30.43 | 28.22 13.1M

Width x1.5 [28] 27.06 — 25.9M

Width x2 [28] 25.58 — 45.6M
FractalNet-34 [[15] — 24.12 —
ResNet-34 B [3] 26.73 | 24.76 23.2M

Width x1.5 [28] 24.5 — 48.6M
BitNet-26 27.74 | 25.83 12.8M
BitNet-34 25.46 | 23.77 23.0M

Table 4. Single model, Top-1 classification error (%) obtained us-
ing the ILSVRCI12 validation dataset.

other smaller BitNet-26 obtains 1% higher error compared
to ResNet-34 B. However it is shallower and its parame-
ter size is approximately 50% of ResNet-34 B. Compared
to the FractalNet-34 model, BitNet-34 also outperforms it.
BitNet-26 outperforms ResNet-18 B by approximately 2%
accuracy using the same number of parameters. Increasing
the wide of ResNet-18 by methods given in [28]] can im-
prove the accuracy. However, the cost for obtaining the im-
provement is also huge. BitNet-26 and ResNet-18 B width
x 1.5 have comparable accuracy, but the parameter size of
our BitNet is almost two times smaller than that of ResNet.
Similarly, the parameter size of BitNet-34 is only 50% of
ResNet-18 width x2.

BitNet BitNet
(d=4,k,n=4) (d=12,k,n = 2)
Param. Cifar10/100 | Param. Cifar10/100
k=1 | 2™ 4.98/23.54 | 10.3M 6.02/23.80
k=2 | 35M 4.68/22.72 | 13.8M 4.02/19.86
k=3| 37M 4.82/22.19 | 14.7TM 3.98/18.97
k=4 | 3.TM 4.69/22.65 | 14.9M 4.11/19.22
k= 3.7™™M 4.69/22.86 | 15.0M 4.09/18.95
k=6 | 3.™™ 4.77/22.69 | 15.0M 4.19/19.51

Table 5. Change of classification error (%) of two BitNets with
respect to k using the Cifar-10/100 datasets. Definitions of d, n,
and k are given in Table[]

4.3. Experimental Analyses of Effect of Depth of
BitBlock to Classification Performance

We observe that using the same width d and the same
number of BitBlocks n, BitBlocks having different depth
may provide different performance (see BitNet (d =
10,k = 3,n = 2) and BitNet (d = 10,k = 2,n = 2)
in Table 2). Thus, we further analyze how performance of
BitNets changes with respect to the depth of BitBlocks. For
this purpose, we evaluate BitNet (d = 4, k,n = 4) (a deep-
narrow one) and BitNet (d = 12,k,n = 2) (a relatively
shallower-wider one) by setting different values to k. The
results are given in Table [5| As illustrated in the table, as
k increases, both BitNets gain a performance boost due to
an increase of the expressive capacity. Note that for the Bit-
Net (d = 12, k, n = 2) employed using the Cifar-100, there
is almost a 4% performance boost from k = 1to k = 2
with a 33% increase of parameter size. We observe that the
performance boosts further as k increases. These observa-
tions match our theoretical analyses provided in Section[3.3]
which states that as d and n are fixed, increasing k can in-
crease the expressive capacity of a BitNet with a small in-
crease of parameter size. However, the boosting trend tends
to be saturated if £ > 3, and the increase of parameter size
is also negligible. This can be explained as follows. As k
increases, the width of convolutional layer also decreases
in the binary tree architecture resulting in a saturated ex-
pressive capacity. Additionally, we also observe that wider
BitNets (d = 12) gain more performance boost than a nar-
rower Bitnet (d = 4) with the same increase on k. This is
simply because the increased layers of the wider BitNet are
wider than that of the narrower one, thus it can increase the
expressive capacity more.

4.4. Experimental Analyses for the Gradient Van-
ishing Problem

In this section, we analyze our BitNets considering the
gradient vanishing problem. During the training of a BitNet
or Wide ResNet using the Cifar-100, we compute the mean

2103

o
~

wide resnet-38
plainnet-38
b(4,1,2)-8
b(4,2,2)-14
b(4,4,2)-26
b(4,6,2)-38
b(4,2,6)-38
b(4,3,4)-38
b(4,4,3)-38

o
o

I
n

o o o
N w »

b
i

mean gradient magnitude per epoch

o
o
o

50

Figure 2. Mean magnitude (L2-norm) of gradients computed
per epoch during the training at the first convolutional layer.
b(d, k,n) — m refers to an m-layer BitNet with configuration
(d, k,n) defined in Tablem Best viewed in color print.

magnitude (L2-norm) of gradients obtained at the first con-
volutional layer per epoch. The results are given in Figure[2]
We analyze the results using nine models having different
depth but same width d = 4. In the figure, wide resnet-38
refers to the Wide ResNet (d = 4,k = 2,n = 6) having 38
layers, and plainnet-38 is the one designed without using
residual connections. Models denoted by b(d, k, n) —m are
our proposed BitNets where m is the total depth.

As we can see from the figure, for all models having 38
layers, our BitNet b(4, 6,2) — 38 shows the strongest mag-
nitude, even stronger than wide resnet-38. This result indi-
cates that using concatenation in the proposed binary tree
architecture can ease the gradient vanishing problem. We
also observe that gradient becomes weaker as the number
of blocks n is increased and the depth k of each BitBlock is
reduced. For instance, for all 38 layers BitNets, the magni-
tude can be roughly sorted by b(4, 2,6)—38, b(4, 3,4) — 38,
b(4,4,3) — 38 and b(4, 6,2) — 38 according to the increas-
ing strength of the magnitude. This observation reflects that
as n increases and k decreases, features obtained at less
number of lower layers are concatenated to form the output
of each BitBlock. In general, gradients propagate towards
more layers to reach lower layers.

We also analyze how magnitudes of gradients change
with respect to BitBlock’s depth k, when d and n are fixed.
In the results, b(4, 1, 2)—8 provides the strongest magnitude
among all nine models as expected, since it is the shallow-
est model. By increasing k, we observe that the magnitudes
computed using BitNet b(4,2,2) — 14 and b(4,4,2) — 26
are decreased, since more layers are used to propagate gra-
dients in BitBlocks.

Model Number of Parameters | Error
wide resnet-38 8.9M 22.89
plainnet-38 8.9M 29.13
b(4,1,2) — 8 1.2M 29.19
b(4,2,2) — 14 1.5M 25.45
b(4,4,2) — 1.7 22.72
b(4,6,2) — 38 1.7™™ 23.87
b(4,2,6) — 38 5.4M 23.22
b(4,3,4) — 38 3. ™™ 22.19
b(4,4,3) — 38 2.T™ 22.60

Table 6. Classification error (%) of the models given in Figure [2]
obtained using the Cifar-100 dataset.

The errors obtained using these nine models are given
in Table [} Although b(4,1,2) — 8 and b(4,2,2) — 14
show stronger gradient magnitude than wide resnet-38, they
provide higher classification error. This is mainly because
the depth of these two BitNets is too small resulting in in-
sufficient expressive capacity. BitNet b(4,4,3) — 38 ob-
tains comparable classification performance by using larger
depth. The gradient magnitude of BitNet b(4,4,3) — 38
is also comparable with that of resnet, which benefits from
the proposed binary tree architecture. Without using binary
tree architecture, the gradient magnitude of plainnet-38 is
weaker and its final classification error is higher compared
to that of resnet-38.

5. Conclusions

We introduced a binary tree architecture in order to trun-
cate architecture of wide networks considering their param-
eter size and accuracy trade-off. In the proposed architec-
ture, the width of each layer of a network is incrementally
reduced from lower layers to higher layers of the network.
Moreover, features obtained at different layers are concate-
nated to form the output of our architecture. In the theoreti-
cal analysis, we explored the expressive capacity of BitNets.
In our experiments, the networks which were designed us-
ing the proposed architecture, called BitNets, obtained bet-
ter parameter size and accuracy trade-off on several bench-
mark datasets compared to baseline networks endowed with
conventional architectures. Additionally, we observed that
the concatenation structure can ease the gradient vanishing
problem. In our future work, we plan to use BitNets for
object detection tasks.

Acknowledgement

This work was partly supported by CREST, JST Grant
Number JPMIJCR14D1 and JSPS KAKENHI Grant Num-
ber JP15H05919.

2104

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]

[15]

(16]

(17]
(18]

[19]

[20]

(21]

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term
dependencies with gradient descent is difficult. /EEE Trans-
actions on Neural Networks, 5(2):157-166, 1994.

L. Breiman. Random forests. Machine Learning, 45(1):5—
32,2001.

D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accu-
rate deep network learning by exponential linear units(elus).
In ICLR, 2016.

X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In AISTATS,
2010.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In ECCV, 2016.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.
Deep networks with stochastic depth. In ECCV, 2016.

Y. Ioannou, D. P. Robertson, D. Zikic, P. Kontschieder,
J. Shotton, M. Brown, and A. Criminisi. Decision
forests, convolutional networks and the models in-between.
arXiv:1603.01250, 2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015.

O. Irsoy and E. Alpaydin. Autoencoder trees. In ACML,
2014.

M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up
convolutional neural networks with low rank expansions. In
BMVC, 2014.

P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. B.
Deep neural decision forests. In /CCV, 2015.

A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet:
Ultra-deep neural networks without residuals. In ICLR,
2017.

C.-Y. Lee, P. Gallagher, and Z. Tu. Generalizing pooling
functions in convolutional neural networks: Mixed, gated,
and tree. In AISTATS, 2016.

C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-
supervised nets. In AISTATS, 2015.

M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,
2014.

G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the
number of linear regions of deep neural networks. In NIPS,
2014.

V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In /CML, 2010.

R. Pascanu, G. Montiifar, and Y. Bengio. On the number of
inference regions of deep feed forward networks with piece-
wise linear activations. In /CLR, 2014.

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

2105

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, pages 1-42, April 2015.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In /CLR, 2015.
J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller.
Striving for simplicity: The all convolutional net. In /CLR
workshop, 2015.

C. Szegedy, S. loffe, and V. Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on
learning. arXiv:1602.07261, 2016.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
CVPR, 2016.

S. Zagoruyko and N. Komodakis. Wide residual networks.
In BMVC, 2016.

X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient
and accurate approximations of nonlinear convolutional net-
works. In CVPR, June 2015.

