
Truncating Wide Networks using Binary Tree Architectures

Yan Zhang†, Mete Ozay†, Shuohao Li†‡ and Takayuki Okatani†§

†Tohoku University, ‡National University of Defense Technology, §RIKEN Center for AIP

{zhang,mozay,lishuohao,okatani}@vision.is.tohoku.ac.jp

Abstract

In this paper, we propose a binary tree architecture

to truncate architecture of wide networks by reducing the

width of the networks. More precisely, in the proposed ar-

chitecture, the width is incrementally reduced from lower

layers to higher layers in order to increase the expres-

sive capacity of networks with a less increase on param-

eter size. Also, in order to ease the gradient vanishing

problem, features obtained at different layers are concate-

nated to form the output of our architecture. By employ-

ing the proposed architecture on a baseline wide network,

we can construct and train a new network with same depth

but considerably less number of parameters. In our exper-

imental analyses, we observe that the proposed architec-

ture enables us to obtain better parameter size and accu-

racy trade-off compared to baseline networks using various

benchmark image classification datasets. The results show

that our model can decrease the classification error of a

baseline from 20.43% to 19.22% on Cifar-100 using only

28% of parameters that the baseline has. Code is available

at https://github.com/ZhangVision/bitnet.

1. Introduction

Recently, Deep Neural Networks (DNNs) have achieved

impressive results for many image classification tasks [5,

6, 14, 18, 23, 25, 26, 27]. Various architectures of DNNs

have been proposed in order to improve classification ac-

curacy. One approach used to improve accuracy of a DNN

is to widen each layer while keeping the depth unchanged.

For instance, it is empirically shown in [28] that a wide but

relatively shallow DNN can obtain an accuracy compara-

ble to a narrow but relatively deep DNN on several clas-

sification tasks. There are two crucial benefits of wide-

shallow DNNs. First, they usually run faster than narrow-

deep DNNs on parallel computing devices, e.g. GPUs, as

illustrated in [28]. Also, a deep DNN with many layers may

suffer from the gradient vanishing problem. Reducing the

depth can ease this problem as shown in [7]. However, pa-

input

output

forward	propagation

backward	propagation

256

256

256

block

layer

128

64 644

32 32

128

ContactenationConcatenation

input

output

Figure 1. Left: A conventional architecture [5]. Right: Proposed

binary tree architecture. Arrows indicate flow of data. The num-

bers depicted in the rectangle denote the width of the layer. Depth

of both architectures is 3, and their output width is 256. Our ar-

chitecture has considerably less number of parameters.

rameter size of DNNs may significantly increase with re-

spect to improvement of accuracy by widening each layer.

In this paper, we address a problem of improvement of

the parameter size and accuracy trade-off of the aforemen-

tioned wide-shallow DNNs. Specifically, given a baseline

wide-shallow DNN, we aim to construct and train a new

DNN equipped with the following two desirable properties:

1) The depth of the new DNN is not greater than that of the

baseline wide-shallow DNN so that it can keep the afore-

mentioned two benefits, and 2) the new DNN can achieve

comparable accuracy using relatively less number of param-

eters compared to the baseline DNN, or can achieve better

accuracy by using the same number of parameters that the

baseline DNN has.

Toward this end, we propose a binary tree architecture

for implementation of DNNs with a better trade-off. An

illustrative comparison of our proposed binary tree archi-

tecture and conventional architectures [5, 28] is given in

Figure 1. In conventional architectures, layers having same

width (number of channels) are sequentially stacked. In the

proposed binary tree architecture, the width of the kth layer

is D
2k−1 , where D is the width of the first layer (k = 1, in-

2097

https://github.com/ZhangVision/bitnet


put layer). Additionally, connections between layers of the

proposed architecture are established as connections used

in an asymmetric binary tree. At each kth layer of a binary

tree architecture, we have Ck = D
2k−1 channels. Then, Ck

2

of channels are connected to the channels of the (k + 1)st

layer. In addition, the remaining Ck

2
channels are directly

concatenated to form the output of the architecture. Note

that our binary tree architecture can be generalized to fully

connected layers in which the width is equal to the number

of neurons used at the layer.

Our motivation for employment of the proposed binary

tree architecture is twofold. First, we aim to increase the ex-

pressive capacity of DNNs with a relatively small increase

of parameter size. In this paper, we use the definition of ex-

pressive capacity proposed in [21, 19], where it is defined to

be the maximal number of linear regions of (decision) func-

tions computable by the given DNN. As shown in [21, 19],

it reflects the complexity of class decision boundary com-

putable by the DNN. Their results state that the maximal

number of linear regions of a fully connected feed forward

neural network endowed with ReLU [20] activation func-

tions grows exponentially with respect to the depth of the

network, and polynomially with respect to the width of the

network (i.e., the number of neurons used at each layer of

the network). Following this theoretical result, one can in-

crease the expressive capacity with a small increase of the

parameter size by simply stacking more layers with small

width. This leads to the first characteristic structure of our

binary tree architecture, which is obtained by continuous

decrease of the width from the input layer to the higher lay-

ers by a factor of 2−1. With this specific structure, the ex-

pressive capacity grows with small increase of the parame-

ter size. In our experiments, a binary tree used at convolu-

tional layers of a DNN can increase classification accuracy

with a small increase of parameter size of the DNN.

The second motivation for employment of our binary

tree architecture is to ease a vanishing gradient problem

observed in DNNs. While training DNNs, the magnitude

of gradient can be cumulatively reduced when it is prop-

agated from higher layers to lower layers. Therefore, the

more layers are used for propagation, the weaker gradient

will be obtained at the lower layers, which makes it diffi-

cult to train a DNN with many layers [1, 4]. Consequently,

the gradient vanishing problem suggests reduction of the

depth of a DNN, while increasing the depth may lead to effi-

cient improvement of the expressive capacity as mentioned

above. Thus, we need to trade-off between easing the gra-

dient vanishing problem and increasing the expressive ca-

pacity, which motivates our second characteristic structure

of our proposed binary tree architecture that is obtained by

concatenation of features obtained at different layers. With

this specific structure, gradients can propagate through short

path to lower layers. An illustration is given in Figure 1,

where flow of gradient propagation during backpropagation

is depicted by red dash line. For a better illustration of van-

ishing gradients, we use thicker red line to show stronger

gradient. Our empirical analyses given in Section 4.4 show

that concatenation of features at lower layers can ease the

gradient vanishing problem.

Our contributions are summarized as follows.

(1) We propose a binary tree architecture which can

be used to improve the trade-off between parameter size

and classification accuracy of baseline wide-shallow DNNs.

Meanwhile, the depth of the wide-shallow DNNs is not in-

creased using the proposed architecture in order to keep the

benefit of running speed on parallel computing devices.

(2) Our experimental results show that, on the Cifar

datasets, one can construct a DNN using the proposed bi-

nary tree architecture to achieve better accuracy but using

considerably less number of parameters. On the Cifar-100

dataset, our models can outperform corresponding baselines

by using only approximately 50% of baseline’s parameter

size. One of our models decreases the classification error

of a baseline from 20.43% to 19.22% by using only 28% of

parameters that the baseline has. On ILSVRC12 task, we

construct and train two DNNs using the proposed binary

tree architecture which also provide better parameter size

and classification accuracy trade-off than baseline models.

(3) We also provide a theoretical analysis of the ex-

pressive capacity of DNNs endowed with our proposed bi-

nary tree architecture as a function of its depth and width.

The theoretical results indicate that expressive capacity of

DNNs endowed with our proposed binary tree architecture

can grow with small increase of the parameter size.

Our paper is organized as follows. The second section

provides the related work. In Section 3, we introduce our

binary tree architecture. Experimental results and analyses

are given in Section 4. Section 5 concludes the paper.

2. Related Work

Recently, various architectures of convolutional neural

networks (CNNs) have been proposed [14, 18, 26, 23, 27,

25]. In [8], connections between random forests [2] and

CNNs are investigated. Inspired by random forests, they

embedded routing functions to CNNs, and obtained Condi-

tional CNNs. As shown in their experiments, Conditional

CNNs with highly branched tree architectures can improve

the accuracy-efficiency trade-off. Conditional CNNs can

be considered as symmetric full tree architectures. On the

other hand, we use an asymmetric tree architecture, and

concatenate features from different layers. In [15], a frac-

tal architecture used by FractalNet was proposed. The re-

lationship between FractalNets and our architecture is as

follows. Fractal architecture can also be considered as a

tree architecture. In addition, they both aim to ease the gra-

dient vanishing problem by joining lower-layer features to

2098



higher-layer features. The difference is that our architecture

aims to reduce the parameter size by incrementally reduc-

ing the width as depth increases, while FractalNets do not.

As a result, FractalNets have more number of parameters

compared to our proposed architecture for the same depth.

The motivation for development of our proposed architec-

ture considers the expressive capacity which is not inves-

tigated in FractalNets. Experimental results on benchmark

datasets also show that proposed architecture outperforms

FractalNets by using less number of parameters.

In previous works [10, 12, 16], various tree structures

were explored in the context of DNNs. All these related

work and our work enable an end-to-end training of tree

structures in DNNs. Our method is different from them in

the following aspects. In [12], a decision forest classifier

was introduced to replace a classifier used at the last classifi-

cation layer (usually Softmax) of a baseline DNN; other lay-

ers, e.g., convolutional layers, were left untouched. Thus,

the parameter size was not reduced unlike our method. In

[10], encoding and decoding functions of Auto-Encoders

were implemented using soft decision trees. Their motiva-

tion was to recursively direct samples from parent nodes to

all its child nodes according to probabilities computed by

gating functions, and the output of tree was the average of

output of all leaves weighted by gating values. In [16], a tree

structure was used in pooling layer, the region being pooled

was fed into the leaves of a tree structure, and results were

obtained at the root of tree structure. Therefore, they em-

ployed a tree architecture different from (in an inverse way

to) our tree structure.

As shown in [11, 29], the parameter size of a trained

CNN can be reduced by constructing a new CNN with less

redundant weights. However, these methods may cause a

decrease of accuracy after compression of models. With

our architecture, we can boost the accuracy using less num-

ber of parameters. In [5], a residual architecture was pro-

posed to construct CNNs (ResNets). ResNets enable us to

train considerably deeper CNNs. The deepest ResNets em-

ployed for classification using the ILSVRC12 [22] and Ci-

far datasets had 200 and 1000 layers, respectively [5, 6], and

achieved impressive performance. However, a deep ResNet

with many layers may suffer from two problems. First, the

running speed on parallel computing devices may be slow

compared to the speed of shallower ones. Thus, it takes

more time to train a very deep ResNet. Also, the gradient

vanishing problem [1, 4] may also be observed on a very

deep ResNet with many layers. To address these problems,

a novel training procedure called stochastic depth was in-

troduced in [7]. It enables one to train shallow ResNets

during training, and to use deep ResNets for testing. Shal-

low ResNets can ease the gradient vanishing problem dur-

ing training, and reduce the training time. Their experimen-

tal results show that their proposed training procedure can

improve the test accuracy of baseline ResNets with constant

depth. This indicates that easing the gradient vanishing

problem is crucial to train a very deep ResNet. However,

during the test time, the depth of ResNets is kept as same as

the depth of baseline, which decreases inference speed.

Intuitively, a simpler way to avoid gradient vanishing

problem and accelerate the running speed during train-

ing and inference is to use a shallow network. In [28],

Zagoruyko and Komadakis used a shallow ResNet, and in-

creased the width to make the expressive capacity com-

parable with narrow-deep ones. Interestingly, they ob-

served that wide-shallow CNNs can outperform its deeper-

narrower peer CNNs which have the same parameter size on

the Cifar-10/100 classification datasets. On the ILSVRC12

classification task, wide ResNets can also obtain compa-

rable accuracy with smaller depth. Their results draw our

attention to consider the wide-shallow DNNs. In their

method, the width of each layer was symmetrically in-

creased by the same factor. This significantly increases the

parameter size. Therefore, in this work, the proposed bi-

nary architecture truncate architecture of wide networks by

reducing width of the networks considering their parameter

size and accuracy trade-off. Our motivation for employ-

ment of binary tree architecture also considers the gradient

vanishing problem, which has been shown to be crucial for

training DNNs in [7].

3. Binary Tree Architecture

In this section, we give an overview of conventional

blocks used in previous works [5, 28], and introduce our

proposed binary tree architecture. Then, we theoretically

analyze expressive capacity and parameter size of our pro-

posed binary tree architecture considering its depth and

width.

3.1. Conventional Blocks

In various CNNs [23, 5, 6, 28], a block is constructed

by a stack of K convolutional layers. At each kth layer,

k = 1, 2, . . . ,K, we compute

Xk = fk(Xk−1;Wk), (1)

where X0 := X ∈ R
w×h×c, X is an input tensor of features

given to the block, Xk ∈ R
w

s
×

h

s
×D is the tensor of features

obtained at the output of kth layer, c is the number of chan-

nels, w is the width and h is the height of a feature map.

We assume that the number of convolutional filters used at

each layer is D, and down-sampling is performed at the

first convolutional layer by stride s. fk(Xk;Wk) is com-

puted by a composition of a convolution operation, batch

normalization [9] and nonlinear function σ, where Wk de-

notes a set of trainable parameters used at the kth layer, e.g.

the filter weights. The output feature tensor of the block

2099



is obtained at the last layer Y := XK ∈ R
w

s
×

h

s
×D. In (1),

we omit a shortcut connection and an element-wise addition

used in [5] to simplify the notation. We refer to the block

defined in (1) as a conventional block (ConvenBlock) with

width D and depth K in the following sections. An illustra-

tion of ConvenBlock with width 256 and depth 3 is given in

Figure 1 (left).

3.2. Binary Tree Blocks

We define a binary tree block (BitBlock) by a binary tree

T = (V, E), where V is the set of nodes residing in the

block, and E is the set of edges that connect the nodes. The

architecture of a BitBlock is determined by its width D and

depth K, where D is the channel number, i.e. number of

feature tensors provided by the BitBlock at the output, and

K is the depth of the binary tree T , as follows.

• At the root of a BitBlock T denoted by

v0 ∈ V , we have a feature tensor denoted by

X0,l := X ∈ R
w×h×c, where X is given as an input

to the block.

• At each kth layer (level) of a BitBlock, we apply two

mapping functions fk,l and fk,r to the input feature

tensor Xk−1,l. Then, we compute a feature tensor Xk,l

having D
2k

channels on a left child node of vk−1, and a

feature tensor Xk,r having D
2k

channels on a right child

node of vk−1 at the kth layer of T . The feature tensor

Xk,l is further fed to the next (k + 1)st layer. More

precisely, at each kth level, we compute

Xk,l = fk,l(Xk−1,l;Wk,l),

Xk,r = fk,r(Xk−1,l;Wk,r).
(2)

• Finally, feature tensors computed at all right child

nodes at each kth level of T , and the feature tensors

computed at the left child node at the last Kth level

of T are concatenated across channels to construct the

output feature tensor of the BitBlock by

Y = concat(X1,l •X2,l • · · · •XK,l •XK,r). (3)

The size of concatenated tensor Y is (w
s
× h

s
×D). In

the case of down-sampling, we apply a stride s at the

first layer as utilized in ConvenBlocks.

We note that D is divided by 2K . Moreover, if K = 1,

then the BitBlock T reduces to a single convolution layer.

Our BitBlocks can also be applied to fully connected lay-

ers using a feature tensor X ∈ R
1×1×C . We denote it by

a fully connected BitBlock. An illustration of our proposed

BitBlock with width of 256 and depth of 3 is given in Fig-

ure 1 (right). We can construct a DNN by stacking multiple

BitBlocks. In this paper, a DNN endowed with BitBlocks is

called a BitNet.

3.3. A Theoretical Analysis of Expressive Capacity
of Binary Tree Blocks

In this section, we theoretically analyze expressive ca-

pacity and parameter size of the proposed binary tree block

with respect to its depth and width, when it is used at fully

connected layers. We use the definition of expressive capac-

ity proposed in the previous work [21, 19]. More precisely,

expressive capacity of a DNN is defined by the maximal

number of linear regions of (decision) functions computable

by the given DNN. The formal definition of linear regions

of a function is given as follows.

Definition 3.1 (Linear Region). Given a function f(·) with

n-dimensional input space Rn, a linear region R
n
i of f(·) is

a subspace of its input space, such that f(·) computes a lin-

ear mapping on that linear region, i.e. f(x) := wix+ bi,

∀x ∈ R
n
i , and f(x) : 6= wix+ bi, ∀x /∈ R

n
i .

Suppose that a decision function f(·) is computed by a

DNN. Then, the more number of linear regions f(·) has,

the more complex input-output mapping the DNN can com-

pute. In other words, the DNN can be used to compute

more complex decision boundary, and to solve more com-

plex classification tasks. A multilayer perceptron network

implementing a linear activation function computes a lin-

ear mapping between input and output. Thus, it only has 1
linear region, i.e. the whole input space.

We provide the following two theoretical results regard-

ing i) computation of the parameter size, and ii) computa-

tion of the maximal number of linear regions of functions

computable by a fully connected conventional network and

a BitNet. Proofs of the theorems are given in the supple-

mental material. We first provide the results for conven-

tional networks that can be easily derived using the results

given in [19].

Corollary 3.2. Suppose that we are given a fully connected

neural network stacked by L fully connected ConvenBlocks

each having width D and depth K. The parameter size

of the given network is O
(

LKD2
)

. The maximal number

of linear regions of functions that can be computed by the

given network in an n-dimensional (D ≥ n) input space is

lower bounded by O
(

(D
n
)nKL

)

. �

The expressive capacity of our proposed BitNet is given

as follows.

Proposition 3.3. Suppose that we are given a BitNet

stacked by L fully connected BitBlocks each having width

D and depth K. The parameter size of the given BitNet is

O
(

4

3
L
(

1− 1

4K

)

D2

)

. The maximal number of linear regions

of functions that can be computed by the given BitNet in an

n-dimensional (D ≥ 2Kn) input space is lower bounded by

O
(

(

D
2Kn

)nKL
)

. �

2100



As we observe from these theoretical results, if D and L
are fixed, then the expressive capacity of BitNets can grow

with a small increase of the parameter size as K increases.

Although the expressive capacity of a fully connected con-

ventional network can grow faster as K increases, its pa-

rameter size also grows faster than that of a BitNet. Al-

though these theoretical results are obtained for fully con-

nected layers, our experimental observations reflect that the

results can be applied also for the convolutional layers. In

our experiments, we observe that a binary tree used at con-

volutional layers of a DNN can increase classification accu-

racy with a small increase of parameter size of the DNN.

4. Experimental Results

We empirically analyze the proposed binary tree archi-

tecture using various baseline ResNets and several bench-

mark image classification datasets. We also analyze the gra-

dient vanishing problem of the proposed binary tree archi-

tecture. In the implementation of BitNets, given a baseline

ResNet, we can construct a BitNet of the same depth and the

same block width with considerably fewer parameters com-

pared to the baseline (ResNet). We can also increase the

block width but keep the depth of baseline model using the

proposed binary tree architecture, and obtain a BitNet with

a similar number of parameters. The configuration details

of BitNets are given for each classification task.

4.1. Cifar­10 and Cifar­100

Cifar-10 and Cifar-100 [13] are image datasets consist-

ing of 50,000 training images and 10,000 test images. The

spatial size of each image is 32×32. Cifar-10 and Cifar-100

consist of 10 and 100 categories, respectively. The architec-

tures of BitNets and ResNets used to perform analyses on

the Cifar datasets are given in Table 1. As we can see from

the table, the depth of a net is determined by the number of

blocks in each group (n), and the depth of each block (k).

The width of each block is denoted by d.

We first compare performance of our proposed BitNets

and that of Wide ResNets [28] by constructing nets with

same depth and block width. Specifically, given a Wide

ResNet with fixed value of d, k, and n, we use the same

block width d for a BitNet. Then, we set values of k and n
for the BitNet, such that the total depth of the BitNet equals

to the total depth of the given Wide ResNet. We can use

different value combinations of k and n for the BitNet as

long as k × n value for the BitNet equals to k × n for the

given Wide ResNet. For example, given a 38-layer Wide

ResNet with (d = 4, k = 2, n = 6), we can construct

a BitNet with (d = 4, k = 3, n = 4) or a BitNet with

(d = 4, k = 4, n = 3), both having 38 layers.

For fare comparison with Wide ResNets, we use the

same training and testing setting as employed in [28]. The

details of the setting are given in the supplemental material.

Group Name Configuration Output Size

conv1 conv, 16 channels 32× 32

conv2 block(d× 16, k)× n 32× 32

conv3(↓) block(d× 32, k)× n 16× 16

conv4(↓) block(d× 64, k)× n 8× 8

gap global average pooling 1× 1

fc 10 or 100-way softmax

Table 1. The CNN architecture employed for classification using

the Cifar-10 and Cifar-100. BitNets use BitBlock as block type,

and ResNets use ConvenBlock with residual connection. k de-

notes the depth of each block (k = 2 for all ResNets used in this

paper). d denotes the width of each block. n denotes a stack of

n blocks. All convolutional layers use filters of size 3 × 3. Batch

Normalization is used at every convolutional layer before ReLU.

Down-sampling is performed by applying stride 2 at the first con-

volutional layer of the first block in Group conv3 and conv4.

Table 2 provides the comparative results for several Wide

ResNets and BitNets, which are designed using the same

width and depth. As we can see from the results, using the

same depth and width, BitNets have considerably less num-

ber of parameters and FLOPs. Moreover, BitNets can out-

perform Wide ResNets using considerably less number of

parameters. We compare BitNets with four baseline Wide

ResNets. In the analyses, we obtained the following results:

(1) A Wide ResNet having (d = 4, k = 2, n = 6) is

the deepest and narrowest architecture among four baseline

architectures. The BitNet (d = 4, k = 4, n = 3) and the

BitNet (d = 4, k = 3, n = 4) can obtain performance

comparable to this baseline, and their parameter size is only

30% and 41% of that of this baseline, respectively. The

BitNet (d = 4, k = 2, n = 6) is constructed by using larger

number of blocks, but reducing the depth of each block. As

shown in Section 4.4, this BitNet suffers from the gradient

vanishing problem during the training due to use of small k
and large n. As a result, the performance slightly degrades.

BitNet (d = 4, k = 6, n = 2) has the least parameter size,

i.e. has only 19% of the baseline’s parameter size. However,

it also performs worst.

(2) Compared with the first baseline ResNet (d = 4, k =
2, n = 6), the baseline ResNet (d = 10, k = 2, n = 2) is

wider and shallower. The BitNet (d = 10, k = 2, n = 2)
outperforms it by 1% for the Cifar-100 dataset by using ap-

proximately 56% of the baseline ResNet’s parameter size.

Another configuration of BitNet (d = 10, k = 4, n = 1)
uses only one BitBlock at each group, resulting in only

23% of the baseline’s parameter size. However, the perfor-

mance is also degraded by more than 1% using the Cifar-

100 dataset. For the Cifar-10 dataset, both BitNets obtain

similar performance compared to the baseline.

(3) For the Wide ResNet (d = 10, k = 2, n = 3), both

2101



Model Depth Number of Parameters FLOPs Cifar-10 Cifar-100

NIN [18] - - - 8.81 35.67

ELU [3] - - - 6.55 24.28

DSN [17] - - - 7.97 34.57

AllCNN [24] - - - 7.25 33.71

ResNet [5] 1202 10.2M - 4.91 −

preact-ResNet [6] 1001 10.2M - 4.62 22.71

Stochastic Depth ResNet [7] 110 1.7M - 5.25 24.98

FractalNet [15] 40 22.9M - 5.24 22.49

Wide ResNet (d=4,k=2,n=6) [28] 38 8.9M 1.34× 109 4.97 22.89

BitNet (d=4,k=3,n=4) 38 3.7M 0.53× 109 4.82 22.19

BitNet (d=4,k=4,n=3) 38 2.7M 0.39× 109 4.65 22.60

BitNet (d=4,k=2,n=6) 38 5.4M 0.78× 109 5.31 23.22

BitNet (d=4,k=6,n=2) 38 1.7M 0.24× 109 4.77 23.87

Wide ResNet (d=10,k=2,n=2) [28] 14 17.1M 2.64× 109 4.56 21.59

BitNet (d=10,k=2,n=2) 14 9.6M 1.32× 109 4.17 20.48

BitNet (d=10,k=4,n=1) 14 3.9M 0.49× 109 4.97 23.88

Wide ResNet (d=10,k=2,n=3) [28] 20 26.8M 4.06× 109 4.44 20.75

BitNet (d=10,k=2,n=3) 20 15.6M 2.21× 109 3.78 19.29

BitNet (d=10,k=3,n=2) 20 10.2M 1.41× 109 3.81 19.37

Wide ResNet (d=12,k=2,n=4) [28] 26 52.5M 7.87× 109 4.33 20.43

BitNet (d=12,k=2,n=4) 26 31.2M 4.45× 109 4.07 19.06

BitNet (d=12,k=4,n=2) 26 14.9M 2.06× 109 4.11 19.22

Table 2. Classification error (%) of CNNs for the Cifar-10/100 datasets. Using the same depth and block width, our BitNets can outperform

Wide ResNets using considerably less number of parameter size. Underlined numbers indicate the best performance among models having

the same depth and same block width. Bold numbers denote the best performance obtained for all models. Definitions of d, k and n are

given in Table 1. All of Wide ResNets and our BitNets are trained using data augmentation, and without using dropout.

BitNets obtain more than 1% performance boost using the

Cifar-100 dataset. For the Cifar-10 dataset, the performance

boost is more than 0.5%. Notably, the parameter size of the

BitNet (d = 10, k = 3, n = 2) is only 38% of the parameter

size of the baseline.

(4) The Wide ResNet (d = 12, k = 2, n = 4) has the

largest parameter size among four baseline models. Our

two BitNets both outperform the baseline by more than 1%
accuracy. Note that the parameter size of the BitNet (d =
12, k = 4, n = 2) is only 28% of that of the baseline.

We emphasize that the performance of baseline Wide

ResNets are already close to the state-of-the-art. Thus,

more than 1% boost of the accuracy is obtained. To sum-

marize, most of our BitNets can achieve better or approx-

imately equal accuracy using less number of parameters,

which indicates that our binary tree architecture can im-

prove the parameter size and accuracy trade-off of baseline

Wide ResNets. There are two BitNets whose accuracy are

roughly 1% lower than that of their baselines. This is possi-

bly because they use too less number of BitBlocks causing

insufficient expressive capacity. The rest of BitNets obtain

sufficient expressive capacity using relatively less number

of parameter size. Compared with other previous models,

such as Stochastic Depth ResNet [7] and FractalNet [15],

our BitNets can outperform them using less number of pa-

rameters.

4.2. ILSVRC12

In order to evaluate the proposed architecture on a large

scale image classification dataset, we also use the training

and validation dataset of ILSVRC12 [22], which consists

of 1.3 million training images and 50,000 validation images

belonging to 1000 categories. The details of training and

testing settings are given in the supplemental material.

In this task, we construct two BitNets (BitNet-26 and

BitNet-34) in order to compare their performance with that

of ResNet-34 [5]. The details of models are given in Ta-

ble 3. The classification results are given in Table 4. The

results show that our BitNets have better parameter size

and accuracy trade-off compared to ResNets. In the re-

sults, BitNet-34 outperforms ResNet-34 B by 1% using the

same parameter size, while their depth is the same. An-

2102



Group BitNet-26 BitNet-34 Output Size

conv1 conv 7× 7, 64 channels, stride 2 112× 112

conv2
max pooling 3× 3, stride 2

56× 56
b(128, 3)× 2 b(256, 4)× 2

conv3
b(192, 3)× 1 b(384, 4)× 2

28× 28
b(256, 3)× 1

conv4 b(384, 3)× 2 b(512, 4)× 2 14× 14

conv5
b(512, 3)× 1 b(768, 4)× 2

7× 7
b(768, 3)× 1

gap global average pooling 1× 1

fc 1000-way softmax

Param. 12.79M 22.99M

FLOPs 2.8× 109 7.8× 109

Depth 26 34

Table 3. Structures of BitNets used for classification of the

ILSVRC12 dataset. b(d, k) × n refers to a stack of n BitBlocks

with width d and depth k. All convolutional layers employed in

each BitBlock use filters of size 3× 3. The output size is reduced

by applying stride 2 at the first convolutional layer of the first block

in some groups.

Model
Single

Crop

Ten

Crop
Number of Parameters

ResNet-18 B [5] 30.43 28.22 13.1M

Width ×1.5 [28] 27.06 − 25.9M

Width ×2 [28] 25.58 − 45.6M

FractalNet-34 [15] − 24.12 −

ResNet-34 B [5] 26.73 24.76 23.2M

Width ×1.5 [28] 24.5 − 48.6M

BitNet-26 27.74 25.83 12.8M

BitNet-34 25.46 23.77 23.0M

Table 4. Single model, Top-1 classification error (%) obtained us-

ing the ILSVRC12 validation dataset.

other smaller BitNet-26 obtains 1% higher error compared

to ResNet-34 B. However it is shallower and its parame-

ter size is approximately 50% of ResNet-34 B. Compared

to the FractalNet-34 model, BitNet-34 also outperforms it.

BitNet-26 outperforms ResNet-18 B by approximately 2%
accuracy using the same number of parameters. Increasing

the wide of ResNet-18 by methods given in [28] can im-

prove the accuracy. However, the cost for obtaining the im-

provement is also huge. BitNet-26 and ResNet-18 B width

×1.5 have comparable accuracy, but the parameter size of

our BitNet is almost two times smaller than that of ResNet.

Similarly, the parameter size of BitNet-34 is only 50% of

ResNet-18 width ×2.

BitNet

(d = 4, k, n = 4)
BitNet

(d = 12, k, n = 2)

Param. Cifar10/100 Param. Cifar10/100

k = 1 2.7M 4.98/23.54 10.3M 6.02/23.80

k = 2 3.5M 4.68/22.72 13.8M 4.02/19.86

k = 3 3.7M 4.82/22.19 14.7M 3.98/18.97

k = 4 3.7M 4.69/22.65 14.9M 4.11/19.22

k = 5 3.7M 4.69/22.86 15.0M 4.09/18.95

k = 6 3.7M 4.77/22.69 15.0M 4.19/19.51

Table 5. Change of classification error (%) of two BitNets with

respect to k using the Cifar-10/100 datasets. Definitions of d, n,

and k are given in Table 1.

4.3. Experimental Analyses of Effect of Depth of
BitBlock to Classification Performance

We observe that using the same width d and the same

number of BitBlocks n, BitBlocks having different depth

may provide different performance (see BitNet (d =
10, k = 3, n = 2) and BitNet (d = 10, k = 2, n = 2)
in Table 2). Thus, we further analyze how performance of

BitNets changes with respect to the depth of BitBlocks. For

this purpose, we evaluate BitNet (d = 4, k, n = 4) (a deep-

narrow one) and BitNet (d = 12, k, n = 2) (a relatively

shallower-wider one) by setting different values to k. The

results are given in Table 5. As illustrated in the table, as

k increases, both BitNets gain a performance boost due to

an increase of the expressive capacity. Note that for the Bit-

Net (d = 12, k, n = 2) employed using the Cifar-100, there

is almost a 4% performance boost from k = 1 to k = 2
with a 33% increase of parameter size. We observe that the

performance boosts further as k increases. These observa-

tions match our theoretical analyses provided in Section 3.3,

which states that as d and n are fixed, increasing k can in-

crease the expressive capacity of a BitNet with a small in-

crease of parameter size. However, the boosting trend tends

to be saturated if k ≥ 3, and the increase of parameter size

is also negligible. This can be explained as follows. As k
increases, the width of convolutional layer also decreases

in the binary tree architecture resulting in a saturated ex-

pressive capacity. Additionally, we also observe that wider

BitNets (d = 12) gain more performance boost than a nar-

rower Bitnet (d = 4) with the same increase on k. This is

simply because the increased layers of the wider BitNet are

wider than that of the narrower one, thus it can increase the

expressive capacity more.

4.4. Experimental Analyses for the Gradient Van­
ishing Problem

In this section, we analyze our BitNets considering the

gradient vanishing problem. During the training of a BitNet

or Wide ResNet using the Cifar-100, we compute the mean

2103



0 50 100 150 200
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
e
a
n

 g
ra

d
ie

n
t 

m
a
g

n
it

u
d

e
 p

e
r 

e
p

o
ch

wide resnet-38

plainnet-38

b(4,1,2)-8

b(4,2,2)-14

b(4,4,2)-26

b(4,6,2)-38

b(4,2,6)-38

b(4,3,4)-38

b(4,4,3)-38

Figure 2. Mean magnitude (L2-norm) of gradients computed

per epoch during the training at the first convolutional layer.

b(d, k, n) − m refers to an m-layer BitNet with configuration

(d, k, n) defined in Table 1. Best viewed in color print.

magnitude (L2-norm) of gradients obtained at the first con-

volutional layer per epoch. The results are given in Figure 2.

We analyze the results using nine models having different

depth but same width d = 4. In the figure, wide resnet-38

refers to the Wide ResNet (d = 4, k = 2, n = 6) having 38
layers, and plainnet-38 is the one designed without using

residual connections. Models denoted by b(d, k, n)−m are

our proposed BitNets where m is the total depth.

As we can see from the figure, for all models having 38
layers, our BitNet b(4, 6, 2)− 38 shows the strongest mag-

nitude, even stronger than wide resnet-38. This result indi-

cates that using concatenation in the proposed binary tree

architecture can ease the gradient vanishing problem. We

also observe that gradient becomes weaker as the number

of blocks n is increased and the depth k of each BitBlock is

reduced. For instance, for all 38 layers BitNets, the magni-

tude can be roughly sorted by b(4, 2, 6)−38, b(4, 3, 4)−38,

b(4, 4, 3)− 38 and b(4, 6, 2)− 38 according to the increas-

ing strength of the magnitude. This observation reflects that

as n increases and k decreases, features obtained at less

number of lower layers are concatenated to form the output

of each BitBlock. In general, gradients propagate towards

more layers to reach lower layers.

We also analyze how magnitudes of gradients change

with respect to BitBlock’s depth k, when d and n are fixed.

In the results, b(4, 1, 2)−8 provides the strongest magnitude

among all nine models as expected, since it is the shallow-

est model. By increasing k, we observe that the magnitudes

computed using BitNet b(4, 2, 2) − 14 and b(4, 4, 2) − 26
are decreased, since more layers are used to propagate gra-

dients in BitBlocks.

Model Number of Parameters Error

wide resnet-38 8.9M 22.89

plainnet-38 8.9M 29.13

b(4, 1, 2)− 8 1.2M 29.19

b(4, 2, 2)− 14 1.5M 25.45

b(4, 4, 2)− 26 1.7M 22.72

b(4, 6, 2)− 38 1.7M 23.87

b(4, 2, 6)− 38 5.4M 23.22

b(4, 3, 4)− 38 3.7M 22.19

b(4, 4, 3)− 38 2.7M 22.60

Table 6. Classification error (%) of the models given in Figure 2

obtained using the Cifar-100 dataset.

The errors obtained using these nine models are given

in Table 6. Although b(4, 1, 2) − 8 and b(4, 2, 2) − 14
show stronger gradient magnitude than wide resnet-38, they

provide higher classification error. This is mainly because

the depth of these two BitNets is too small resulting in in-

sufficient expressive capacity. BitNet b(4, 4, 3) − 38 ob-

tains comparable classification performance by using larger

depth. The gradient magnitude of BitNet b(4, 4, 3) − 38
is also comparable with that of resnet, which benefits from

the proposed binary tree architecture. Without using binary

tree architecture, the gradient magnitude of plainnet-38 is

weaker and its final classification error is higher compared

to that of resnet-38.

5. Conclusions

We introduced a binary tree architecture in order to trun-

cate architecture of wide networks considering their param-

eter size and accuracy trade-off. In the proposed architec-

ture, the width of each layer of a network is incrementally

reduced from lower layers to higher layers of the network.

Moreover, features obtained at different layers are concate-

nated to form the output of our architecture. In the theoreti-

cal analysis, we explored the expressive capacity of BitNets.

In our experiments, the networks which were designed us-

ing the proposed architecture, called BitNets, obtained bet-

ter parameter size and accuracy trade-off on several bench-

mark datasets compared to baseline networks endowed with

conventional architectures. Additionally, we observed that

the concatenation structure can ease the gradient vanishing

problem. In our future work, we plan to use BitNets for

object detection tasks.

Acknowledgement

This work was partly supported by CREST, JST Grant
Number JPMJCR14D1 and JSPS KAKENHI Grant Num-
ber JP15H05919.

2104



References

[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term

dependencies with gradient descent is difficult. IEEE Trans-

actions on Neural Networks, 5(2):157–166, 1994.

[2] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001.

[3] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accu-

rate deep network learning by exponential linear units(elus).

In ICLR, 2016.

[4] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In AISTATS,

2010.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In ECCV, 2016.

[7] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.

Deep networks with stochastic depth. In ECCV, 2016.

[8] Y. Ioannou, D. P. Robertson, D. Zikic, P. Kontschieder,

J. Shotton, M. Brown, and A. Criminisi. Decision

forests, convolutional networks and the models in-between.

arXiv:1603.01250, 2016.

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015.

[10] O. Irsoy and E. Alpaydin. Autoencoder trees. In ACML,

2014.

[11] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions. In

BMVC, 2014.

[12] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. B. .

Deep neural decision forests. In ICCV, 2015.

[13] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Master’s thesis, Department of

Computer Science, University of Toronto, 2009.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012.

[15] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet:

Ultra-deep neural networks without residuals. In ICLR,

2017.

[16] C.-Y. Lee, P. Gallagher, and Z. Tu. Generalizing pooling

functions in convolutional neural networks: Mixed, gated,

and tree. In AISTATS, 2016.

[17] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. In AISTATS, 2015.

[18] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,

2014.

[19] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the

number of linear regions of deep neural networks. In NIPS,

2014.

[20] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In ICML, 2010.

[21] R. Pascanu, G. Montúfar, and Y. Bengio. On the number of

inference regions of deep feed forward networks with piece-

wise linear activations. In ICLR, 2014.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, pages 1–42, April 2015.

[23] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

[24] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller.

Striving for simplicity: The all convolutional net. In ICLR

workshop, 2015.

[25] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,

inception-resnet and the impact of residual connections on

learning. arXiv:1602.07261, 2016.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, 2016.

[28] S. Zagoruyko and N. Komodakis. Wide residual networks.

In BMVC, 2016.

[29] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient

and accurate approximations of nonlinear convolutional net-

works. In CVPR, June 2015.

2105


