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Abstract

In this paper, we propose a novel single image action

recognition algorithm based on the idea of semantic part

actions. Unlike existing part-based methods, we argue that

there exists a mid-level semantic, the semantic part action;

and human action is a combination of semantic part ac-

tions and context cues. In detail, we divide human body into

seven parts: head, torso, arms, hands and lower body. For

each of them, we define a few semantic part actions (e.g.

head: laughing). Finally, we exploit these part actions to

infer the entire body action (e.g. applauding). To make the

proposed idea practical, we propose a deep network-based

framework which consists of two subnetworks, one for part

localization and the other for action prediction. The action

prediction network jointly learns part-level and body-level

action semantics and combines them for the final decision.

Extensive experiments demonstrate our proposal on seman-

tic part actions as elements for entire body action. Our

method reaches mAP of 93.9% and 91.2% on PASCAL VOC

2012 and Stanford-40, which outperforms the state-of-the-

art by 2.3% and 8.6%.

1. Introduction

Single image action recognition is a core computer vi-

sion task which aims to identify the human action in still

images where location prior is provided. It enables bet-

ter performance of image captioning [27], image and video

analysis [23], human-computer interactions [3] and etc.

Early single image action recognition methods ex-

ploit cues such as interactive objects [11], part appear-

ance [10, 14], template matching [5, 28] and spatial rela-

tionships [32]. Among them, part-based methods [10, 14,

32] are most successful, which extract appearance features

from body parts. Recently, benefiting from deep neutral net-

works [22, 12], part-based methods have obtained promis-

ing results.

However, there exists a semantic gap between part ap-
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Figure 1. Inferring body action by semantic part actions. Previ-

ously part-based method [32] mis-classifies the action as “drink-

ing” only because of the hands holding bottles. Our method, how-

ever, makes the correct prediction “pouring liquid” by noticing

semantic part actions that his head is lowered and two arms are

curving down.

pearance and body actions. Most existing methods use deep

neural network as a black box and bridges such gap. Unfor-

tunately, part appearance might be weakly associated with

body actions. We show an example in Fig.1, the hand hold-

ing a bottle makes the action be mislabeled as “drinking”

by previous part-based method [32], his head appearance of

“wearing glasses” can hardly correct this action to be “pour-

ing liquid”.

We argue that there exists a mid-level semantic which

essentially connects part appearance and body action. We

name it the semantic part action. Referring to the example

in Fig.1, by noticing the semantic part actions that the man’s

head is looking down and his arms are curving down, one

might infer that he is actually “pouring liquid” rather than

“drinking”.

In this paper, we focus on exploiting semantic part ac-

tions to improve body action recognition. To this end, we

propose a novel single image action recognition framework.

As illustrated in Fig.2, first, we locate body parts (head,

torso, arms, hands and lower body) using a key-point pre-
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Figure 2. The proposed framework for part action prediction and body action prediction.

diction network. Second, and most importantly, body and

part images are fed into a Part Action Network (PAN) to

predict body actions. The proposed Part Action Network is

composed of multiple branches: two body action branches

that respectively receive body and part images as input and

perform as common classification networks to predict body

actions, a part action branch that predicts part actions, and a

fusion branch that learns to combine part actions and body

actions1. For the part action branch, we define a set of se-

mantic part actions, e.g.,“head: looking up”, “hand: sup-

porting” , and collect annotations.

We evaluate our method on two popular but challenging

dataset: (1) PASCAL VOC 2012 [7] and (2) Stanford-40

[29]. Our method reports improvements from the state-of-

the-art [11, 32, 31] by 2.3% and 8.6% (mean average preci-

sion, mAP).

The contributions of this paper are three-fold: first, we

propose the concept that human action can be inferred by

local part actions, which is a mid-level semantic concept.

Second, we propose the methodology which combines body

actions and part actions for action recognition. And finally,

the proposed method provides significant performance im-

provement from the state-of-the-art methods.

2. Related work

Single image action recognition. There are mainly

three existing strategies for single image action recogni-

tion: context-based approaches, part-based approaches and

template-based approaches. For context-based approaches,

cues of interactive objects are critical. Gkioxari et al. [11]

employ object proposals [24] to find proper interactive ob-

jects. Zhang et al. [31] propose a method that segments

1In our implementation, these branches share convolutional layers, see

Sec.4.2.

out the precise regions of underlying human-object interac-

tions with minimum annotation efforts. Template-based ap-

proaches focus on action structures. Desai and Ramanan [5]

learn a tree structure for each action, treating poses and in-

teractive objects as leaf nodes and modeling their relations.

Yao and Li [28] combine view-independent pose informa-

tion and appearance information, and propose a 2.5D repre-

sentation.

Part-based methods. The human body parts provide

rich information for action. For action recognition and

fine-grained recognition, part-based methods have shown

promising results [18, 30, 26, 10]. A typical approach to

combine global appearance and part appearance is concate-

nating their features and then use a custom classifier to pre-

dict [14]. In [10], parts are supervised by body actions,

and specific networks are trained to distinguish them. In

[6] the relationship of visual attribute and recognition has

been studied, the concept of attribute can be also consid-

ered as one kind of variety of appearance. Zhao et al. [32]

detect semantic parts within the bounding box, and arrange

their features in spatial order to extend inter-class variance.

These previous part-based methods can be represented by a

model as shown in Fig.3(b).

Additional annotations. In [17] the authors use “attribute”

to help recognize actions. Their attributes are mainly pro-

posed to describe the whole body and motion scenarios, e.g.

“torso translation with arm motion”. However, our part ac-

tions are “atoms” or bases which describe actions of fine

parts. In this way, body actions are decoupled with part ac-

tions, and it is more possible to describe numerous body

actions by a finite part action set.

Pose estimation and key-point localization. To distin-

guish part actions, it is important to localize fine parts.

In this paper, we employ methods on human pose estima-

tion [1, 33, 21, 19]. Given key-point locations, it is conve-
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Figure 4. Entire body actions as combination of semantic part ac-

tions.

nient and accurate to generate part bounding boxes.

3. Semantic Part Actions

3.1. Semantic part action as mid­level semantics

Body action recognition aims to infer the high-level se-

mantics from low-level body appearance, as illustrated in

Fig.3(a). With the recently development of deep neural net-

works, one might get a reasonable performance by directly

linking body appearance and action as a black box.

Most existing part-based methods, however, consider a

break-down of the human body, and learn connections be-

tween part appearance and body actions (Fig.3(b)). ”Pose-

let” [18] is a typical method that learns body parts by clus-

tering algorithm, which is mainly based on part appearance.

Similarly, [10] can be seen as one of “existing part-based

methods” which mainly rely on part appearance. However,

   head
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hand

 waving

hand

supporting

hand

washing

head

looking up

 torso

bending

hand

writing

Figure 5. Examples of semantic part actions. Images are from

Stanford-40 dataset [29].

without supervision, part appearance is not always strong

associated with the final body action. For example, a man’s

head appearance of “wearing glasses” can hardly reflect the

man’s action of “writing on a book”, while the man’s head

action of “looking down” is more relevant.

We argue that the entire human body action is not only

a direct combination of body and part appearance, but there

exists a mid-level semantic, local part actions. As shown

in Fig.3(c), part actions are transformed from part appear-

ance, and used as mid-level semantics to help to infer body

actions. Semantic part actions provide strong cues for body

actions. For example, if part actions are “head: looking

down”, “torso: bending”, “arms: curving down”, “hands:

fully holding” and “lower body: crouching”, even without

seeing the image, we can guess the entire action is “fixing

something”. In Fig.4 we show more examples.
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Figure 6. The pipeline of generating part bounding boxes.

Table 1. List of part actions.

head

breathing
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drinking, eating merging
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bending half holding

lying fully holding
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lower body
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normal walking

arm
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curving (down) forking
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3.2. Part action definition

As far as we know, there is no existing works on defining

and identifying semantic part actions. And thus, we try to

define a set of frequently appeared semantic part actions.

First of all, we define seven body parts: head, torso,

lower body, arms and hands. Each of them has some seman-

tic actions, as illustrated in Fig.5. For example, the head can

be “laughing”, “looking through”, “looking up” etc.

As for part action definition, we aim at balancing diver-

sity and compactness. We try to use as less part actions as

possible (compactness) to compose as many body actions

as possible (diversity).

For compactness, we try to make the part action set finite

and minimize effect of objects. For example, for “hand:

holding” we only propose “half holding” and “fully hold-

ing” to reflect the sizes of interactive objects roughly 1. For

diversity, if semantic of a part is truly different, we add a

category to describe it, e.g. “hand: writing”. A full list

of possible actions is provided in Tab.1. For each part we

enumerate common and meaningful part actions, based on

which many body actions can be described (as shown in

Fig.4).

1“Half holding” presents a hand that holds big object and half-clenched,

such as bottles, buckets, tennis balls etc. While “fully holding” presents a

hand interacting with narrow objects like sticks and ropes.

Since there are no part action annotations off-the-shelf,

we collect annotations from the training set of Stanford-

40 [29] which are manually labeled by volunteers. Despite

that our part action set is constructed from a single dataset,

we find it generalizes well in other datasets (see Sec.5.2),

which also confirm our assumption on decomposing body

action into part actions. We will release our annotations,

models and codes.

4. Action Recognition

In this section, we introduce our body action prediction

framework and the proposed Part Action Network (PAN).

As illustrated in Fig.2, first, a key-point prediction net-

work is used to localize human joints, then bounding boxes

of our defined parts can be generated by simple post-

processing. Second, a Part Action Network is used to iden-

tify part actions and body actions.

4.1. Body part localization

We employ a key-point prediction network to efficiently

localize multiple body parts. The reasons why we choose

such a network are two-fold: (1) The key-points have essen-

tially shown the locations of parts, with which part bound-

ing boxes can be generated by post-processing. (2) There

are abundant annotations and datasets [2, 16] for the key-

point prediction task, which is also known as pose estima-

tion.

Even though person bounding boxes are provided for

action recognition, sometimes there are multiple people

within one bounding box. Among various pose estimation

methods [19, 33] we choose the Part Affinity Fields Net-

work (PAF, [33]), which can handle multi-person tasks,

to predict key-points. We find that a PAF network pre-

trained on MS-COCO [16] performs surprisingly well on

other datasets like Stanford-40 and PASCAL VOC 2012.

The pipeline of generating part bounding boxes is shown

in Fig.6. The PAF network receives an person bounding

box image (a) as input and produces all possible landmarks

locations (b). By a greedy algorithm provided by [33], land-

marks are grouped into multiple people. We choose the

largest one (c) and generate part bounding boxes by post-

processing (d). In details, most part bounding boxes are

computed as the minimum bounding boxes enclosing the

related key-points. For example, we can generate a bound-
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Figure 7. Networks architectures of Baseline Network, Part-based Network and Part Action Network, all of which are modified from a
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appearance and part actions. “P” denotes pooling. Except for black arrows connected with concatenation layer, slice layer and sum

operation, others denote that features are transformed by fully connected layers.

ing box for torso using key-points of shoulders and hips.

Since there are no key-points describing the top of head and

hands, their bounding boxes are treated differently: for the

head, we place a bounding box with center at the same ver-

tical coordinate of the nose landmark and width constrained

by the ears/eyes landmarks. For hand we extend the line

from elbow to wrist by half, setting the endpoint as the

bounding box center, and set its width and height to be the

length of the forearm (f). All part bounding boxes are ex-

panded by 50% to cover some context as (e).

In case of part localization fails we define some rules: if

no landmarks can be localized of a certain part, we use a

blank image as placeholder in the network (see Sec.4.2). If

some of landmarks can be localized, we infer its location

by the articulated part. In our experiments, the keypoint

localization is highly accurate, so the generation of parts is

also highly consistent.

4.2. Part and body actions prediction

In this section, we describe our Part Action Network

(PAN) which receives both images and localized parts as in-

put, and jointly learns body actions, part actions and fusion

features for action prediction. As a comparison, we also

propose two networks for baseline and existing part-based

methods: 1) Baseline Network, 2) Part-based Network. We

demonstrate their structures and discuss the differences.

Baseline Network. For action recognition, person bound-

ing boxes are provided. It is common to use two images:

image within the bounding box (denoted by Ibbox) and the

whole image (denoted by Iw), as shown in Fig.7. In our im-

plementation, we use the 50-layer ResNet [12] as a front-

end convolution network. Both Ibbox and Iw are resized

to 224 × 224 and fed into the front-end network, proceed-

ing 32× downsampling. Their features fbbox (red block in

Fig.7) and fw (blue block) are separated via a slice layer ap-

plied on the pool5 feature map, and are concatenated as the

final features for action classification. In the training phase

we train three classifiers (black boxes, all are supervised by

“waving hands”), while in test phase only the last classifier

is used to output probability scores. In our framework Ibbox
and Iw are treated as individual samples, an alternative way

of combining them is using a ROI pooling layer from fast-

RCNN[8]. However, it may be difficult for ROI pooling

layer to extract features of tiny parts (e.g. hands).

The Baseline Network is a representative model of base-

line method for action recognition. This network learns the
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mapping relationship from body appearance to body action

as demonstrate in Fig.3.

Part-based Network. Based on the Baseline Network, we

add a branch to capture part appearance features (yellow

blocks). Besides Ibbox and Iw, all parts that are localized as

demonstrate in the previous section, are resized to 224×224

and fed into the network. Features of multiple parts (seven

yellow blocks) are transformed into a single feature (the sin-

gle yellow block) by a fully connected layer. Like conven-

tional part-based methods [14, 10, 32], the transformed sin-

gle feature (denoted by fp) are supervised by body action

categories. We concatenate fbbox, fw and fp, and use the

connected classifier to output the final scores.

The part-based network is a representative model of ex-

isting part-based methods, where yellow branch learns map-

ping relationship from part appearance to body actions.

Part Action Network. Our Part Action Network, with an

additional branch to learn and predict part actions (green

blocks), combines global body actions and local part ac-

tions. The part action branch firstly transforms part appear-

ance features (seven yellow blocks) to part action features

(seven green blocks), and then uses a fully connected layer

fctrans to transform part action features to body action fea-

tures (the single green block, denoted by fa). Since fea-

tures before and after fctrans are supervised by part ac-

tions and body actions respectively, fctrans learns the rela-

tionship between part actions and body actions. The fusion

branch concatenate 4 kinds of features, and makes final de-

cisions. Especially, in the test phase, body action prediction

in part action branch are also considered for the final deci-

sion. Scores of part action branch and fusion branch (two

solid boxes in Fig.7) are averaged to form the final score.

To avoid conflict between body action labels and part

action labels, we add a bias on part action labels. For ex-

ample, in Stanford-40 dataset, there are 40 body actions, so

Cbias = 40. The first part action (“head: breathing”) is as-

signed to be the 41th category. For invisible parts, blank

images are used, and we add an individual category for

them. So the part action classifier (dashed circle) outputs

40 + 34 + 1 = 75 probability scores (there are 34 defined

part actions in all). Moreover, if annotation of a visible part

is ambiguous, the part action label is set to be the same with

body action label.

Among the mentioned networks above, Baseline Net-

work is end-to-end trainable, and the others can be trained

jointly, given part bounding boxes. Joint training has been

verified to be powerful for object detection [20, 8], and help

improve the performance in this paper.

In this paper we only collect annotations on the Stanford-

40 dataset [29]. The procedure of using the set on another

dataset is: first obtain a pre-trained part action network on

Stanford-40. Then fix the weights of part action prediction

branch, fine-tune other branches and finally obtain another

Table 2. Preformance (mAP) on the Stanford-40 dataset

method mAP

Action-Specic Detectors [15] 75.4

VGG-16&19 [22] 77.8

TDP [32] 80.6

ResNet-50 [12] 81.2

Action Mask [31] 82.6

Ours (Baseline Network) 84.2

Ours (Part-based Network) 89.3

Ours (Part Action Network) 91.2

model. Following these steps the part action network can be

generally used in other datasets.

5. Experiments

We conduct intensive experiments to validate the pro-

posed Part Action Network. The results show that our

method reaches superior results compared with the state-

of-the-art methods. Especially, on PASCAL VOC 2012

dataset, our performance is 2.3% better than the state-of-

the-art and on Standford-40 is 8.6% better.

5.1. Experimental setup

Network. In this paper we train 3 classification networks:

the Baseline Network, the Part-based Network and the Part

Action Network. Each of them is modified from the 50-

layer ResNet [12] pre-trained on ImageNet [4]. For train-

ing them, the learning rate is set to be 10−5. We train for

5K iterations with a batch size of 20. Three kinds of data

augmentation techniques are employed: flipping, random

cropping and scale jittering [25, 22]. We use the caffe [13]

framework to implement our networks. All the networks

are trained on a single Titan X GPU.

Dataset. As common practice in action recognition, we use

two challenging datasets: 1) PASCAL VOC 2012 [7] and

2) Stanford-40 [29]. The PASCAL VOC dataset contains

10 different actions. For each of the action type, 400-500

images are used for training and validation, and the rest

are used for test. The Stanford-40 dataset contains 40 cate-

gories and uses 100 images for training. In Fig.8 we show

some examples from the Stanford-40 dataset.

5.2. Comparison with existing methods

We compare our approach with the state-of-the-art meth-

ods on the two datasets.

Stanford-40 dataset. Tab.2 shows the comparison on

Stanford-40 dataset [29]. The method of Action-specific

Detector [15] employs transfer learning to learn action-

specific detectors, which are used to detect human re-

gions and replace ground truth bounding boxes. VGG-

16&19 [22] combines a 16-layer CNN and a 19-layer CNN,

and train SVMs on fc7 features. Zhao et al. [32] learn some

semantic detectors, and arrange semantic parts in top-down
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Table 3. Preformance (mAP) on the PASCAL VOC 2012 Action validation set

method jumping phoning
playing

reading
riding riding

running
taking using

walking mAP
instrument bike horse photo computer

RCNN [9] 88.7 72.6 92.6 74.0 96.1 96.9 86.1 83.3 87.0 71.5 84.9

Action Mask [31] 85.5 72.1 93.9 69.9 92.2 97.2 85.3 73.3 92.3 60.7 82.2

R*CNN [11] 88.9 79.9 95.1 82.2 96.1 97.8 87.9 85.3 94.0 71.5 87.9

Whole&Parts [10] 84.5 61.2 88.4 66.7 96.1 98.3 85.7 74.7 79.5 69.1 80.4

Ours (Baseline Network) 87.8 75.4 91.7 81.6 93.3 96.7 87.0 77.4 92.1 67.8 85.1

Ours (Part-based Network) 88.2 86.1 92.9 87.4 94.5 97.8 90.4 86.5 92.4 72.2 88.8

Ours (Part Action Network) 89.6 86.9 94.4 88.5 94.9 97.9 91.3 87.5 92.4 76.4 90.0

Table 4. Preformance (mAP) on the PASCAL VOC 2012 Action test set

method jumping phoning
playing

reading
riding riding

running
taking using

walking mAP
instrument bike horse photo computer

Action Mask [31] 86.7 72.2 94.0 71.3 95.4 97.6 88.5 72.4 88.4 65.3 83.2

R*CNN [11] 91.5 84.4 93.6 83.2 96.9 98.4 93.8 85.9 92.6 81.8 90.2

Whole&Parts [10] 84.7 67.8 91.0 66.6 96.6 97.2 90.2 76.0 83.4 71.6 82.6

TDP [32] 96.4 84.7 96.7 83.3 99.4 99.2 91.9 85.3 93.9 84.7 91.6

Ours (Baseline Network) 92.3 84.4 94.7 82.8 97.9 98.4 90.6 83.7 91.3 80.9 89.7

Ours (Part-based Network) 93.4 90.5 95.6 84.0 98.4 98.6 93.4 90.0 94.3 83.5 92.2

Ours (Part Action Network) 95.0 92.4 97.0 88.3 98.9 99.0 94.5 91.3 95.1 87.0 93.9

spatial order, which enlarges inter-class variance and ob-

tain 80.6% mAP. Zhang et al. [31] propose a method that

accurately delineates the foreground regions of underlying

human-object interactions and reaches 82.6%.

As for our proposed networks, Compared with a “fea-

ture + SVM” framework [22, 12], the end-to-end trainable

Baseline Network improves the performance significantly

(+3%). The Part-based Network reaches 89.3%, which

mainly benefits from accurate part locations. It captures

part appearance features and sometimes interactive object

cues. Our Part Action Network achieves a mAP of 91.2%,

and outperforms the second best published method by 8.6%.

Compared with existing part-based methods (which are pre-

sented by Part-based Network), it obtains a gain of 1.9%.

Among all the 40 categories, the main improvement comes

from categories that have similar part appearance and ob-

jects, but can be distinguished by part actions. For exam-

ple, our method improves the performance on “drinking”

and “pouring liquid” by 5.5% and 3.9% via noticing de-

tailed differences of arms and head actions. It also ob-

tains gains on other confusing categories, such as “phon-

ing” (+2.0%), “texting message” (+5.2%), “applauding”

(+4.3%) and “waving hands” (+5.5%). In Fig.8 we visu-

alize more examples.

PASCAL VOC 2012 dataset. To measure the generaliza-

tion of our part action set, we also test our networks on

PASCAL VOC 2012 Action dataset [7] with no additional

annotations. Tab.3 reports the results on PASCAL VOC

2012 Action validation dataset [7], the results on test set

are shown in Tab.4. Gkioxari et al. [10] use deep poselets

to detect head, torso and legs regions and concatenate the

corresponding features.

In this dataset our method outperforms the others by

2.1% and 2.3% in validation and test sets respectively. In

the test set, Part Action Network reaches the best results

for 7 out of 10 categories. Compared with Part-based Net-

Table 5. results of predicting body actions by part actions.

datasets
PASCAL PASCAL

Stanford-40
(validation set) (test set)

mAP 59.0 52.1 49.2

work, Part Action Network improves the performance sig-

nificantly on “phoning” (+1.9%), “reading” (+4.3%). In

these categories, curving up arms, looking down heads, sit-

ting lower bodies and supporting hands are critical. Note

the Part Action Network implicitly used training data of

Stanford-40 dataset, Baseline Network and Part-based Net-

work are trained under the same supervision for fair com-

parison.

5.3. How strong are part actions associated with
body actions?

We have demonstrated that part actions are strong asso-

ciated with body actions in Sec.3. In this section, we imple-

ment experiments to verify how strong the relationship is.

In details, scores produced by part action classifier (dashed

circle in Fig.7) with a size of 75 × 7 are used. For this ex-

periment, predictions before Cbias are removed, and scores

of seven parts are flattened, resulting in a 35×7 = 245 vec-

tor for each sample. We use a SVM with χ2 kernel to map

these part action predictions to body actions. Tab.5 shows

the results on three tasks: 59.0%, 52.1% and 49.2%. The

part actions can provide decent results on the two datasets,

which confirms our assumption on using part actions to in-

fer body actions.

5.4. Part action classification

The part-level action classification performance is criti-

cal for body action prediction. We split the annotated parts

of 4000 training samples in the Stanford-40 [29] dataset into

two equant subsets. One of them is used as training set and

the other is test set. We train a 50-layer ResNet [12]. The

top-1 accuracy is 50.6%. As demonstrated in Sec.5.3 and
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Figure 8. Predictions on the Stanford-40 test set. The defined parts are marked by colored boxes, and their actions are listed. The

mispredicted actions are marked by black boxes. Ground truth is listed below each sample.

Fig.8, some single part action predictions can be inaccu-

rate, however, with the fusion of multiple part actions, body

action predictions are reliable (note the above result only

employs a half of the training data).

5.5. Visualization and analysis

We visualize part localization results, part action predic-

tions and final body action predictions in Fig.8. In the first

three columns we show some examples corrected by our

method compared with the Part-based Network. It is shown

that some part actions are strong associated with body ac-

tions, such as “hand: merging” for “applauding”, “lower

body: crouching” for “fixing a bike” and “arm: curving up”

for “phoning”. Some weakly associated part actions do not

hurt the final results even wrongly predicted.

In the last column we show some mispredicted samples.

They are mainly caused by 2 reasons: 1) errors on part ac-

tion predictions, which are caused by limited training sam-

ples and high similarity of two fine part actions (see the

“writing” and “blowing bubbles” samples). 2) lacking of

mining contextual information. In the sample of “cutting

trees”, all parts are predicted perfectly. However, they pro-

vide limit help to distinguish this action from “cooking”.

We believe that by mining contextual cues like [11], our

method will perform even better.

6. Conclusion

This paper proposes the idea of semantic body part ac-

tions to improve single image action recognition. It is based

on the observation that the human action is a combination

of meaningful body part actions. We define seven body

parts and their semantic part actions. A deep neural net-

work based system is proposed: first, body parts are local-

ize by a key-point network. Second, for each body parts, a

Part Action Network is used to predict semantic body part

actions. Experiments on two dataset: PASCAL VOC 2012

and Stanford-40 reports mean average precision improve-

ment from state-of-the-art by 2.3% and 8.6% respectively.

Experimental analysis and visualization results also show

the reasonability and effectiveness.
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