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Abstract

The exponentially increasing use of moving platforms for

video capture introduces the urgent need to develop the gen-

eral background subtraction algorithms with the capability

to deal with the moving background. In this paper, we pro-

pose a multilayer-based framework for online background

subtraction for videos captured by moving cameras. Unlike

the previous treatments of the problem, the proposed method

is not restricted to binary segmentation of background and

foreground, but formulates it as a multi-label segmentation

problem by modeling multiple foreground objects in differ-

ent layers when they appear simultaneously in the scene.

We assign an independent processing layer to each fore-

ground object, as well as the background, where both mo-

tion and appearance models are estimated, and a proba-

bility map is inferred using a Bayesian filtering framework.

Finally, Multi-label Graph-cut on Markov Random Field is

employed to perform pixel-wise labeling. Extensive eval-

uation results show that the proposed method outperforms

state-of-the-art methods on challenging video sequences.

1. Introduction

The identification of regions of interest is typically

the critical preprocessing step for various high-level com-

puter vision applications, including event detection, video

surveillance, human motion analysis, etc. Background

subtraction is a widely-used technique to perform pixel-

wise segmentation of foreground regions out of background

scenes. Unlike foreground object detection algorithms,

background subtraction methods typically produce much

more accurate segmentation of foreground regions rather

than merely detection bounding boxes, without the need to

train individual object detectors. A great number of vari-

ous traditional background subtraction methods and algo-

rithms have been proposed [34, 8, 21, 32, 12, 28]. Most of

these methods focused on modeling background under the

assumption that the camera is stationary. However, more

and more videos are captured from moving platforms, such

as camera phones, and cameras mounted on ground vehi-

cles, robots, ariel drones, etc. Traditional background sub-

traction algorithms are no longer applicable for such videos

captured from a non-stationary platform [7]. The exponen-

tially increasing use of moving platforms for video capture

introduces a high demand for the development of general

background subtraction algorithms that are not only as ef-

fective as traditional background subtraction but also appli-

cable to moving-camera videos.

Similar to most video segmentation methods, a few

works [26, 5] resort to processing the whole video offline.

Offline methods can typically produce good results on short

sequences since the information in latter frames can signifi-

cantly benefit the segmentation in the earlier frames. How-

ever, since it needs to store and process the information over

the whole video, the memory and computational cost in-

crease exponentially as the number of frames to process

grows [7]. Additionally, in various cases, such as video

surveillance and security monitoring, videos need to be ana-

lyzed as they being streamed in real time, where an efficient

online background subtraction method is greatly in demand.

The key to handling long sequences in an online way is

to learn and maintain models for the background and fore-

ground layers. Such models accumulate and update the ev-

idence over a large number of frames and also supply valu-

able knowledge foundation to high-level vision tasks. Re-

cently, a few online background subtraction methods with

moving cameras have been proposed [31, 20, 9, 22, 41].

Most methods formulate it as a binary segmentation prob-

lem with the assumption of only one foreground object, nat-

urally resulting in bad segmentation when multiple moving

objects appear in the scene. Especially in the case where

objects go across each other, motion estimation for objects

suffers great confusion, which further degrades the perfor-

mance of background subtraction.

To remedy this drawback, we propose a general

multilayer-based framework with the capability of handling

multiple foreground objects in the scene. The objects can be

automatically detected based on motion inconsistency and
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an independent processing layer is assigned to every fore-

ground object as well as the background. In each layer, we

would like the same process to be preformed concurrently

inside the “processing block”, which takes the accumulated

information and the new evidence of each layer as input,

and outputs a probability map indicating the confidence of

pixels belonging to each layer. In this paper, we elaborately

design such a “processing block” with three steps as fol-

lows. (a) Motion model estimation is first performed based

on Gaussian Belief Propagation [1] with motion vectors of

corresponding trajectories as the evidence. (b) The appear-

ance model and the prior probability are predicted by prop-

agating the previous one with the estimated motion model.

(c) Given the current frame as new evidence, Kernel Den-

sity Estimation [8] is employed to infer the probability map

as the output. Finally, based on the collection of probability

maps produced by each “processing block”, the pixel-wise

segmentation for the current frame is generated by Multi-

label Graph-cut.

Besides, since it is the first work to tackle multilabel

background subtraction problem in moving camera scenar-

ios, to our best knowledge, we also design a methodology to

evaluate the performance and show our method outperforms

the state-of-the-art methods.

2. Related Work

Motion Estimation and Compensation: The freely mov-

ing camera introduces a movement in the projected back-

ground scene, and thus complicates the background subtrac-

tion problem. An intuitive idea to tackle such a problem is

compensating the camera motion. A few pioneering works

resort to estimating a homography [13] that characterizes

the geometric transformation of background scene between

consecutive frames. Typically RANSAC [11] and its vari-

ants MLESAC [36] are employed to achieve robust estima-

tion using many matches of feature points. Jin et al. [15]

model the scene as a set of planer regions where each back-

ground pixel is assumed to belong to one of these regions.

Homographies are used to rectify each region to its corre-

sponding planer representation in the model. Zamalieva et

al. [41] leverage geometric information to develop multiple

transformation models, and choose one that best describes

the relation between consecutive frames.

Recently, motion estimation has been widely employed

to comprehensively specify the motion for every pixel

[25, 2, 20, 22]. These works [20, 22] used optical flow as

the evidence. Kwak et al. [20] divided the images into small

blocks in a grid pattern, and employed nonparametric belief

propagation to estimate the motion field based on average

optical flow of each block. Its following work [22] im-

proved the quality of motion estimation by replacing blocks

with superpixels as the model unit. On the other hand, in

[25, 2], optical flow orientations were claimed independent

of object depth in the scene, and used to clusters pixels that

have similar real-world motion, irrespective of their depth

in the scene. However, high dependency on the optical flow

makes these methods susceptible to the noise in the estima-

tion of optical flow. In contrast, our method improves mo-

tion model estimation by employing Gaussian Belief Prop-

agation [1] with the motion vectors of sparse feature points

as more robust evidence.

Appearance Modeling: Traditionally, statistical represen-

tations of the background scene have been proposed to es-

timate spatially extendable background models. Hayman

et al. [14] built a mixture of Gaussian mosaic background

model. Ren et al. [29] used motion compensation to pre-

dict the position of each pixel in a background map, and

model the uncertainty of that prediction by a spacial Gaus-

sian distribution. The construction of image mosaic associ-

ated with a traditional mixture Gaussian background model

was also claimed to be effective in [23, 30]. However, the

hyper-parameter required by this parametric model restricts

its adaptability and application. On the contrary, we em-

ploy nonparametric Kernal Density Estimation method [8]

to build models of the appearance of foreground and back-

ground regions, making our approach more stable and ap-

plicable.

Layered Representation: The layered representation, re-

ferring to approaches that model the scene as a set of mov-

ing layers, has been used for foreground detection [27, 16],

motion segmentation [39, 37, 19]. In [27], the background

was modeled as the union of nonparametric layer-models to

facilitate detecting the foreground under static or dynamic

background. Kim et al. [16] proposed a layered background

model where a long-term background model is used besides

several multiple short-term background models. Wang et

al. [39] used an iterative method to achieve layered-motion

segmentation. Torr et al. [37] modeled the layers as planes

in 3D and integrating priors in a Bayesian framework. [19]

models spatial continuity while representing each layer as

composed of a set of segments. A common theme of these

layered models is the assumption that the video is avail-

able beforehand [7]. Such an assumption prevents the use

of such approaches for processing videos from streaming

sources. Some dynamic textures methods [3, 4, 24] also

employed the layered model to tackle the complex dynamic

background, but with stationary cameras. To the best of our

knowledge, the proposed method is the first layered model

applied in the moving camera scenarios.

The organization of this paper is as follows. The

overview of our proposed framework are presented in Sec-

tion 3. Section 4 describes the trajectory labeling. The com-

ponents inside “processing block” are described in Section

5&6 and the final pixel-wise multi-labeling are presented in

section 7. Finally, Section 8 illustrates quantitatively and

qualitatively experimental results based on two criteria.
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Figure 1: The framework of our proposed approach.

3. Framework Overview

The proposed framework is demonstrated in Figure 1.

First we employ the feature point tracking method presented

in [35] to generate feature trajectories. Then the generated

trajectories are clustered into different layers based on mo-

tion inconsistency, and the labels of trajectories are continu-

ously propagated over frames using the dynamic label prop-

agation [42]. Each cluster of trajectories is assigned to the

corresponding layer, and the number of layers is adapted

according to that of foreground objects appearing in each

frame.

Each layer possesses an independent “processing block”

that produces a posterior probability map. Let k and t de-

note the index of the layer and the frame respectively. In-

side the “processing block”, we have two sources of input:

the appearance model Ak
t−1 and the prior probability map

of labels P (Lk
t−1) produced from the previous frame, and

a group of corresponding sparse trajectories Pk
t . The first

step is the inference of the motion model in each layer using

Gaussian Belief Propagation with the motion vectors of cor-

responding trajectories as the evidence. Then, the new ap-

pearance model Ak
t is obtained by shifting the previous ap-

pearance model Ak
t−1 based on the estimated motion model

Mk
t , and the new prior probability map Pprior(L

k
t |P

k
t ) can

be inferred from the previous one in the same way.

Given the current frame It as the new observation, the

likelihood P (It|L
k
t ) is estimated by Kernal density Estima-

tion(KDE) [8] with the propagated appearance model in ev-

ery layer. Then the posterior probability map for each layer

is inferred as

Ppost(L
k
t |It,P

k
t ) =

1

Z
P (It|L

k
t )Pprior(L

k
t |P

k
t ), (1)

where Z =
∑

k Ppost(L
k
t |It,P

k
t ) is the partition function.

With a collection of the posterior probability maps from

each layer, we achieve the final pixel-wise labeling by op-

timizing a cut on a multilabel graph with the minimal cut

energy. At the end of the whole process, appearance mod-

els are updated with the current frame and labels. In the

following sections, we will describe the process steps in de-

tail.

4. Trajectory Labeling and Propagation

The feature point tracking method [35] we employ has

achived a good performance in feature trajectories genera-

tion. To cluster trajectories, several motion segmentation

methods [26, 40] have provided good solutions, but may

fail when the video does not meet the assumption of the

affine camera model. To get rid of such an assumption,

an online method proposed by Elqursh et al. [10] consid-

ered sparse trajectory clustering as the problem of manifold

separation and dynamically propagate labels over frames.

Inspired by [10], we first cluster the trajectories in the ini-

tialization frames, and continuously propagates the label of

trajectories over frames using the dynamic label propaga-

tion [42]. We briefly describe the algorithm here.

4.1. Trajectory Clustering

Given n trajectories, two distance matrices Dt
M and Dt

S

are defined to represent the difference between trajecto-

ries in motion and spatial location. The entries DM
ij =

d1:tM (Ti, Tj) and DS
ij = d1:tS (Ti, Tj) are the distances be-

tween i-th and j-th trajoctories over frames up to t. For de-

tailed defination, please refer to [26]. The affinity matrix

over n trajectories is then formulated as

A = exp(−(λDt
M + (1− λ)Dt

S)), (2)

where λ is the paramater to balance two distances.

Considering each trajectory as a node and the affinity

matrix as the edge weights, we cast the trajectory cluster-

ing to graph cut problem. Starting from the initial cluster

that contains all trajectories, normalized cuts [33] are em-

ployed to perform optimal binary cut on initial cluster and

again on the generated clusters. This recursive process con-

tinues until the evaluated normalized cut cost on the cluster

is above the threshold(10−4 in our work), which indicates

this cluster of trajoctories belongs to the same component

(i.e. objects or the background), and needs no further split-

ting. All trajectories are assigned with labels according to

which cluster they belong to.

4.2. Label Propagation

With the labels of trajectories in the intial frames, the

label propagation, as a semi-supervised learning method,

is adopted to infer the labels of trajectories in subsequent

frames. We first construct a graph G with the trajectories

in the previews and current frames as the labeled and un-

labeled nodes respectively. The affinity matrix A involv-

ing the labeled and unlabeled trajectories are calculated and

used as edge weights between corresponding nodes. Let Yl
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and Yu denote the labeling probability matrix correspond-

ing to labeled and unlabeled node respectively. Each row of

Yl is a one-hot vector with one at the location coorespond-

ing to the label of node and zero otherwise. To estimate the

labeling probability matrix Yu, we apply Markov random

walks on the graph [43]. A transition matrix P is defined as

[pij = Aij/
∑

k Aik], where the entry pij is the transition

probabilities from ith node to jth node. Given the partition

of nodes into labeled and unlabeled nodes, the matrix P can

be splitted into 4 blocks:

P =

[

Pll Plu

Pul Puu

]

. (3)

The closed form solution of the labeling probability ma-

trix of unlabeled node is Yu = (I−Puu)
−1PulYl. The label

for the node i can be obtained by

li = argmax
j

yij , (4)

where yij is the entry in the row corresponding to node i.
It is worth noting that the label propagation algorithm

can only assign the trajectories with known labels. How-

ever, when new objects move into the scene, new labels

should be introduced in time. To accomplish it, after the

labels are predicted in each frame, a normalized cut cost

in each cluster is evaluated. A small cost indicates a great

intra-cluster variation inside the cluster. If the cost is below

the threshold (10−4 in our work), the cluster should be fur-

ther splitted and a new label is assigned to the cluster with

more different appearance from the previous one. When an

object moves out of the scene, few trajetories are assigned

with the corresponding label and the corresponding clus-

ter is removed. In this way, the number of clusters changes

adaptively according to how many moving objects appear in

the scene. After clustering process is done, all trajectories

in each cluster are further assigned to each layer.

5. Motion Model Estimation

Although providing the motion information only at

sparse pixels, trajectories of feature points are more ac-

curate and less noisy compared with optical flow. With

these accurate motion vectors of trajectories as evidence,

we can estimate the motion field model for the whole frame

(i.e. to estimate the motion vector of every pixel in each

layer). To accomplish the pixel-wise motion estimation, we

construct a pairwise MRF on a grid structure, where each

vertex represents a pixel and the set of edges ε represents

pairwise neighborhood relationship on this structure. Two

sets of potentials are involved: edge potentials Ψij measur-

ing the similarity between neighborhood vertices, and self-

potentials Φi measuring the likelihood of evidence. If these

potentials are defined as Guassion distribution, the task is

thus formulated as a Gaussian Belief Propagation(GaBP)

Figure 2: Visualization of labeled trajectories and motion

models of three layers. The first figure is the original im-

age covered with labeled trajectories: the trajectories are

clustered into three layers: background layer(Red), car1

layer(Blue) and car2 layer(Green). The following three fig-

ures show the estimated motion models for the three layers,

where the arrow and length indicate the direction and mag-

nitude of motion.

problem [1]. Given the motion vectors of trajectories in the

k-th layer, the conditional joint probability distribution of

motion model can be inferred as:

P (Mk
t |P

k
t ) ∝

∏

(i,j)∈ε

Ψ(mi
k,t,m

j
k,t)

∏

i∈Sk,t

Φ(mi
k,t), (5)

where Pk,t donates the set of feature points along with

trajectories that are clustered to k-th layer. The edge

and self potentials are defined as Ψ(mi
k,t,m

j
k,t) =

N (mi
k,t|m

j
k,t,Σm) and Φ(mi

k,t) = N (mi
k,t|m

i
p,t,Σp),

where mi
p,t represents the motion vector of corresponding

trajectories associated with i-th pixel. Our formulation en-

courages the similarity between motion vectors of neigh-

borhood points and that between estimated motion vectors

of feature points and the evidence (i.e. motion of trajecto-

ries). According to GaBP, this equation can be rewritten as

P (Mk
t |P

k
t ) ∝ exp(−

1

2
mTAm+mT b), (6)

where the inverse covariance matrix A is defined to show

the connection of every pair of nodes, and the shift vec-

tor b is defined by the motion of trajectory. A closed form

solution for marginal posterior probability is p(mi
k,t|P

k
t ) =

N (µi
k,t,Σ

i
k,t), where µi

k,t is the i-th entry of A−1b and Σi
k,t

is the entry {A−1}ii. The estimated motion field is demon-

strated in Figure 2.

6. Bayesian Filtering

The inference of probability maps can be performed as

the sequential Bayesian filtering on the Hidden Markov
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Model. In this section, we first predict appearance model

and prior probability for each layer given the motion mod-

els, followed by the inference of the posterior probability

with new observations in the current frame. For simplicity

of the expression, we remove the subscript k in the rest of

paper. Note that the processes in each layer are identical.

6.1. Model Propogation

Given the probability distribution of the estimated mo-

tion model P (Mt|Pt), we can estimate the appearance

model and the probability map in the current frame by prop-

agating the corresponding model and map from the previ-

ous frame. Specifically, the motion vector describes ex-

actly how a pixel shifts between the consecutive frames.

Therefore, armed with the motion information of a pixel

in the current frame, we can easily obtain the appearance

of the pixel by propagating that of the corresponding pixel

in the previous frame. However, the motion vector of

each pixel has Gaussian distribution over two-dimentional

space. It is impractical to marginalize the appearance over

the whole Gaussian distribution. If we discard the uncer-

tainty in the motion vector and set the variance to 0, the

gaussion distribution is reduced to a Dirac delta function

P (mi
t|Pt) = δ(mi

t − µi
k,t). Then the marginalization over

the whole appearance model is reduced to the involvement

of the particular pixel. The appearance model of i-th pixel

can be readily obtained by

ait = a
φ(i,µi

t)
t−1 , (7)

where the function φ(i, µi
t) is to obtain the corresponding

index in the previous frame by reversely shifting the i-th

pixel according to the associated motion vector µi
t. In prac-

tice, we found this approximation have little performance

degradation while saving much computational cost.

Similarly, the prior probability of i-th pixel in each layer

is obtained by

Pprior(l
i
t|Pt) = P (l

φ(i,µj
t)

t−1 ). (8)

6.2. Probability Map Update

Once the appearance model and probability map are

propagated from the previous frame, the posterior probabil-

ity map of each layer can be inferred with the current Frame

It as the new observation. With the assumption of indepen-

dence between pixels, the posterior probability of i-th pixel

is computed by Eq. (9).

Ppost(l
i
t|I

i
t ,Pt) ∝ P (Iit |l

i
t)Pprior(l

i
t|Pt), (9)

The likelihood of the observation in i-th pixel P (Iit |l
i
t)

is essentially describing how well the appearance Iit fits

the appearance model in each layer . Kernel Density Es-

timation(KDE), as a nonparametric method, can effectively

Probability Maps

Input Image Output Segmentation

Figure 3: Inside the dotted box, three probability maps

are demonstrated: the background layer, foreground1

layer(woman on the right), foreground2 layer(woman on

the left). Note that the lighter color represents the high con-

fidence. Two images in the bottom show the input image

and the result of Multilabel Segmentation.

model the appearance for background or foreground with-

out the restriction of hyper-parameter estimation. For its

simplicity and effectiveness, we employ KDE technique for

appearance modeling. The appearance model of i-th pixel

ait is involved with a pool of color features {If}
i
N accu-

mulated from the previews frames. The likelihood of the

observation P (Iit |l
i
t) estimated as:

P (Iit |l
i
t) =

1

N

N
∑

f=1

KG(I
i
t − Iif ), (10)

where KG(·) is the Gaussian kernel function, Iif is the color

feature in f frame stored for KDE modeling, and N = 20 is

the number of stored previous frames. The posterior proba-

bility map produced in each layer is normalized by partition

function, and then used as the knowledge for multilabel seg-

mentation.

7. Multilabel Segmentation

With the collection of normalized probability maps of all

layers at hand, our final task for foreground objects segmen-

tation is to perform pixel-wise labeling for the whole frame.

This segmentation problem can be converted into an energy

minimization problem on the pairwise MRF which can be

polynomially solvable via Graph Cuts [17]. Due to ill-posed

nature of the segmentation problem, regularizations are al-

ways required. For our problem, we designed two regular-

izers: a smoothing cost and a label cost in preference of

smoothness of labeling and fewer unique labels assigned,

respectively. The global energy function is formulated as:

E(L) =
∑

k∈S(L)

∑

i:li=k

E(Ii) + λ1

∑

(i,j)∈N

qijE(Ii, Ij)

+ λ2

∑

k∈S(L)

hkδk(L)
(11)

5136



where S(L) denotes the set of unique labels of L. The three

terms in the right-side of equation are data cost, smooth-

ness cost and label cost, respectively. The data cost E(Ii) is

defined as the negative log probability of ith pixel belong-

ing to a certain layer − logPpost(l
i
t|I

i
t). The smoothness

cost is defined as the similarity of two neighboring pixels

E(Ii, Ij) = − logN (Ii|Ij ,Σa), and qij , as a sign function,

equals to +1 if li, lj have the same label; otherwise −1.

Moreover, in the term of label cost, hk is the non-negative

label cost of the label k. And δk(f) is the corresponding in-

dicator function with the definition δk(L) = 1 if ∃i : li = k;
and 0 otherwise. λ1, λ2 are non-negative parameters to bal-

ance data cost against such two regularizations (both are 1 in

our work). The energy minimization function can be solved

efficiently using the method presented in [6].

It is worth noting that when a new foreground object ap-

pears in the scene or initial frames are processed, the feature

samples to build the appearance model usually are not suf-

ficient for Kernel Density Estimation. In these cases that

KDE is invalid, the probability maps is no longer avaiable

as the data cost for the multilabel segmentation. An alterna-

tive way to define the term of data cost in energy function is

based on the labeled trajectories. E(Ii) = c if li = lp and

−c otherwise, where c is a negative constant, and lp is the

label of trajectory associated with i-th pixel. This defina-

tion simply ultilizes the motion informance rather than the

appearance model.

Finally, according to the labels of pixels, the appearance

models At are updated by adding the color feature Iit in the

current frame to the corresponding appearance model.

8. Experiments

We evaluate our algorithm qualitatively and quantita-

tively based on two criteria: one is the normal two-label

background subtraction and one is multilabel background

segmentation. The former is evaluated using F-score, which

is the common measurement. For the latter, since, to

our best knowledge, no one has done such work before,

we carefully design a reasonable measurement. The re-

sult shows our method outperforms the state-of-the-art ap-

proaches in both settings.

Dataset: Experiments were run on two public datasets.

A set of sequences (cars1-8, people1-2) in the Hopkins

dataset [38] is commonly used for quantitative evaluation

on this topic, some of which contain multiple foreground

objects. To quantitatively evaluate the performance, we pro-

duced the groundtruth mask manually for all frames, includ-

ing the discrimination of foreground objects. Another one is

Complex Background Dataset(CBD) [25], where the com-

plex background and camera rotation introduce a great chal-

lenge.

MLBS GBSSP FOF OMCBS GBS BSFMC

cars1 92.04 87.14 50.84 91.77 80.30 73.13

cars2 90.16 82.17 56.60 69.13 68.45 55.68

cars3 93.16 72.94 73.57 41.27 79.22 60.91

cars4 91.55 88.24 47.96 73.65 66.63 54.81

cars5 86.62 81.66 70.94 60.44 74.56 51.97

cars6 92.23 81.44 84.34 90.31 73.34 37.56

cars7 91.17 90.86 42.92 89.87 69.10 40.35

cars8 85.93 86.85 87.61 83.84 80.29 62.42

people1 81.38 81.21 69.59 64.04 80.19 34.25

people2 94.34 84.74 88.40 89.32 81.40 64.92

drive 65.95 53.55 61.80 13.68 5.18 2.02

forest 72.20 91.44 31.44 42.99 23.19 16.76

parking 83.66 68.97 73.19 11.47 11.02 13.05

store 86.28 83.44 70.74 10.18 21.42 8.83

traffic 48.19 31.31 71.24 41.49 24.14 27.49

Overall 83.66 77.73 65.45 58.23 55.90 40.28

Table 1: Two-label background subtraction performance

comparison with the F-score(%) on Hopkins and CBD

Dataset. Best performance scores are highlighted in bold.

8.1. Two­label Background Subtraction

The performance of our framework, represented as

MLBS (Multi-Layer Background Subtraction), is compared

to five state-of-the-art algorithms: GBSSP [22], FOF [25],

OMCBS [9], GBS [20], and BSFMC [31]. GBS requires the

initialization labels of each frame as additional inputs, and

GBSSP needs the groundtruth of the first frame as the ini-

tialization. For fair comparisons, we provide GBS with the

labeling results of BSFMC, and offer GBSSP the labeling

result of the first frame generated by our method. Note that

instead of the requirement of these additional informations,

our MLBS method completes self-initialization automati-

cally. Moreover, we use the parameters provided by authors

in external methods and fixed them for each algorithm in all

experiments.

The quantitative comparisons on two dataset are shown

in Table 1. It can be seen that the proposed method out-

performs other methods in the literature on most test se-

quences. Especially in the case where the objects are oc-

cluded and then separated, such as the cars3 and people2,

the multilayer strategy boosts the performance with a great

jump on F-score. This is because our method can accu-

rately estimate separate motion models for foreground ob-

jects, instead of only one ambiguous model for the whole

foreground, and separate appearance models comprehen-

sively provide the evidence of probabilistic inference. The

overall F-score of our method is higher than the best score

of the state-of-the-arts by a noticeable margin (83.66% vs

77.73%).
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Figure 4: Comparison of our MLBS, and three state-of-the-art algorithms on the sequences cars5, people2 and forest, sepa-

rated in three blocks. Row1: Groundtruth; Row2: our MLBS; Row3: GBS [20]; Row4: OMCBS [9]; Row5: GBSSP [22].

For clear demonstration, the background is darkened and the foreground objects are marked in different colors. (Better seen

in color)

To evaluate the ability of the proposed method handling

multiple objects, we categorize the suquences into three sce-

narios according to the number of moving objects in the

scene, and report the average F-score on each scenario in

Table 2. In the single object scenario, our method outper-

form the second best method by a small margin (84.05% vs

80.70%). But as the number of objects increases, the mar-

gin grows (3.4% vs 8.0% vs 8.7%). It clearly demonstrates

the outstanding capability of our method in complex scenes.

MLBS GBSSP FOF OMCBS GBS BSFMC

1 84.05 80.70 59.20 54.22 47.82 31.20

2 91.14 81.51 83.19 71.48 80.30 62.75

≥ 3 74.99 65.05 66.26 57.02 55.72 45.05

Table 2: Two-label background subtraction performance

comparison on the videos with different numbers of moving

objects. Best performance scores are highlighted in bold.

Qualitative comparisons with three algorithms are illus-

trated in Figure 4. We pick two representative sequences

(cars5 and people2), where at least two foreground objects

appear in the scene, from Hopkins Dataset, and one se-

quence (forest) from CBD. It is notable that our MLBS

algorithm separates moving objects and background accu-

rately when the background scene is complex and the mo-

tions of objects are not simply in the same direction. For

instance, in the sequence of people2, two women, who are

walking in different directions, occluded and then sepa-

rated, are separated precisely while other methods wrongly

label the new appearing background region (e.g. the black

rubbish bin) as foreground.

8.2. Multilabel Background Subtraction

We also evaluate the capability to separate different fore-

ground objects. Since no one, to our best knowledge, has

done such work before, we have designed a baseline to com-

pare the performance. Details about baseline are shown in

the Supplementary Material. Besides, [26] have proposed

an offline approach (SLT) to tackle video segmentation

problem based on long-term video analysis, and achieved

a cutting edge performance. Since this method has no dis-

crimination of foreground and background, we modify it by

manually assigning the background label to the best fit seg-

mented region, and make a comparison with it.

For quantitative comparison, we design a measurement
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Precision Recall F-Score

First 10 Frames

ours 89.79 83.00 85.06

SLT 90.70 78.94 83.41

Baseline 61.23 62.32 61.35

All Frames

ours 88.60 85.05 86.16

SLT 89.51 78.24 82.00

Baseline 63.63 66.22 64.35

Table 3: Performance comparison of Multi-foreground seg-

mentation on Hopkins Dataset

by modifying the metric used in [26]. Let gi denote the fore-

ground region in the groundtruth, ci the corresponding re-

gions in the mask generated by algorithms, and |.| the num-

ber of pixels inside the region. For each foreground region

in the groundtruth, precision, recall and F-score are defined

as:

Pi =
|ci ∩ gi|

|ci|
Ri =

|ci ∩ gi|

|gi|
Fi =

2PiRi

Pi +Ri

(12)

Overall metric is obtained by averaging the measures of

single regions. And the best one-to-one assignment of gen-

erated regions to groundtruth regions is found by the Hun-

garian method [18]. In the case where there exist generated

regions without the assignment of groundtruth regions, we

set the precision and recall of such regions to 1 and 0 re-

spectively. It’s worth mentioning that our revised metric is

calculated over only foreground regions to keep consistency

with the binary background subtraction, as the measurement

values are the same as that of the binary one when there is

only one foreground object in the scene.

The performance evaluation is shown in Table 3. We

have compared the performance of the approaches evalu-

ated on both all frames and the first ten frames. It can be

seen that the proposed method outperforms SLT on both

sets and has a great jump from the baseline. It’s notable

that the F-score of our method on all frames is higher than

that on first ten frames due to the nature of online meth-

ods. Unlike the offline methods that hold the knowledge of

the whole sequence at the beginning of the sequence pro-

cess, our online approach has little prior knowledge and

requires the self-initialization step during the first several

frames, which surely leads to lower performance due to the

insufficiency of prior knowledge. But it affects little as the

sequence becomes longer.

Qualitative evaluations of our method and SLT are

demonstrated in Figure 5. Our proposed method can sep-

arate the objects more accurately while SLT may falsely

recognize two objects as only one when objects are very

near and moving in the similar direction (see Block2). Fur-

thermore, our method could detect new objects immediately

when they enter the scene (see Block2). With the ability of

accurate and robust foreground objects detection and seg-

Figure 5: The Multilabel segmentation performance com-

parison with SLT on the sequence cars3, cars2 and peo-

ple2, separated in three blocks. Row1: Groundtruth; Row2:

MLBS; and Row3: SLT [26]. (Better seen in color)

mentation, our method produces a proper number of fore-

ground object regions, which is reflected by the higher re-

call in Table 3. Additionally, equipped with appearance

models for each layer, our MLBS method is capable of deal-

ing with the articulated motion (see Block3) to a certain ex-

tent.

tclb mtest mdprop grapcut upmdl Total

1109 3675 144 1369 559 6856

Table 4: Average computation time (msec) over different

stages on a single frame from cars1. The stages are: tra-

jectory clustering and label propagation (tclb), motion es-

timation(mtest), model propogation (mdprop), graphCut

(grapcut) and update model(upmdl).

Table 4 shows the average computational time per frame.

Our un-optimized Matlab implementation takes around 7

seconds per frame with an Intel Xeon-E5 CPU and 16GB

menory. The computational time is dominated by motion

estimation and graphcut. Motion estimation is done mainly

by matrix inversion and multiplication. Since such opera-

tions can be readily parallelized on the GPU, we believe the

real-time performance can be achieved by the optimation

with the GPU and faster multi-thread implementation.

9. Conclusion

We propose a novel online multilayer-based framework

for background subtraction with moving camera. In our

framework, every foreground object and the background are

assigned to an independent processing layer. A processing

block is carefully designed to perform the posterior infer-

ence using Bayesian Filtering Framework, and Multi-label

Graph-cut is employed to produce the pixel-wise segmen-

tation for every video frame based on the normalized prob-

ability maps. Experiments show that our method performs

favorably against other state-of-the-art methods, with out-

standing ability to segment multiple foreground objects.
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