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Abstract

We present a novel and effective approach for generating

new clothing on a wearer through generative adversarial

learning. Given an input image of a person and a sentence

describing a different outfit, our model “redresses” the per-

son as desired, while at the same time keeping the wearer

and her/his pose unchanged. Generating new outfits with

precise regions conforming to a language description while

retaining wearer’s body structure is a new challenging task.

Existing generative adversarial networks are not ideal in

ensuring global coherence of structure given both the input

photograph and language description as conditions. We ad-

dress this challenge by decomposing the complex generative

process into two conditional stages. In the first stage, we

generate a plausible semantic segmentation map that obeys

the wearer’s pose as a latent spatial arrangement. An effec-

tive spatial constraint is formulated to guide the generation

of this semantic segmentation map. In the second stage,

a generative model with a newly proposed compositional

mapping layer is used to render the final image with precise

regions and textures conditioned on this map. We extended

the DeepFashion dataset [8] by collecting sentence descrip-

tions for 79K images. We demonstrate the effectiveness

of our approach through both quantitative and qualitative

evaluations. A user study is also conducted.

1. Introduction

Imagine that you could be your own fashion designer,

and be able to seamlessly transform your current outfit in

the photo into a completely new one, by simply describing

it in words (Figure 1). In just minutes you could design and

“try on” hundreds of different shirts, dresses, or even styles,

allowing you to easily discover what you look good in. The

goal of this paper is to develop a method that can generate

new outfits onto existing photos, in a way that preserves

structural coherence from multiple perspectives:

1. Retaining the body shape and pose of the wearer,

Figure 1. Given an original wearer’s input photo (left) and different

textual descriptions (second column), our model generates new

outfits onto the photograph (right three columns) while preserving

the pose and body shape of the wearer.

2. Producing regions and the associated textures that con-

form to the language description, and

3. Enforcing coherent visibility of body parts.

Meeting all these requirements at the same time is a very

challenging task. First, the input image is the only source

from which we can mine for the body shape information.

With only a single view of the wearer, it is nontrivial to

recover the body shape accurately. Moreover, we do not

want the shape of the generated outfit to be limited by the

original garments of the wearer. For example, replacing the

original long-sleeve shirt with a short-sleeve garment would

require the model to hallucinate the person’s arms and skin.

Conventional 2D non-parametric methods or 3D graph-

ics approaches meet the first requirement through structural

constraints derived from human priors. They can be in

the form of accurate physical measurements (e.g. height,

waist, hip, arm length) to create 3D virtual bodies [10];

manual manipulations of sliders such as height, weight and

waist girth [19]; or indication of joint positions and a rough

sketch outlining the human body silhouette [16]. All these

methods require explicit human interventions at test time,
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which would limit their applicability in practical settings.

In addition, as these methods provide no obvious ways to

incorporate textual descriptions to condition the synthesis

process, it is non-trivial to fulfil the second requirement

with existing methods. Lastly, they do not meet the third

requirement as they do not support hallucination of the

missing parts.

Generative Adversarial Networks (GAN) [2] is an ap-

pealing alternative to conventional methods. In previous

work, DCGAN [11], a GAN formulation combined with

convolutional networks, has been shown to be an effective

model to produce realistic images. Moreover, it allows for

an end-to-end embedding of textual descriptions to condi-

tion the image generation. The task of clothing generation

presents two significant challenges which are difficult to

address with the standard DCGAN. First, it directly tar-

gets the pixel values and provides no mechanism to enforce

structural coherence w.r.t. to the input. Second, it tends to

average out the pixels [14], thus resulting in various arti-

facts, e.g. blurry boundaries, as shown by our experiments.

To tackle this problem, we propose an effective two-

stage GAN framework that generates shape and textures

in different stages. In the first stage, we aim to generate

a plausible human segmentation map that specifies the re-

gions for body parts and the upper-body garment. This stage

is responsible for preserving the body shape and ensuring

the coherent visibility of parts based on the description.

In the second stage, the generator takes both the produced

segmentation map and the textual description as conditions,

and renders the region-specific texture onto the photograph.

To ensure the coherence in structure of the synthesized

image with respect to the input image (i.e. preserving the

body shape and pose of the wearer), we present an effec-

tive spatial constraint that can be derived from the input

photograph. We formulate it carefully so that it does not

contradict to the textual description when both of them

are used to condition the first-stage GAN. In addition, we

also introduce a new compositional mapping layer into the

second-stage GAN to enforce region-specific texture ren-

dering guided by the segmentation map. In contrast to ex-

isting GANs that perform non-compositional synthesis, the

new mapping layer is capable of generating more coherent

visibility of body parts with image region-specific textures.

To train our model, we extend the DeepFashion

dataset [8] by annotating a subset of 79K upper-body im-

ages with sentence descriptions and human body annota-

tions1. Extensive quantitative and qualitative comparisons

are performed against existing GAN baselines and 2D non-

parametric approaches. We also conduct a user study in

order to obtain an objective evaluation on both the shape

and image generation results.

1The data and code can be found at http://mmlab.ie.cuhk.

edu.hk/projects/FashionGAN/.

2. Related Work

Generative Adversarial Networks (GAN) [2] have shown

impressive results generating new images, e.g. faces [11],

indoor scenes [15], fine-grained objects like birds [12], or

clothes [17]. Training GANs based on conditions incorpo-

rates further information to guide the generation process.

Existing works have explored various conditions, from cat-

egory labels [9], text [12] to an encoded feature vector [17].

Different from the studies above, our study aims at gen-

erating the target by using the spatial configuration of the

input images as a condition. The spatial configuration is

carefully formulated so that it is agnostic to the clothing

worn in the original image, and only captures information

about the user’s body.

There exist several studies to transfer an input image to

a new one. Ledig et al. [6] apply the GAN framework to

super-resolve a low-resolution image. Zhu et al. [3] use

a conditional GAN to transfer across the image domains,

e.g. from edge maps to real images, or from daytime images

to night-time. Isola et al. [3] change the viewing angle

of an existing object. Johnson et al. [4] apply GANs to

neural style transfer. All these studies share a common

feature - the image is transformed globally on the texture

level but is not region-specific. In this study, we explore

a new compositional mapping method that allows region-

specific texture generation, which provides richer textures

for different body regions.

There are several recent studies that explore improved

image generation by stacking GANs. Our work is some-

what similar in spirit to [15, 18] – our idea is to have the first

stage to create the basic composition, and the second stage

to add the necessary refinements to the image generated in

the first stage. However, the proposed FashionGAN differs

from S2GAN [15] in that the latter aims at synthesizing

a surface map from a random vector in its first stage. In

contrast, our goal is to generate a plausible mask whose

structure conforms to a given photograph and language

description, which requires us to design additional spatial

constraints and design coding as conditions. Furthermore,

these two conditions should not contradict themselves. Sim-

ilarly, our work requires additional constraints which are not

explored in [18]. Compositional mapping is not explored in

the aforementioned studies as well.

Yo et al. [17] propose an image-conditional image gen-

eration model to perform domain transfer, e.g., generating

a piece of clothing from an input image of a dressed per-

son. Our work differs in that we aim at changing the outfit

of a person into a newly designed one based on a textual

description. Rendering new outfits onto photographs with

unconstrained human poses bring additional difficulties in

comparison with work that generates pieces of clothing in a

fixed view-angle as in [17].
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Figure 2. Proposed framework. Given an input photograph of a person and a sentence description of a new desired outfit, our model

first generates a segmentation map S̃ using the generator from the first GAN. We then render the new image with another GAN, with the

guidance from the segmentation map generated in the previous step. At test time, we obtain the final rendered image with a forward pass

through the two GAN networks.

3. Methodology

Our framework is inspired by the generative adversarial

network (GAN) proposed by Goodfellow et al. [2]. We

first provide a concise review of GAN, and then introduce

our outfit generation framework. Generative Adversarial

Network [2] has shown a powerful capability in generating

realistic natural images. A typical GAN contains a genera-

tor G and a discriminator D. They are jointly trained with

a learning objective given below:

min
G

max
D

EI∼pdata
[logD(I)]+Ez∼pz

[log(1−D(G(z)))].

(1)

Here, z is a random or encoded vector, pdata is the em-

pirical distribution of training images, and pz is the prior

distribution of z. It was proven in [2] that when it reaches

the maximum, the distribution of G(z) would converge to

pdata, where the discriminator cannot distinguish the im-

ages I ∼ pdata from the generated ones.

3.1. Overview of FashionGAN

We define the problem as follows. We assume we have

the original image of a wearer and a sentence description

of the new outfit. An example of a description we envision

is “a white blouse with long sleeves but without a collar”.

Our goal is to produce a new image of the user wearing the

desired outfit.

Our method requires training data in order to learn the

mapping from one photo to the other given the description.

We do not assume paired data where the same user is re-

quired to wear two outfits (current, and the described target

outfit). Instead, we only require one photo per user where

each photo has a sentence description of the outfit. Such

data is much easier to collect (Sec. 3.5).

Since in our scenario we only have one (described) im-

age per user, this image serves as both the input and the

target during training. Thus, rather than working directly

with the original image I0, we extract the person’s segmen-

tation map, S0, which contains pixel-wise class labels such

as hair, face, upper-clothes, pants/shorts, etc. The segmen-

tation map is thus capturing the shape of the wearer’s body

and parts, but not their appearance.

To capture further information about the wearer, we ex-

tract a vector of binary attributes, a, from the person’s face,

body and other physical characteristics. Examples of at-

tributes include gender, long/short hair, wearing/not wear-

ing sunglasses and wearing/not wearing hat. The attribute

vector may additionally capture the mean RGB values of

skin color, as well as the aspect ratio of the person, repre-

senting coarse body size. These are the properties that our

final generated image should ideally preserve. Details of

how we extract this information are given in Sec. 3.5.

We represent the description as a vector v using an ex-

isting text encoder (details in Sec. 3.5). Our problem is

then formalized as follows. Given d = (a,v), which we

call the design coding, and the human segmentation map

S0, our goal is to synthesize a new high-quality image Ĩ

of the wearer matching the requirements provided in the

description, while at the same time preserving the wearer’s

pose and body shape. Note that during training, Ĩ = I0.

As shown in Fig. 2, we decompose the overall generative

process into two relatively easier stages, namely the human

segmentation (shape) generation (corresponding to the de-

sired/target outfit) and texture rendering. This decomposi-

tion can be expressed as follows:

S̃ ← Gshape(zS , ↓m(S0),d), (2)

Ĩ ← Gimage(zI , S̃,d). (3)

Here, Gshape and Gimage are two separate generators.

More precisely, in our first stage (Eq. (2)), we first gen-

erate a human segmentation map S̃ by taking the original

segmentation map S0 and the design coding d into account.

Here ↓m(S0) is a low-resolution representation of S0, serv-

ing as the spatial constraint to ensure structural coherence
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Figure 3. This figure motivates the use of ↓m(S0) as a spatial con-

straint in the first-stage of FashionGAN. Using the high-resolution

segmentation map S0 will result in artifacts in the final generated

image, when the segmentation maps convey semantic meanings

that differ from the textual description. See Sec. 3.2 for details.

of the generated map S̃ to the body shape and pose of the

wearer. In the second stage (Eq. (3)), we use the gener-

ated segmentation map S̃ produced by the first generator,

as well as the design coding d, to render the garments for

redressing the wearer. The texture for each semantic part is

generated in different specialized channels, which are then

combined according to the segmentation map S̃ to form the

final rendered image. We call this process a compositional

mapping. This newly introduced mapping is useful for gen-

erating high-quality texture details within specific regions.

We provide details of the two generators in our frame-

work in Sec. 3.2 and Sec. 3.3, respectively.

3.2. Segmentation Map Generation (Gshape)

Our first generator Gshape aims to generate the semantic

segmentation map S̃ by conditioning on the spatial con-

straint ↓m(S0), the design coding d ∈ R
D, and the Gaus-

sian noise zS ∈ R
100. We now provide more details about

this model. To be specific, assume that the original image

is of height m and width n, i.e., I0 ∈ R
m×n×3. We repre-

sent the segmentation map S0 of the original image using

a pixel-wise one-hot encoding, i.e., S0 ∈ {0, 1}
m×n×L,

where L is the total number of labels. In our implemen-

tation, we use L = 7 corresponding to background, hair,

face, upper-clothes, pants/shorts, legs, and arms.

Spatial Constraint ↓m(S0). We merge and down-

sample the original segmentation map S0 into ↓m(S0) ∈
[0, 1]m

′
×n′

×L′

(L′ < L in our implementation), as a condi-

tioning variable to Gshape. In particular, we use L′ = 4 cat-

egories: background, hair, face, and rest. This essentially

maps all the clothing pixels into a generic rest (or body)

class. Thus, ↓m(S0) is agnostic of the clothing worn in

the original image, and only captures information about the

user’s body. This spatial constraint plays an important role

in preserving structural coherence of the generated shape S̃,

while still allowing variability in the generative process.

We use a down-sampled version of S0 as a constraint

so as to weaken the correlation between the two conditions

S0 and d, which can contradict each other. Specifically,

while S0 keeps the complete information of the wearer’s

body shape, its internal partitioning of regions do not neces-

sarily agree with the specifications conveyed in the design

Figure 4. Conditioning on the same input image, the Gshape gener-

ates different human segmentation maps based on different design

coding d and a random vector z. We can observe clear shape

differences in sleeves, the length of the upper-clothes, and the

labels assigned to legs/pants across the different samples.

coding d. If we were to directly feed the high-resolution

segmentation map of the original image into the model,

strong artifacts would appear when the textual description

contradicts with the segmentation map, e.g., the model si-

multaneously receives the text description “to generate a

long dress” and the segmentation map that indicates short

upper clothes. Figure 3 shows such failure cases.

Shape Generation. We want our Gshape to output a new

human segmentation map S̃ ∈ [0, 1]m×n×L. This output

should ideally have attributes consistent with the design

coding d, while at the same time, the generated human

shape should conform to the human pose as encoded in

the original S0. The generated segmentation map S̃ should

differ from the original human shape S0 with new variations

introduced by the design coding d and noise zS . Figure 4

illustrates an example of the generated segmentation map.

We observe that while the length of the sleeve and upper-

clothes vary in different generated samples, the human pose

and body shape remain consistent.

To produce the segmentation map S̃, we employ a GAN

to learn the generator Gshape. Both the generator and dis-

criminator comprise of convolution / deconvolution layers

with batch normalization and non-linear operations. Note

that different from most of the existing GANs for image

generation, the shape map S̃ we are generating in this step

is governed by additional constraints – each pixel in the map

has a probabilistic simplex constraint, i.e. S̃ij ∈ ∆L, 1 ≤
i ≤ m, 1 ≤ j ≤ n. We use the Softmax activation

function on each pixel at the end of the generator, so that

the generated fake shape map is comparable with the real

segmentation map. We observe that the GAN framework

can also learn well in this scenario. Please refer to suppl.

material for a detailed description of the network structure.

3.3. Texture Rendering (Gimage)

Having obtained the human segmentation map S̃ ∈
R

m×n×L from the generator Gshape, we now use this map

along with the design coding vector d ∈ R
D to render the

final image Ĩ ∈ R
m×n×3 using the second-stage Gimage.

Compositional Mapping. Conventional GANs generate an

image without enforcing region-specific texture rendering.
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In the proposed FashionGAN, we propose a new compo-

sitional mapping layer that generates the image with the

guidance of the segmentation map. In comparison to non-

compositional counterparts, the new mapping layer helps to

generate textures more coherent to each region and maintain

visibility of body parts.

Formally, we train a specific channel in Gimage for each

category l, where 1 ≤ l ≤ L, and L is the total number of

labels in the segmentation map. We denote the set of pixels

that belong to category l as Pl, and form our final generated

image Ĩ as a collection of pixels (Ĩ)p indexed by p,

(Ĩ)p =
∑L

l=1
1p∈Pl

· (Ĩl)p, (4)

where p is the index of the pixel and Ĩl is the specific chan-

nel for the l-th category. Here 1(·) is an indicator function.

Image Generation. Similar to the networks in Sec. 3.2, the

generator and discriminator in this step are also composed

of convolution / deconvolution layers with batch normal-

ization and non-linear operations. Instead of assigning a

Tanh activation function at the end of the network as most

of GAN architectures do, we put this activation before the

region-specific rendering layer Ĩl. This is important for

achieving a stable combination of all the channels generated

by the network. Please refer to supplementary material for

a detailed description of the network structure.

3.4. Training

Our two GANs are trained separately due to the non-

differentiable argmax operation between the two steps. The

training process needs one fashion image I0 for each person

in the training set, along with the textual description (repre-

sented by its designing coding d) and the segmentation map

S0. In our first GAN, we derive the tuple {↓m(S0),d, S0}
from each training sample and train the networks, following

the typical conditional GAN training procedure. In our sec-

ond GAN, we derive the tuple {↓m(S0),d, I0} from each

training sample for training. We use the Adam optimizer [5]

in training. Discriminative networks only appear in the

training phase. Similar to [12], we provide the conditions

(design coding, segmentation maps) to the discriminative

networks to enforce consistency between the conditions and

the generated results.

3.5. Implementation Details and Dataset

The dimensionality of the design coding d is D = 50.

Ten dimensions in d serve as the human attributes. We rep-

resent the binary attributes of gender, long/short hair, w/o

sunglasses, w/o hat with one dimension each. We extract

the medium value of the R, G, B as well as the Y (gray)

channel among the skin region, a total of four dimensions,

to represent the skin color. We use the height and width

of the given person to represent the size as well as the

aspect ratio. The remaining 40 dimensions are the encoded

text. We follow [12] to construct the text encoder, which

can be jointly tuned in each of the GANs in our frame-

work. The resolution of our output image Ĩ is 128×128

(i.e. m = n = 128).

We perform bicubic down-sampling to get ↓m(S0), with

a size of 8×8 (i.e. m′ = n′ = 8). We keep the hair and

face regions in our merged maps avoiding the need for the

generator to generate the exact face as the original wearer

(we replace the generated hair/face region with the original

image I0). It is hard and not necessary in practice.

To train our framework we extended the publicly avail-

able DeepFashion dataset [8] with richer annotations (cap-

tions and segmentation maps). In particular, we selected

a subset of 78,979 images from the DeepFashion attribute

dataset, in which the person is facing toward the camera,

and the background of the image is not severely cluttered.

Training our algorithm requires segmentation maps and

captions for each image. We manually annotated one sen-

tence per photo, describing only the visual facts (e.g., the

color, texture of the clothes or the length of the sleeves),

avoiding any subjective assessments. For segmentation, we

first applied a semantic segmentation method (VGG model

fine-tuned on the ATR dataset [7]) to all the images, and

then manually checked correctness. We manually relabeled

the incorrectly segmented samples with GrabCut [13].

4. Experiments

We verify the effectiveness of FashionGAN through both

quantitative and qualitative evaluations. Given the subjec-

tive nature of fashion synthesis, we also conduct a blind user

study to compare our method with 2D nonparametric based

method and other GAN baselines.

Benchmark. We randomly split the whole dataset (78,979

images) into a disjoint training set (70,000 images) and test

set (8,979 images). All the results shown in this section are

drawn from the test set. A test sample is composed of a

given (original) image and a sentence description serving

as the redressing condition.

Baselines. As our problem requires the model to generate

a new image by keeping the person’s pose, many existing

unconditional GAN-based approaches (e.g., DCGAN [11])

are not directly applicable to our task. Instead, we use the

conditional variants to serve as the baseline approach in our

evaluation. We compare with several baselines as follows:

(1) One-step GAN: To demonstrate the effectiveness of

the proposed two-step framework, we implemented a con-

ditional GAN to directly generate the final image in one

step, i.e., Ĩ = Gdirect(z, S0,d). We refer to this type of

baseline as One-Step. Since we aim to generate a new

outfit that is consistent with the wearer’s pose in the original

photo, the one-step baseline also requires similar spatial

priors. Recall that we need to avoid contradiction between
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Table 1. Evaluation results of detecting five structure-relevant attributes from synthesized images. Average precision is reported.

Images from Has T-Shirt Has Long Sleeves Has Shorts Has Jeans Has Long Pants mAP

Original (Upper-bound) 77.6 88.2 90.4 86.5 91.2 86.8

One-Step-8-7 56.5 73.4 79.6 73.5 79.1 72.4

One-Step-8-4 57.1 75.0 80.1 74.3 79.8 73.3

Non-Compositional 54.7 79.2 82.3 72.8 84.4 74.7

Non-Deep 56.1 69.4 75.7 74.3 76.5 71.8

FashionGAN 63.2 86.9 90.0 82.1 90.7 82.6

Attribute	Detector

The upper clothes of the lady 

is red and long-sleeved while 

the jeans are blue. 

Generator

IA

IB

ĨA

IB

Matching

Annotated text of 

Ground-truth attributes

Figure 5. The experimental procedure to quantitively verify the

attribute and structure consistency of a generated image.

conditions from the text description and segmentation (see

Sec. 3.1). Hence, for a fair comparison between our pro-

posed approach and this baseline, we feed in the down-

sampled version of the ground-truth segmentation map. We

further divide this type of baseline into two different settings

based on the way we use the shape prior S0:

• One-Step-8-7: We use the down-sampled but not

merged segmentation map (8×8×7) as the prior;

• One-Step-8-4: We use the down-sampled merged seg-

mentation map (8×8×4) as the prior (the same setting

we used in our first stage GAN).

The architecture of the generator and discriminator used in

these baselines are consistent to those used in our proposed

method, i.e., containing 6 deconvolution and convolution

layers in both the generator and discriminator.

(2) Non-Compositional: To demonstrate the effectiveness

of the segmentation guidance, we build a baseline that gen-

erates an image as a whole, i.e., without using Eq. (4). In

this baseline, we use two generative stages as in our pro-

posed framework. In addition, the first stage generator of

this baseline is still conditioned on the spatial constraint to

ensure structure coherence to the wearer’s pose.

4.1. Quantitative Evaluation

A well-generated fashion image should faithfully pro-

duce regions and the associated textures that conform to the

language description. This requirement can be assessed by

examining if the desired outfit attributes are well captured

by the generated image. In this section, we conduct a quan-

titative evaluation of our approach to verify the capability

of FashionGAN in preserving attribute and structural co-

herence with the input text.

We selected a few representative attributes from Deep-

Fashion, namely, ‘Has T-Shirt’, ‘Has Long Sleeves’, ‘Has

Shorts’, ‘Has Jeans’, ‘Has Long Pants’. These attributes

are all structure-relevant. A generative model that is poor

in maintaining structural coherence will perform poorly on

these attributes. Specifically, we performed the following

experiment, as illustrated in Fig. 5. (1) For each test image

IA, we used a sentence of another randomly selected im-

age IB as the text input. The same image-text pairs were

kept for all baselines for a fair comparison. (2) We used

the image-text pair as input and generated a new image ĨA
using a generative model. (3) We used an external attribute

detector2 to predict the attributes on ĨA. (4) Attribute pre-

diction accuracy was computed by verifying the predictions

on ĨA against ground-truth attributes on IB .

Table 1 summarizes the attribute prediction results. It

can be observed that attribute predictions yielded by Fash-

ionGAN are more accurate than other baselines. In partic-

ular, our approach outperforms one-step GANs that come

without the intermediate shape generation, and two-stage

GAN that does not perform compositional mapping. More-

over, the performance of FashionGAN is close to the upper-

bound, which was provided by applying the attribute detec-

tor on image IB , where the text input originated from. The

results suggest the superiority of FashionGAN in generating

fashion images with structure coherence.

4.2. Qualitative Evaluation

Conditioning on the Same Wearer. Given an image, we

visualize the output of FashionGAN with different sentence

descriptions. We show all the intermediate results and final

rendering step-by-step in Fig. 6, showcasing our generation

process. A plausible segmentation map is generated first,

and one can notice the variation in shape (e.g., the length

of the sleeve). The image generated in the second step has

consistent shape with the shape generated in the first step.

The generated samples demonstrate variations in textures

and colors, while the body shape and pose of the wearer are

retained.

Conditioning on the Same Description. In this experi-

ment, we choose photos of different wearers but use the

same description to redress them. We provide results in

2We fine-tuned the R*CNN model [1] on our training set to serve as

our attribute detector.
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(a) (b)

The OrigiŶal Wearer’s iŵage The OrigiŶal Wearer’s iŵageDown-sampled Merged Map

(Channel 4 Only)

Down-sampled Merged Map

(Channel 4 Only)

Figure 6. Conditioning on the same wearer. A step-by-step visualization of the generation process on two original images (here the

sentence descriptions are different for all the 8 samples). Based on the original image and the down-sampled merged segmentation map

(top), we first generate a plausible human shape (the middle row), and then use this as priors to guide the texture synthesis in the succeeding

step (the bottom row).

Figure 7. Conditioning on the same sentence description. Sam-

ples conditioned on the same sentence “A lady dressed in blue

clothes”.

Fig. 7. Regardless of the variations in the human body

shapes and poses, our model consistently generates output

that respects the provided sentence, further showing the

capability of FashionGAN in retaining structural coherence.

Comparison with One-Step GAN Baselines. We provide

a qualitative comparison with One-Step variants in Fig. 8.

As shown in the figure, our approach achieves better vi-

sual quality with fewer artifacts and more consistent human

shape.

Comparison with the Non-Compositional Baseline. We

show the results in Fig. 9. Our approach provides clearer

clothing regions while much fewer visual artifacts and

noise, outperforming the baseline approach.

Comparison with the 2D Non-Parametric Baseline. We

compare with this conventional baseline by retrieving an

exemplar from a large database by text and perform Pois-

son image blending to apply the new outfit on the wearer.

Results are shown in Fig. 10. Due to shape inconsistency

between the exemplar and wearer’s body, the rendering re-

sults are not satisfactory.

4.3. User Study

Evaluating the Generated Segmentation Maps. A total

of 50 volunteers participated in our user study. Our goal

is to examine the quality of the intermediate segmenta-

tion maps generated by the first stage of FashionGAN. To

Figure 8. Comparison with one-step GAN baselines. (We use

abbreviation here. One-8-7 refers to One-Step-8-7 and One-8-4

refers to One-Step-8-4). Each row represents one approach and

each column shares the same text input. While these baseline

approaches can also keep the human shape to some extent, the

artifact presented in their results are significantly stronger than our

results. The shape of the generated persons are also less consistent

for baseline approaches.

this end, we provided the human segmentation map of the

original photograph and the generated map, i.e., a pair of

maps for each test case, and asked participants to determine

which map looked more realistic and genuine. A higher

number of misclassified test cases implies a better quality of

the generated maps. As only FashionGAN would produce

such intermediate segmentation map, we thus only conduct

this experiment with our approach. For the total of 8, 979
test cases, the participants misclassified 3, 753 of them (the

misclassification rate is 42%). This is significant as our
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Figure 9. Comparison with the non-compositional baseline. All

the images are generated from the same human shape map from

the previous stage. The upper row comes from the proposed com-

positional approach while the bottom row comes from the baseline

method.

Figure 10. Representative failure cases for the 2D non-

parametric baseline. Shape inconsistency between the retrieved

exemplar and body causes mismatch between the new outfit and

the wearer.

segmentation maps fooled most of the participants, whose

ratings were close to random guessing.

Evaluating the Generated Photos. The same group of

volunteers were asked to provide a ranking of the gener-

ated images produced by FashionGAN as well as the re-

sults from three baseline approaches, namely, ‘One-Step-8-

7’, ‘One-Step-8-4’, and ‘Non-Compositional’. In addition,

we also compared against the 2D non-parametric approach.

During the user study, each participant was provided with

the original image and the corresponding sentence descrip-

tion. The participants were asked to rank the quality of

the generated images with respect to the relevance to the

sentence description and the texture quality.

All the 8,979 test images were evenly and randomly as-

signed to these participants. We summarize various statis-

tics in Table 2 and the frequency statistics for each rating

in Fig. 11. For each approach, we computed the average

ranking (where 1 is the best and 5 is the worst), standard

deviation, and the frequency of being assigned with each

ranking. We can observe that most of the high ranks go to

our approach, which indicates that our solution achieves the

best visual quality and relevance to the text input.

Table 2. A user study that evaluates the quality of generated im-

ages. A smaller number indicates a higher rank.

Mean Ranking Std Ranking

One-Step-8-7 4.027 0.894

One-Step-8-4 4.097 0.993

Non-Compositional 3.045 1.193

2D Non-Parametric 2.286 1.002

Ours 1.544 0.869
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Figure 11. Detailed user study results. Each user rates 1 to 5 to

each image they are assigned, and we show which methods each

of these ratings go to. Rank 1 is the best and 5 is the worst.

5. Conclusion

We presented a novel approach for generating new cloth-

ing on a wearer based on textual descriptions. We designed

two task-specific GANs, the shape and the image genera-

tors, and an effective spatial constraint in the shape genera-

tor. The generated images are shown to contain precise re-

gions that are consistent with the description, while keeping

the body shape and pose of a person unchanged. Quantita-

tive and qualitative results outperform the baselines.

The results generated are limited by the current database

we adopted. Our training set contains images mostly with

a plain background as they were downloaded from on-line

shopping sites (i.e., http://www.forever21.com/).

Hence the learning model is biased towards such a distri-

bution. In fact we do not assume any constraints or post-

processing of the background. We believe that our model

can also render textured background if the training set con-

tains more images with textured background. The back-

ground distribution will be captured by the latent vector z.
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