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Abstract

The region-based Convolutional Neural Network (CNN)

detectors such as Faster R-CNN or R-FCN have already

shown promising results for object detection by combin-

ing the region proposal subnetwork and the classification

subnetwork together. Although R-FCN has achieved higher

detection speed while keeping the detection performance,

the global structure information is ignored by the position-

sensitive score maps. To fully explore the local and global

properties, in this paper, we propose a novel fully convolu-

tional network, named as CoupleNet, to couple the global

structure with local parts for object detection. Specifical-

ly, the object proposals obtained by the Region Proposal

Network (RPN) are fed into the the coupling module which

consists of two branches. One branch adopts the position-

sensitive RoI (PSRoI) pooling to capture the local part in-

formation of the object, while the other employs the RoI

pooling to encode the global and context information. Nex-

t, we design different coupling strategies and normalization

ways to make full use of the complementary advantages be-

tween the global and local branches. Extensive experiments

demonstrate the effectiveness of our approach. We achieve

state-of-the-art results on all three challenging datasets, i.e.

a mAP of 82.7% on VOC07, 80.4% on VOC12, and 34.4%
on COCO. Codes will be made publicly available1.

1. Introduction

General object detection requires to accurately locate

and classify all targets in the image or video. Compared

to specific object detection, such as face, pedestrian and ve-

hicle detection, general object detection often faces more

challenges due to the large inter-class appearance differ-

ences. The variations arise not only from changes in a va-

1https://github.com/tshizys/CoupleNet
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Figure 1. A toy example of object detection by combing local and

global information. Only considering the local part information or

global structure leads to low confidence score. By coupling the t-

wo kinds of information together, we can detect the sofa accurately

with a confidence score of 0.78. Best viewed in color.

riety of non-rigid deformations, but also due to the trun-

cations, occlusions and inter-class interference. However,

no matter how complicated the objects are, when human-

s identify a target, the recognition of object categories is

subserved by both a global process that retrieves structural

information and a local process that is sensitive to individ-

ual parts. This motivates us to build a detection model that

fused both global and local information.

With the revival of Convolutional Neural Networks [15]

(CNN), CNN-based object detection pipelines [8, 9, 16, 21]

have been proposed consecutively and made impressive im-

provements in generic benchmarks, e.g. PASCAL VOC [5]

and MS COCO [17]. As two representative region-based

CNN approaches, Fast/Faster R-CNN [8, 21] uses a certain

subnetwork to predict the category of each region proposal

while R-FCN [16] conducts the inference with the position-

sensitive score maps. Through removing the RoI-wise sub-

network, R-FCN has achieved higher detection speed while

keeping the detection performance. However, the global
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structure information is ignored by the PSRoI pooling. As

shown in Figure 1, using PSRoI pooling to extract local

part information for final object category prediction, R-FCN

leads to a low confidence score of 0.08 for the sofa detection

since the local responses of sofa are disturbed by a women

and a dog (they are also the categories that need to be de-

tected). Conversely, the global structure of sofa could be

extracted by the RoI pooling, but the confidence score is

0.45, which is also very low for the incomplete structure of

sofa. By coupling the global confidence with the local part

confidence together, we can obtain a more reliable predic-

tion with the confidence score of 0.78.

In fact, the idea of fusing global and local information

together is widely used in lots of visual tasks. In fingerprint

recognition, Gu et al. [10] combined the global orientation

field and local minutiae cue to largely improve the perfor-

mance. In clique-graph matching, Nie et al. [19] proposed a

clique-graph matching method by preserving global clique-

to-clique correspondence and local unary and pairwise cor-

respondences. In scene parsing, Zhao et al. [27] designed a

pyramid pooling module to effectively extract hierarchical

global contextual prior, and then concatenated it with the

local FCN feature to improve the performance. In tradition-

al object detection, Felzenszwalb et al. [6] incorporated a

global root model and several finer local part models to rep-

resent highly variable objects. All of which show that effec-

tive combination of the global structural properties and local

fine-grained details can achieve complementary advantages.

Therefore, to fully explore the global and local clues, in

this paper, we propose a novel full convolutional network

named as CoupleNet, to couple the global structure and lo-

cal parts to boost the detection accuracy. Specifically, the

object proposals obtained by the RPN are fed into the cou-

pling module which consists of two branches. One branch

adopts the PSRoI pooling to capture the local part informa-

tion of the object, while the other employs the RoI pooling

to encode the global and context information. Moreover, we

design different coupling strategies and normalization ways

to make full use of the complementary advantages between

the global and local branches. With the coupling structure,

our network can jointly learn the local, global and contex-

t expression of the objects, which makes the model have

a more powerful representation capacity and generalization

ability. Extensive experiments demonstrate that CoupleNet

can significantly improve the detection performance. Our

detector shows competitive results on PASCAL VOC 07/12

and MS COCO compared to other state-of-the-art detectors,

even with model ensemble approaches.

In summary, our main contributions are as follows:

1. We propose a unified fully convolutional network to

jointly learn the local, global and context information for

object detection.

2. We design different normalization methods and cou-

pling strategies to mine the compatibility and complemen-

tarity between the global and local branches.

3. We achieve the state-of-the-art results on all three

challenging datasets, i.e. a mAP of 82.7% on VOC07,

80.4% on VOC12, and 34.4% on MS COCO.

2. Related work

Before the arrival of CNN, visual tasks have been dom-

inated by traditional paradigms [4, 6, 23, 26, 24]. As one

of an outstanding framework, DPM [6] described the ob-

ject system using mixtures of multi-scale deformable part

models, including a coarse global root model and several

finer local part models. The root model extracts structural

information of the objects, while the part models capture lo-

cal appearance properties of an object. The sum of root re-

sponse and weighted average response of each part is used

as the final confidence of an object. Although DPM pro-

vides an elegant framework for object detection, the hand-

crafted features, i.e. improved HOG [3], are not discrimi-

native enough to express the diversity of object categories.

This is also the main reason that CNN completely surpassed

the traditional methods in a short period time.

In order to leverage the great success of deep neural net-

works for image classification [12, 15], considerable ob-

ject detection methods based on deep learning have been

proposed [9, 11, 18, 20, 29]. Although there are end-to-

end detection frameworks, like SSD [18], YOLO [20] and

DenseBox [13], region-based systems (i.e. Fast/Faster R-

CNN [8, 21] and R-FCN [16]) still dominate the detection

accuracy on generic benchmarks [5, 17].

Compared to the end-to-end framework, the region-

based systems have several advantages. Firstly, by exploit-

ing a divide-and-conquer strategy, the two-step framework

is more stable and easier to converge. Secondly, without the

complicated data augmentation and training skills, you can

still easily achieve state-of-the-art performance. The main

reason for these advantages is that there is a certain struc-

ture [8, 16, 21] to encode translation variance features for

each proposal, since in deep networks, higher-layers contain

more semantic meaning and less location information. As a

consequence, a RoI-wise subnetwork [8, 21] or a position-

sensitive RoI pooling layer [16] is used to achieve the trans-

lation variance in region-based systems. However, all the

existing region-based systems utilize either the region-level

or part-level features to learn the variations, where each one

alone is not representative enough for a variety of challeng-

ing situations. Therefore, this motivates us to design a cer-

tain structure to take advantages of both the global and local

features.

In addition, context [25] is known to play an important

role in visual recognition. Considerable works have been

proposed for exploting context in object detection. Bell et

al. [1] explored the use of recurrent neural networks to mod-
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Figure 2. The architecture of the proposed CoupleNet. We use ResNet-101 as the basic feature extraction network. Given an input image,

we first exploit Region Proposal Network (RPN) [21] to generate candidate proposals. Then each proposal flows to two different branches:

local FCN and global FCN, in order to extract the global structure information and learn the object-specific parts respectively. Finally the

output of the two branches are coupled together to predict the object categories.

el the contextual information. Gidaris et al. [7] proposed to

utilize multiple contextual regions around the object. Cai

et al. [2] collected the context by padding the proposals for

pedestrian and car detection. Similar to these works, we

also absorb the context prior to enhance the global feature

representation.

3. CoupleNet

In this section, we first introduce the architecture of the

proposed CoupleNet for object detection. Then we explain

in detail how we incorporate local representations, global

appearance and contextual information for robust object de-

tection.

3.1. Network architecture

The architecture of our proposed CoupleNet is illustrated

in Figure 2. Our CoupleNet includes two different branch-

es: a) a local part-sensitive fully convolutional network to

learn the object-specific parts, denoted as local FCN; b) a

global region-sensitive fully convolutional network to en-

code the whole appearance structure and context prior of

the object, denoted as global FCN. We first use the Ima-

geNet pre-trained ResNet-101 released in [12] to initialize

our network. For our detection task, we remove the last av-

erage pooling layer and the fc layer. Given an input image,

we extract candidate proposals by using the Region Propos-

al Network (RPN), which also shares convolution features

with CoupleNet following [21]. Then each proposal flows

to two different branches: the local FCN and the global FC-

N. Finally, the output of global and local FCN are coupled

together as the final score of the object. We also perform

class-agnostic bounding box regression in a similar way.

3.2. Local FCN

To effectively capture the specific fine-grained parts in

local FCN, we construct a set of part-sensitive score map-

s by appending a 1x1 convolutional layer with k2(C + 1)
channels, where k means we divide the object into k × k

local parts (here k is set to the default value 7) and C + 1
is the number of object categories plus background. For

each category, there are totally k2 channels and each chan-

nel is responsible for encoding a specific part of the object.

The final score of a category is determined by voting the

k2 responses. Here we use position-sensitive RoI pooling

layer in [16] to extract object-specific parts and we sim-

ply perform average pooling for voting. Then, we obtain

a (C + 1)-d vector which indicates the probability that the

object belongs to each class. This procedure is equivalent

to dividing a strong object category decision into the sum

of multiple weak classifiers, which serves as the ensemble

of several part models. Here we refer this part ensemble as

local structure representation. As shown in Figure 3(a), for

the truncated person, one can hardly get a strong response

from the global description of the person due to truncation,

on the contrary, our local FCN can effectively capture sev-

eral specific parts, such as human nose, mouth, etc., which

correspond to the regions with large responses in the feature

map. We argue that the local FCN is much concerned with

the internal structure and components, which can effectively

reflect the local properties of visual object, especially when
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Figure 3. An intuitive description of CoupleNet for object detec-

tion. (a) It is difficult to determine the target by using the global

structure information alone for objects with truncations. (b) More-

over, for those having simple spatial structure and encompassing

considerable background in the bounding box, e.g. dining table,

it is also not enough to use local parts alone to make robust pre-

dictions. Therefore, an intuitive idea is to simultaneously couple

global structure with local parts to effectively boost the confidence.

Best viewed in color.

the object is occluded or the whole boundary is incomplete.

However, for those having simple spatial structure and en-

compassing considerable background in the bounding box,

e.g. dining table, the local FCN alone is difficult to make

robust predictions. Thus it is necessary to add the global

structure information to enhance the discrimination.

3.3. Global FCN

For the global FCN, we aim to describe the object by

using the whole region-level features. Firstly, we attach a

1024-d 1x1 convolutional layer after the last convolutional

block in ResNet-101 for reducing the dimension. Due to

the diverse size of the object, we insert a RoI pooling layer

in [8] to extract a fixed-length feature vector as the global

structure description of the object. Secondly, we use two

convolutional layers with kernal size k × k and 1 × 1 re-

spectively (k is set to the default value 7) to further abstract

the global representation of RoI. Finally, the output of 1x1

convolution is fed into the classifier whose output is also a

(C + 1)-d vector.

In addition, context prior is the most basic and impor-

tant factor for visual recognition tasks. For example, the

boat usually travels in the water while is unlikely to fly in

the sky. Despite the higher layers in deep neural network

can involve the spatial context information around the ob-

jects due to the large receptive field, Zhou et al. [28] have

shown that the practical receptive field is actually much s-

maller than the theoretical one. Therefore, it is necessary to

explicitly collect the surrounding information to reduce the

chance of misclassification. To enhance the feature repre-

sentation ability of the global FCN, here we introduce the

contextual information as an effective supplement. Specif-

ically, we extend the context region by 2 times larger than

the size of original proposal. Then the features RoI pooled

from the original region and context region are concatenat-

ed together and fed into the latter RoI-wise subnetwork.As

shown in Figure 2, the context region is embedded into the

global branch to extract a more complete appearance struc-

ture and discriminative prior representation, which will help

the classifier to better identity the object categories.

Due to the RoI pooling operation, the global FCN de-

scribes the proposal as a whole with CNN features, which

can be seen as a global structure description of the objec-

t. Therefore, it can easily deal with the objects with intac-

t structure and finer scale. As shown in Figure 3(b), our

global FCN shows a large confidence for the dining table.

However, in most cases, natural scenes consist of consid-

erable objects with occlusions or truncations, making the

detection more difficult. Figure 3(a) shows that using the

global structure information alone can hardly make a con-

fident prediction for the truncated person. By adding local

part structural supports, the detection performance can be

significantly boosted. Therefore, it is essential to combine

both local and global descriptions for a robust detection.

3.4. Coupling structure

To match the same order of magnitude, we apply a nor-

malization operation to the output of local and global FCN

before they are combined together. We explored two dif-

ferent methods to perform normalization: an L2 normal-

ization layer or a 1x1 convolutional layer to model the s-

cale. Meanwhile, how to couple the local and global out-

put is also a problem that needs to be researched. Here,

we investigated three different coupling methods: element-

wise sum, element-wise product and element-wise maxi-

mum. Our experiments show that using 1x1 convolution

along with element-wise sum achieves the best performance

and we will discuss it in Section 4.1.

With the coupling structure, CoupleNet simultaneously

exploits the local parts, global structure and context prior

for object detection. The whole network is fully convo-

lutional and benefits from approximate joint training and

multi-task learning. We also note that the global branch can

be regarded as a lightweight Faster R-CNN, in which all

learnable parameters are from convolutional layers and the

depth of RoI-wise subnetwork is only two. Therefore, the

computational complexity is far less than the subnetwork in

ResNet-based Faster R-CNN system whose depth is ten. As
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a consequence, our CoupleNet can perform the inference ef-

ficiently, which runs slightly slower than R-FCN but much

more faster than Faster R-CNN.

4. Experiments

We train and evaluate our method on three challenging

object detection datasets: PASCAL VOC2007, VOC2012

and MS COCO. Since all these three datasets contain a va-

riety of circumstances, which can sufficiently verify the ef-

fectiveness of our method. We demonstrate state-of-the-art

results on all three datasets without bells and whistles.

4.1. Ablation studies on VOC2007

We first perform experiments on PASCAL VOC 2007

with 20 object categories for detailed analysis of our pro-

posed CoupleNet detector. We train the models on the union

set of VOC 2007 trainval and VOC 2012 trainval (“07+12”)

following [21], and evaluate on VOC 2007 test set. Object

detection accuracy is measured by mean Average Precision

(mAP), all the ablation experiments use single-scale train-

ing and testing, and we did not add the context prior.

Normalization. Since features extracted form differen-

t layers of CNN show various of scales, it is essential to

normalize different features before coupling them together.

Bell et al. [1] proposed to use L2 normalization to each RoI-

pooled feature and re-scale back up by a empirical scale,

which shows a great gain on VOC dataset. In this paper, we

also explore two different normalization ways to normalize

the output of local and global FCN: an L2 normalization

layer or a 1x1 convolutional layer to learn the scale.

As shown in Table 1, we find that the use of L2 nor-

malization decreases the performance greatly, even worse

than the direct addition (without any normalization ways).

To explain such a phenomenon, we measured the output-

s of two branches before and after L2 normalization. We

further found that L2 normalization reduces the output gap

between different categories, which results in a smaller s-

core gap. As we know, a small score gap between different

categories always means the classifier can not make a confi-

dent prediction. Therefore, we assume that this is the reason

for the performance degradation. Moreover, we also exploit

a 1x1 convolution to adaptively learn the scales between the

global and local branches. Table 1 shows that using 1x1

convolution increases by 0.6 points compared to the direct

addition and 2.2 points over R-FCN. Therefore, we use 1x1

convolution to replace the L2 normalization in the following

experiments.

Coupling strategy. We explore three different response

coupling strategies: element-wise sum, element-wise prod-

uct and element-wise maximum. Table 1 shows the compar-

ison results for the above three different implementation-

s. We can see that the element-wise sum always achieves

Normalization methods SUM PROD MAX

eltwise 81.1 - 80.7

L2+eltwise 80.3 63.5 78.2

1x1 conv+eltwise 81.7 - 81.3

Table 1. Effects of different normalization operation and cou-

pling methods. Metric: detection mAP(%) on VOC07 test. elt-

wise: combine the output from global and local FCN directly.

L2+eltwise: use L2 normalization to normalize the output. 1x1

conv+eltwise: use 1x1 convolution to learn the scale.

the best performance even though in different normaliza-

tion methods. Generally, current advanced residual net-

works [12] also use element-wise sum as the effective way

to integrate information from previous layers, which great-

ly facilitates the circulation of information and achieves the

complementary advantages. For element-wise product, we

argue that the system is relatively unstable and is suscep-

tible to the weak side, which results in a large gradient

to update the weak branch that makes it difficult to con-

verge. For element-wise maximum, it equals to an ensem-

ble model within the network to some extent, which losts

the advantages of mutual support compared to element-wise

sum when both two branches are failed to detect the objec-

t. Moreover, a better coupling strategy can be taken into

consideration as the future work to further improve the ac-

curacy, such as designing a more subtle nonlinear structure

to learn the coupling relationship.

Model ensemble. Model ensemble is commonly used

to improve the final detection performance, since diverse

initialization of parameters and the randomness of training

samples both lead to different performance for the same

model. Although the differences and complementarities

will be more pronounced for different models, the pro-

motion is often very limited. As shown in Table 4, we

also compare our CoupleNet with the model ensemble.

For a fair comparison, we first re-implemented Faster R-

CNN [12] using ResNet-101 and online hard example min-

ing (OHEM) [22], which achieves a mAP of 79.0% on

VOC07 (76.4% in original paper without OHEM). We al-

so re-implemented R-FCN with appropriate joint training

using the public available code py-R-FCN2, which achieves

a slightly lower result compared to [16] (78.6% vs. 79.5%).

We use our reimplementation models to conduct the com-

parisons for consistency. We found that the promotion

brought by model ensemble is less than 1 point. As shown

in Table 4, it is far less than our method (81.7%).

On the one hand, we argue that the naive model ensemble

just combines the results together and does not essentially

guide the learning process of the network, while our Cou-

pleNet can simultaneously utilize the global and local infor-

2https://github.com/Orpine/py-R-FCN
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training data mAP (%) on VOC07 GPU test time (ms/img)

Faster R-CNN [12] 07+12 76.4 K40 420

R-FCN [16] 07+12 79.5 TITAN X 83

R-FCN multi-sc train [16] 07+12 80.5 TITAN X 83

CoupleNet 07+12 81.7 TITAN X 102

CoupleNet context 07+12 82.1 TITAN X 122

CoupleNet context multi-sc train 07+12 82.7 TITAN X 122

Table 2. Comparisons with Faster R-CNN and R-FCN using ResNet-101. 128 samples are used for backpropagation and the top 300

proposals are selected for testing following [16]. The input resolution is 600x1000. We also note that the TITAN X used here is the new

Pascal architecture along with CUDA 8.0 and cuDNN-v5.1. “07+12”: VOC07 trainval union with VOC12 trainval. context: add the context

prior to assist the global branch.

Method Train mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbikepersn plant sheep sofa train tv

ION [1] 07+12+S 76.5 79.2 79.2 77.4 69.8 55.7 85.2 84.2 89.8 57.5 78.5 73.8 87.8 85.9 81.3 75.3 49.7 76.9 74.6 85.2 82.1

HyperNet [14] 07+12 76.3 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1 51.2 79.1 75.7 80.9 76.5

SSD300∗ [18] 07+12 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 83.9 79.4 52.3 77.9 79.5 87.6 76.8

SSD512∗ [18] 07+12 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0

Faster§ [12] 07+12 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

R-FCN [16] 07+12 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9

CoupleNet [ours] 07+12 82.7 85.7 87.0 84.8 75.5 73.3 88.8 89.2 89.6 69.8 87.5 76.1 88.9 89.0 87.2 86.2 59.1 83.6 83.4 87.6 80.7

Table 3. Results on PASCAL VOC 2007 test set. The first four methods use VGG16 and the latter three use ResNet-101 as the base

network. For fair comparison, we only list the results of single model without multi-scale testing, ensemble or iterative box regression

tricks in testing phase. “07+12”: VOC07 trainval union with VOC12 trainval. “07+12+S”: VOC07 trainval union with VOC12 trainval

plus segmentation labels. *: the results are updated using the latest models. §: this entry is directly obtained from [12] without using

OHEM.

Method mAP(%)

Faster-ReIm 79.0

R-FCN-ReIm 78.6

Global FCN 78.5

Faster&R-FCN ensemble 79.6

Global FCN&R-FCN ensemble 79.4

CoupleNet 81.7

Table 4. CoupleNet vs. model ensemble. ReIm: our reimplemen-

tation using OHEM. Global FCN: only the global branch of our

network.

mation to update the network and to infer the final results.

On the other hand, our method enjoys end-to-end training

and there is no need to train multiple models, thus greatly

reducing the training time.

Amount of parameters. Since our CoupleNet intro-

duces a few more parameters compared with the single

branch detectors, to further verify effectiveness of the cou-

pling structure, here we increase the parameters of the

prediction head for each single branch implementation to

maintain the same amount of parameters with CoupleNet

for comparison. In detail, we add a new residual variant

block with three convolution layers, where the kernel size

is 1x1x256, 3x3x256 and 1x1x1024 respectively, to the pre-

diction sub-network. We found that the standard R-FCN

with one or two extra heads got a mAP of 78.8% and 78.7%

respectively in VOC07, which is slightly higher than our re-

implemented version (78.6%) in [16] as shown in Table 4.

Meanwhile, our global FCN, which performs the ROI Pool-

ing on top of conv5, got a relative higher gain (a mAP of

79.3% for one head, 79.0% for two heads). The results in-

dicate that simply adding more prediction layers obtains a

very limited performance gain, while our coupling structure

shows more discriminative power with the same amount of

parameters.

4.2. Results on VOC2007

Using the public available ResNet-101 as the initializa-

tion model, we note that our method is easy to follow and

the hyper-parameters for training are the same as in [16].

Similarly, we use the dilation strategy to reduce the effec-

tive stride of ResNet-101, just as [16] shows, thus both the

global and local branches have a stride of 16. We also use a

1-GPU implementation, and the effective mini-batch size is

2 images by setting the iter size to 2. The whole network

is trained for 80k iterations with a learning rate of 0.001 and

then for 30k iterations with 0.0001. In addition, the contex-

t prior is proposed to further boost the performance while

keeping the iterations unchanged. Finally, we also perfor-

m multi-scale training with the shorter sides of images are

randomly resized from 480 to 864.

Table 2 shows the detailed comparisons with Faster R-

64131



Method Train mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbikepersn plant sheep sofa train tv

ION [1] 07+12+S 76.4 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 69.2 85.2 73.5

HyperNet [14] 07++12 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7

SSD300∗ [18] 07++12 75.8 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1

SSD512∗ [18] 07++12 78.5 90.0 85.3 77.7 64.3 58.5 85.1 84.3 92.6 61.3 83.4 65.1 89.9 88.5 88.2 85.5 54.4 82.4 70.7 87.1 75.6

Faster§ [12] 07++12 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6

R-FCN [16] 07++12 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9

CoupleNet [ours] 07++12 80.4†
89.1 86.7 81.6 71.0 64.4 83.7 83.7 94.0 62.2 84.6 65.6 92.7 89.1 87.3 87.7 64.3 84.1 72.5 88.4 75.3

Table 5. Results on PASCAL VOC 2012 test set. For fair comparison, we only list the results of single model without multi-scale

testing, ensemble or iterative box regression tricks in testing phase. “07++12”: the union set of VOC07 trainval+test and VOC12 trainval.

“07+12+S”: VOC07 trainval union with VOC12 trainval plus segmentation labels. *: results are updated using the latest models. §: this

entry is directly obtained from [12] without using OHEM. †: http://host.robots.ox.ac.uk:8080/anonymous/M5CQTL.

html.

Method train

data

AP AP

@0.5

AP

@0.75

AP

small

AP

medium

AP

large

AR

max=1

AR

max=10

AR

max=100

AR

small

AR

medium

AR

large

SSD300∗ [18] trainval35k 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4

SSD512∗ [18] trainval35k 28.8 48.5 30.3 10.9 31.8 43.5 26.1 39.5 42.0 16.5 46.6 60.8

ION [1] train+S 24.9 44.7 25.3 7.0 26.1 40.1 23.9 33.5 34.1 10.7 38.8 54.1

Faster+++ [12] trainval 34.9 55.7 - 15.6 38.7 50.9 - - - - - -

R-FCN [16] trainval 29.2 51.5 - 10.3 32.4 43.3 - - - - - -

R-FCN multi-sc train [16] trainval 29.9 51.9 - 10.8 32.8 45.0 - - - - - -

CoupleNet trainval 33.1 53.5 35.4 11.6 36.3 50.1 29.3 43.8 45.2 18.7 51.4 67.9

CoupleNet multi-sc train trainval 34.4 54.8 37.2 13.4 38.1 50.8 30.0 45.0 46.4 20.7 53.1 68.5

Table 6. Results on COCO 2015 test-dev. The COCO metric AP is evaluated at IoU thresholds ranging from 0.5 to 0.95. AP@0.5:

PASCAL-type metric, IoU=0.5. AP@0.75: evaluate at IoU=0.75. “train+S”: train set plus segmentation labels.

CNN and R-FCN. As we can see that our single model

achieves a mAP of 81.7%, which outperforms the R-FCN

by 2.2 points. However, while embedding the context pri-

or to the global branch, our mAP rises up to 82.1%, which

is the current best single model detector to our knowledge.

Moreover, we also evaluate the inference time of our net-

work using a NVIDIA TITAN X GPU (pascal) along with

CUDA 8.0 and cuDNN-v5.1. As shown in the last column

of Table 2, our method is slightly slower than R-FCN, which

also reaches a real-time speed (i.e. 8.2 fps or 9.8 fps without

context) and achieves the best trade-off between accuracy

and speed. We argue that the sharing process of feature ex-

traction between two branches and the design of lightweight

RoI-wise subnetwork after RoI pooling both greatly reduce

the model complexity.

As shown in Table 3, we also compared our method

with other state-of-the-art single model. We found that our

method outperforms the others with a large margin, includ-

ing the advanced end-to-end SSD method [18], which re-

quires complicated data augmentation and careful training

skills. Just as discussed earlier, CoupleNet shows a large

gain over the classes with occlusions, truncations and con-

siderable background information, like sofa, person, table

and chair, which verifies our analyses. We also observed a

large improvement for airplane, bird, boat and pottedplant,

which usually have class-specific backgrounds, i.e. the sky

for airplane and bird, water for boat and so on. Therefore,

the context surrounding the objects provides an extra auxil-

iary discrimination.

4.3. Results on VOC2012

We also evaluate our method on the more challenging

VOC2012 dataset by submitting results to the public eval-

uation server. We use VOC07 trainval, VOC07 test and

VOC12 trainval as the training set, which consists of 21k

images in total. We also follow the similar hyper-parameter

settings in VOC07 but change the iterations, since there are

more training images. We train our models with 4 GPUs,

and the effective mini-batch size thus becomes 4 (1 per G-

PU). As a result, the network is trained for 60k iterations

with a learning rate of 0.001 and 0.0001 for the following

20k iterations. Table 5 shows the results on the VOC2012

test set. Our method obtains a top mAP of 80.4%, which is

2.8 points higher than R-FCN. We note that without using

the extra tricks in the testing phase, our detector is the first

one with a mAP higher than 80%. Similar promotions over

the specific classes analysed in VOC07 are also observed,

which once again validates the effectiveness of our method.

Figure 4 shows some detection examples on VOC 2012 test

set.
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Figure 4. Detection examples of CoupleNet on PASCAL VOC 2012 test set. The model was trained on the union of VOC07 trainval+test

and VOC12 trainval (80.4% mAp). Our method works well with the occlusions, truncations, inter-class interference and clustered back-

ground. CoupleNet also shows good performance for the categories with class-specific backgrounds, e.g. airplane, bird, boat, etc. A score

threshold of 0.6 is used to draw the detection bounding boxes. Each color is related to an object category.

4.4. Results on MS COCO

Next we present more results on the Microsoft COCO

object detection dataset. The dataset consists of 80k training

set, 40k validation set and 20k test-dev set, which involves

80 object categories. All our models are trained on the u-

nion set of 80k training set and 40k validation set, and eval-

uated on 20k test-dev set. The COCO standard metric de-

notes as AP, which is evaluated at IoU ∈ [0.5 : 0.05 : 0.95].
Following the VOC2012, a 4-GPU implementation is used

to accelerate the training process. We use an initial learn-

ing rate of 0.001 for the first 510k iterations and 0.0001

for the next 70k iterations. In addition, we conduct multi-

scale training with the scales are randomly sampled from

{480, 576, 672, 768, 864} while testing in a single scale.

Table 6 shows our results. Our single-scale trained de-

tector has already achieved a result of 33.1%, which outper-

forms the R-FCN by 3.9 points. In addition, the multi-scale

training further improves the performance up to 34.4%.

Interestingly, we observed that the more challenging the

dataset, the more the promotion (e.g., 2.2% for VOC07,

2.8% for VOC12 and 4.5% for COCO, all in multi-scale

training), which directly proves that our approach can ef-

fectively cope with a variety of complex situations.

5. Conclusion

In this paper, we present the CoupleNet, a concise yet

effective network that simultaneously couples global, local

and context cues for accurate object detection. Our sys-

tem naturally combines the advantages of different region-

based approaches with the coupling structure. With the

combination of local part representation, global structural

information and the contextual assistance, our CoupleNet

achieves state-of-the-art results on the challenging PAS-

CAL VOC and COCO datasets without using any extra

tricks in the testing phase, which validates the effectiveness

of our method.
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