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Abstract

We present a novel method for removing rain streaks from a

single input image by decomposing it into a rain-free back-

ground layer B and a rain-streak layer R. A joint opti-

mization process is used that alternates between removing

rain-streak details from B and removing non-streak details

from R. The process is assisted by three novel image pri-

ors. Observing that rain streaks typically span a narrow

range of directions, we first analyze the local gradient s-

tatistics in the rain image to identify image regions that are

dominated by rain streaks. From these regions, we estimate

the dominant rain streak direction and extract a collection

of rain-dominated patches. Next, we define two priors on

the background layer B, one based on a centralized sparse

representation and another based on the estimated rain di-

rection. A third prior is defined on the rain-streak layer R,

based on similarity of patches to the extracted rain patches.

Both visual and quantitative comparisons demonstrate that

our method outperforms the state-of-the-art.

1. Introduction

Computer vision methods generally assume a clear image

as input for processing and scene understanding. Howev-

er, rain streaks, when present, tend to obstruct and blur the

scene [19], thereby distorting the image content and degrad-

ing the accuracy of visual analysis [5].

Several methods have been proposed to remove rain streaks

in images. They are typically classified by their input type.

Video-based methods [11, 34, 1, 2, 24, 33] leverage the rich

temporal information across frames to locate and remove rain

streaks, while single-image methods [15, 16, 5, 26, 14, 21,

19] require the use of image priors to recover the underlying

background scene, e.g., dictionary-based sparse prior [15, 26,

14, 21], low-rank prior [5], nonlocal self-similarity prior [16],

and GMM-based layer prior [19].

(a) Input rain image (b) Result of Luo et al. [21]

(c) Result of Li et al. [19] (d) Our result

Figure 1: Rain streak removal on a real photo.

Compared with video-based methods, it is much more chal-

lenging to remove rain streaks given only a single image.

Although existing single-image methods can improve the

overall scene visibility, they tend to either oversmooth the

background image details, or retain a significant amount of

rain streaks in the results. This is demonstrated in Fig. 1,

which shows de-rained results produced using two state-of-

the-art methods [21, 19] next to our result.

The goal of single-image rain streak removal is to decom-

pose an input image I into two layers: a background image

B, which is rain-free, and a rain image R, which contains

only rain streaks. To achieve this, we develop a joint bi-layer

optimization method that alternatively processes the two lay-

ers, where we alternatively smooth the background layer to

push rain streaks from B to R, and smooth the rain layer to

push background details from R back to B. Then, we can

improve the preservation of background details in B, which

is the optimization output. Although several priors on B and

R have been proposed in previous work, they usually have

limited capability to differentiate background details from

rain streaks, especially for heavy rain conditions. For exam-

ple, the Gaussian mixture models (GMM) of Li et al. [19],
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Figure 2: Overview: given a rain image (a), we first locate rain-dominated regions (b), and use them to estimate the rain

direction (c) and extract rain patches (d); then, we use our joint bi-layer optimization method to iteratively create the result (e).

trained from a set of manually-collected rain and non-rain

patches, are ineffective on patches with a significant amount

of background detail corrupted with many rain streaks.

In summary, this work has two major novel components.

First, we introduce an automatic method to locate rain-

dominated regions from the input image and estimate the

dominant direction of the rain streaks. Observing that rain

streaks usually fall within a narrow band of directions, even

for heavy rain, we analyze the statistics of gradient vectors

over image blocks in I and identify scene regions dominated

by rain streaks, see Fig. 2(b). From such regions, we can then

estimate the rain direction in I and extract rain patches to

model the rain pattern, see Fig. 2(c&d). The other major nov-

el component in this work is the joint bi-layer optimization

model, which iteratively separates rain (R) and background

(B) through the following three priors:

• First, we introduce a centralized sparse representation

(CSR) [7] to improve the performance in removing rain

streaks, while preserving the background details. This pri-

or integrates both local and nonlocal sparsity constraints

and adapts the CSR for de-raining by constructing a guid-

ance image with the window inherent variation metric [30].

Note that previous methods employ only the local sparsi-

ty [15, 26, 14, 21] or the nonlocal prior [28].

• Second, we construct a rain direction prior by considering

the angular deviation of pixel gradients from the rain direc-

tion. This prior is built upon the rain direction information

we automatically extracted by detecting rain-dominated

scene regions. Previous works like [11] estimate rain

directions by tracking how rain streaks move over succes-

sive video frames, so they cannot be used for single-image

rain streak removal. To the best of our knowledge, ours

is the first work to make use of a rain direction prior for

single-image rain streak removal.

• Lastly, we introduce a rain layer prior specifically for

the rain layer R, designed to smooth out non-rain-streak

background details in R by using the rain patches we

automatically extracted from the rain-dominated regions.

Furthermore, we adopt the alternative direction method

of multipliers (ADMM) and iteratively re-weighted least

squares (IRLS) methods to efficiently solve the resulting op-

timization problem, and evaluate it using both synthetic and

real images. Both quantitative comparisons and visual result-

s demonstrate that our method can efficiently remove rain

streaks and better preserve background details, compared to

the state-of-the-art single-image methods.

2. Related Work

Video-based rain streak removal methods leverage the

temporal information in videos to remove rain streaks, typi-

cally by analyzing the difference between adjacent frames.

Garg and Nayar [11, 12, 13] proposed an appearance model

based on photometric properties and temporal dynamics to

describe rain streaks, while Zhang et al. [34] exploited the

temporal and chromatic properties of rain in videos. Other

methods include [1, 2, 24]; see [28] for a detailed review.

Single-image rain streak removal methods is a very chal-

lenging problem, since we observe only one color value per

pixel in the input image. To address this problem, various

image priors have been explored. Dictionary-based sparse

prior [23] describes an image patch as a linear combination

of a few atoms from a pre-specified dictionary. Kang et

al. [15] decomposed an input image into a low-frequency

and a high-frequency component, and then separated rain

streaks from the background using sparse-coding-based dic-

tionary learning. Sun et al. [26] proposed an incremental

dictionary learning strategy to represent the high-frequency

layer and used the structural similarity metric to identify the

dictionary atoms associated with rain patterns. Huang et

al. [14] introduced a self-learning mechanism to identify a

subset of atoms in the dictionary of high-frequency compo-

nents, which correspond to rain patterns. Luo et al. [21] took

a discriminative sparse-coding approach to rain removal by

separating sparse codes associated with background patches

from codes associated with the patches of the rain image.

While these sparse-coding methods help improve the overall

visibility, they tend to oversmooth the background image

details, or retain excessive rain streaks in the results [19].

Apart from the local sparse prior, Kim et al. [16] exploited

the nonlocal self-similarity prior; they detected rain streaks

by assuming elliptical shape and vertical orientations of the

rain streaks. Observing that a rainy scene contains similar

rain streak patterns, Chen at al. [5] used a low-rank structure

to model the rain streaks. Most recently, Li et al. [19] pro-

posed using two Gaussian mixture models (GMMs), one for

the background and another for the rain streaks layer. How-
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ever, the rain streak GMM is trained on rain-only patches

in the input image, so its discriminative power is reduced in

images full of background details. Fig. 1(c) shows that in

such images many rain streaks remain in the result. Most

recently, Fu et al. [10] and Yang et al. [32] independently

presented two different deep models for single-image rain

streak removal. From the results we obtained from Yang et

al. [32] and by running the code of Fu et al. [10], we find

that these methods generally improve upon previous works,

but still retain some rain streaks in the results; see Fig. 8 and

Fig. 9. This is possibly due to the synthetic training data that

includes limited number of rain streak directions.

This paper presents a new optimization method for single-

image rain streak removal with several novel components:

automatic estimation of rain streak direction, new regular-

ization terms to model and separate rain streaks from back-

ground, and a new appearance model that pushes the non-

rain details from the rain layer back to the background. Ex-

perimental results confirm the superiority of our method over

previous works, both visually and quantitatively.

Some methods [18, 22, 8, 33] remove artifacts caused by

raindrops adhering to the lens or to the windshield in front of

cameras; however, this is a different problem, since raindrop

patterns differ substantially from rain streak patterns [19].

3. Our Approach

A rain image I is often considered as a linear combination of

a rain-free background (B) and a rain streak layer (R) [19]:

I = B+R , (1)

To compute the above decomposition, we take an approach

that jointly optimizes B and R, by alternating between re-

ducing the rain streaks in B and keeping only rain streaks in

R. Specifically, we consider the following objective:

min
B,R

||I−B−R||2F +λ1Ψ(B)+λ2Φ(B)+λ3Ω(R), (2)

where ||.||F is the Frobenius norm; ||I − B − R||2F is the

fidelity term to enforce the decomposition of Eq. (1); the

other three regularization terms Ψ(B), Φ(B), and Ω(R)
are proposed to model our image priors on B and R for

rain streak removal. In short, Ψ(B) aims to smooth out

rain streaks in B, Φ(B) aims to preserve more background

details in B, while Ω(R) aims to suppress non-rain-streak

details in R, thereby pushing them back to B. Their exact

formulations are provided in Section 5, which also describes

the iterative optimization scheme that we use to solve Eq. (2).

Before these details, we first present how we estimate the

rain direction, and extract rain patches in Section 4, since the

regularization terms are built upon these rain information.

Figure 3: Gradients in rain-dominated regions (red) come

mainly from the rain streaks, as compared to regions that

contain more background details (green). Thus, the distribu-

tions of gradient angles look different in these two cases.

Figure 4: Rain-dominated regions (red boxes, left) and rain

direction (red lines, right) estimated by our method.

4. Rain Modeling

In typical rain images, one can observe that the rain streak

directions usually fall within a narrow range, while the gradi-

ents of the background scene details are not restricted in such

a manner. We use this observation to identify rain-dominated

image regions, from which we proceed to estimate rain streak

directions and extract rain patches in a robust fashion. This

is done automatically in the following three steps:

i) Locate rain-dominated regions in I. These regions have

relatively little background details, such as the red box in

Fig. 3. We identify them by examining the local distribution

of gradient directions over I. First, we compute the angle of

the gradient of each pixel in I (range: [0, π)). Then, we use

a Wr×Wr sliding window with a stride of Ws to compute

local gradient angle histograms using a histogram with 10

bins. Denoting by δ the proportion of pixels contained in

the most populated bin (as well as its two adjacent bins), we

expect rain-dominated regions to have a higher δ value than

ones that also contain a significant amount of background

details, see Fig. 3. Thus, we designate the N windows with

the highest δ as the rain-dominated regions; see Fig. 2(b)

and Fig. 4 (left) for some example detected windows.

ii) Estimate rain streak direction. Next, we use a Canny

edge detector to find edges in each of the rain-dominated

windows, and employ the Hough transform to detect the
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Figure 5: (a) rain-direction map computed by Eq. (5); (b) a result produced by using Ψ(B) and Φ(B); (c&d) weights wx

and wy computed by Eq. (9); and (e) a result produced by using all three regularization terms: Ψ(B), Φ(B), and Ω(R).

longest line in each window. The median among the slopes

of these lines is chosen as the slope of the dominant rain

streak direction. See Fig. 4 (right) for a result.

iii) Extract rain patches. Lastly, we extract rain patches (or

rain-dominated patches) by randomly picking 10N patches

inside the rain-dominated windows. The size of the rain

patches is set to be 7× 7 in our implementation.

5. Joint Bi-layer Optimization

Next, we employ the estimated rain information to formulate

our regularization terms in Eq. (2): Ψ(B), Φ(B), and Ω(R).

5.1. Sparsity prior Ψ(B)

While a dictionary-based sparse prior has been previously

used for rain streak removal [23, 21], Dong et al. [7] show

that the centralized sparse representation (CSR) is more

effective for image restoration. Thus, our first term Ψ(B) is

based on CSR, which combines local and non-local sparsity:

Ψ(B) = ||α||1+γ
∑

i ∈ B

||αi − µi||1, s.t. B = D◦α , (3)

where αi is the sparse code of the patch centered at pixel i
in B (note that B is initialized as I before the first iteration);

α is a long vector concatenating all αi; γ is a weight; D is

the dictionary created using [7]; D ◦α is the reconstructed

background image; and µi is the weighted average of the

sparse codes of the M nonlocal patches that are the most

similar to the patch centered at pixel i:

µi =
1

Υ

M
∑

m=1

τi,mαi,m, (4)

where αi,m is the sparse code of the m-th similar patch; τi,m
is the distance between that patch and the patch centered at

pixel i; and Υ is the sum of τi,m for normalization.

However, finding similar patches in rain images is made

difficult by the presence of rain streaks. Regarding the rain

streaks as a texture superimposed over the background image,

we employ the window inherent variation metric [30], which

Figure 6: Guidance image computed by using [30] (left)

and a result produced by using Ψ(B) alone (right).

was designed to separate structure from texture in images.

This metric is used to create a guidance image G, which

then assists in the estimation of patch similarity, see Fig. 6

(left) for an example. Given G, the similarity τi,j of two

patches centered at pixels i and j is estimated by multiplying

the L2 distance between the two patches in B with the L2

distance between the two patches in G. See Fig. 6 (right) for

a result of using Ψ(B) alone to remove rain streaks.

5.2. Rain direction prior Φ(B)

As seen in Fig. 6 (right), Ψ(B) can effectively suppress the

rain streaks, but it also removes many background details,

e.g., the hair details (see green box). Having estimated

the global rain direction ~d, we assume that gradients in B,

which are not perpendicular to ~d, are unlikely to belong to

rain streaks, and thus should not be removed. Hence, we

introduce Φ(B) to penalize the gradients perpendicular to
~d. Specifically, we first construct a rain-direction map by

comparing rain direction ~d and gradient ~gi per pixel i in B:

Θi(B) =
|~d · ~gi|

||~gi||+ ε1
, (5)

where ε1 is a constant (set to 0.0001) to avoid division by

zero. See Fig. 5(a) for an example. Then, we define

Φ(B) =
∑

i ∈ B

1

Θi(B) + ε1
. (6)
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Ground truth [25] Input image Ψ(B) alone Ψ(B) +Φ(B) Ψ(B) +Ω(R) Ψ(B)+Φ(B)+Ω(R)

PSNR=25.80 PSNR=26.08 PSNR=29.81 PSNR=37.18

Figure 7: The effect of each regularization term in our method. The PSNR values shown below the resulting images reveal the

progressive improvement when we put the terms together for rain streak removal.

The gradients of most rain-streak pixels are roughly perpen-

dicular to ~d. Based on Eq. (6), their small Θi will contribute

more to Φ(B) than non-perpendicular gradients. Thus, hav-

ing Φ(B) in the objective in Eq. (2) helps reduce over-

smoothing of non-rain-streak details in B, as demonstrated

in Fig. 5(b): comparing the same green box in Fig. 5(b) and

Fig. 6 (right), we can see that Ψ(B) and Φ(B) together can

improve the preservation of background details in result.

5.3. Rain layer prior Ω(R)

Regularizing only B may still smooth out certain back-

ground details, e.g., compare the details in the green box in

Fig. 3 against the blue box in Fig. 5(b). Hence, we propose to

also regularize the rain layer R to push scene details, which

have been erroneously put into R, back to B.

Inspired by [9], we use a weighted Laplacian term to formu-

late Ω(R) with spatially-varying smoothing capability:

Ω(R) =
∑

i ∈ R

{

wx(i) (∂xRi)
2
+ wy(i) (∂yRi)

2
}

, (7)

where wx(i) and wy(i) are the smoothing weights on pixel i
in R (note: R is initialized as I−B). By assigning larger

weights to pixels that are believed to contain background

detail rather than rain streaks, the corresponding areas of R
will be smoothed more aggressively, as we minimize Eq. (2).

Note also that the smoothing weights are determined using a

similarity map Γi(I), which measures the similarity between

each patch in I and the rain-dominant patches (extracted as

described in Section 4):

Γi(I) = min
r

‖Pi − P̃r‖
2
2 , (8)

where P̃r is the r-th extracted rain patch, and Pi is the patch

centered at pixel i in I; note that we use I here, since the rain

patches are also extracted from I. Using Γi(I), we define

wx(i) = |∂xΓi(I)|
η

and wy(i) = |∂yΓi(I)|
η
, (9)

where η is a sensitivity parameter. Fig. 5(c&d) shows an ex-

ample of wx and wy , while Fig. 5(e) shows a result produced

with Ψ(B), Φ(B), and Ω(R). Comparing Fig. 5(b) and (e),

we can see that more background details are pushed back to

B by constraining R to look like the extracted rain patches.

Each prior in the joint bi-layer optimization has its own con-

tribution to the success of the method. First, we define Ψ(B)
as the base model to separate rain streaks from background

using both local and nonlocal sparsity. Then, we define

Φ(B) to improve the background details preservation by

taking in rain semantics, i.e., rain streaks in images usually

following a certain direction. Next, we find that only regu-

larizing layer B tends to unavoidably oversmooth or remove

some background details, when eliminating the rain streaks

during the optimization procedure on B; hence, we define

Ω(R) to regularize and smooth out details on the layer R
using rain patches extracted in rain-dominated regions. In

this way, we can further push those non-rain details back to

layer B. Fig. 7 demonstrates the effectiveness of the priors

by comparing results produced with Ψ(B), Ψ(B)+Φ(B),
Ψ(B)+Ω(B), and Ψ(B)+Φ(B)+Ω(R). As can be seen,

using only Ψ(B) tends to overblur the details; adding Φ(B)
helps to alleviate the blurring, while adding Ω(B) helps to p-

reserve more background details. Lastly, by putting all three

priors together, we can achieve the best results, as revealed

by the PSNR values shown at the bottom in Fig. 7.

5.4. Solving the Joint Optimization

Next, we describe how we iteratively minimize Eq. (2) with

Ψ(B), Φ(B) and Ω(R). First, we initialize B0 as I and R0

as I−B0 (zero image). Then, we iteratively perform Steps

1 and 2 below K times to compute Bk and Rk (k ∈ [1,K]):

Step 1: Update B. We compute Bk in the k-th iteration by

solving the following augmented Lagrangian function:

Bk = min
B,α

||I−B−Rk−1||
2
F + λ1Ψ(B) + λ2Φ(B)

− 〈H,B−D ◦α〉+
β

2
||B−D ◦α||2F ,

(10)

where H is the Lagrange multiplier of linear constraint and
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Ground truth Input image

PSNR = 19.29

SSIM = 0.5605

DSC [21]

PSNR = 23.28

SSIM = 0.6109

GMMLP [19]

PSNR = 23.27

SSIM = 0.7638

JORDER [32]

PSNR = 22.8

SSIM = 0.6881

DDN [10]

PSNR = 25.78

SSIM = 0.7906

Our result

PSNR = 29.18

SSIM = 0.8789

PSNR = 20.39

SSIM = 0.5886

PSNR = 24.23

SSIM = 0.6120

PSNR = 25.43

SSIM = 0.8138

PSNR = 21.40

SSIM = 0.6424

PSNR = 28.30

SSIM = 0.8071

PSNR = 29.16

SSIM = 0.8610

Figure 8: Comparing results produced from our method against state-of-the-art methods on two widely-used images.

β is the penalty parameter. However, it is difficult to simul-

taneously optimize α in dictionary domain and Φ(B) in

image domain in Eq. (10). Hence, we efficiently solve it

by adopting the alternating direction method of multipliers

(ADMM) technique [3] by alternatively updating B and α

in the following two subproblems (with T iterations):

Subproblem 1.1 on B: By removing λ1Ψ(B) and adding
β
2
||β−1Ht||2F to Eq. (10), we can estimate Bt+1 as:

min
B

||I−B−Rk−1||
2

F + λ2Φ(B) +
β

2
||B−D ◦α

t −
1

β
H

t||2F .

(11)

Now, the optimization is quadratic but has a non-linear ter-

m Φ(B). Since a quadratic optimization with a quadratic

regularization term can be optimized linearly [27, 20, 17],

we solve the problem with the iterative re-weighted least

squares (IRLS) technique [30]. The main idea here is to

decompose the non-linear Φ(B) into a quadratic term and

another non-linear term (say Sx,i), which enable us to solve

the optimization in Eq. 11 by computing the new term Sx,i

and estimating Φ(B) with a closed-form solution alternative-

ly; please see the supplementary material for the details.

Subproblem 1.2 on α: With the estimated Bt+1 obtained

from subproblem 1.1, we compute α
t+1 by solving

min
α

β

2
||Bt+1 −D ◦αt −

1

β
Ht||2F + λ1Ψ(Bt+1) . (12)

Note that we adopt a similar minimization in [7] to solve the

above centralized sparse optimization, and update Ht+1 as

Ht + β(Bt+1 −D ◦αt+1) to complete Step 1.

Step 2: Update R. Given Bk from Step 1, we solve for

Rk by the following sparse linear equation:

(

Γ+ λ3(E
T
x V (wx)Ex +E

T
y V (wy)Ey)

)

V (R) = V (I)−V (Bk).

(13)

After updating Rk, we do not need to explicitly push the

non-rain details back to B, since this will be done when

updating Bk+1 in the next iteration.

Timing. To save computation time, we follow [19] and run

the de-raining only on the luminance (Y) channel by convert-

ing I to YUV space. Moreover, we construct the dictionary

only once with the input rain image. Our current Matlab

implementation takes about 24 sec. (3 iterations) / 60 sec. (8

iterations) to process a 480×320 color image; this compares

favorably to the published state-of-the-art (i.e., [19]).

Parameters. Our method, like other rain streak removal

works, also has parameters, but most parameters are fixed in

the experiments: λ1 = 1.0 (Eq. 2), λ3 = 0.01 (Eq. 2), Wr =

31 (Sec. 4), Ws = 8 (Sec. 4), N = 20 (Sec. 4), γ = 5 (Eq. 3),

M=20 (Eq. 4), η = 1.2 (Eq. 9), β = 0.01 (Eq. 10), and T (the

ADMM iteration number) = 2. For the canny operator in

Sec. 4, we empirically employ the default values provided by

the MATLAB canny function. To work with different input

images, we only tune two parameters: i) λ2 in Eq. (2), and ii)

iteration number K in our solver (see Sec. 5.4). Empirically,

λ2 ranges [10−4, 10−3], while K is set as 4 to 50. For heavy

rain condition, we use larger values for λ2 and for K.
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(a) Input image (b) DSC [21] (c) GMMLP [19] (d) JORDER [32] (e) DDN [10] (f) Ours

Figure 9: Comparisons with state-of-the-art methods using various real images, particularly with heavy rain.

Table 1: Quantitative comparison using two synthetic

datasets D1 and D2; note: images in D2 have dense rain.

6. Results

We compare our method against state-of-the-art single-image

de-raining methods, including discriminative sparse cod-

ing [21] (denoted as DSC), GMM-based layer prior [19]

(denoted as GMMLP), joint rain detection and removal [32]

(denoted as JORDER), and removing rain from single im-

ages via a deep detail network [10] (denoted as DDN). Many

synthetic and real images have been tested, and two mea-

sures were used in the evaluation: peak signal to noise ratio

(PSNR) and structural similarity index (SSIM) [29].

Synthetic Images. We conduct quantitative comparisons us-

ing two widely-used synthetic rain images, see Fig. 8. Note

that for GMMLP, the results are obtained directly from the

published paper [19]; for DSC and DDN [10], we produce

the results using the authors’ code and tuning its parameters

to achieve the best results; while for JORDER [32], we ob-

tain the results directly from the authors. In these results,

DSC, GMMLP, JORDER, and DDN tend to retain excessive

rain streaks. In contrast, our method is capable of removing

rain streaks, while better preserving the background details.

The PSNR and SSIM values reported in Fig. 8 provide a

quantitative indication of the performance of our method.

Also, we prepare quantitative comparisons between our

method and others on two datasets. One is a synthetic dataset

(denoted as D1) by randomly selecting 60 images from the

BSDS 500 dataset [6], synthesizing rain over the images with

different rain streak orientations (with the same procedure

using Photoshop as in [10]), and applying different methods

to remove rain in the images. Another dataset (denoted as

D2) is built intentionally with dense rain by randomly select-

ing 30 other images from the BSDS 500 dataset [6]. Table 1

reports the resulting averaged PSNR and SSIM values for

comparison on D1 and D2, demonstrating that our method

achieves the best (highest) PSNR and SSIM values.

Real Images. We also verify our method and compare it

against others using a number of real rain images, e.g., see

Fig. 9. Again, DSC, JORDER and DDN tend to retain ex-

cessive rain streaks, while GMMLP tends to keep more rain

streaks for images with heavier rain (2nd row in Fig. 9) or

oversmooth some background details for lighter rain (4th

row in Fig. 9). In contrast, our method achieves better results

in terms of effectively removing the rain streaks while pre-

serving the scene details, e.g., see the flowers on the ground

in the blown-up views in the last row of Fig. 9, with rain

streaks mostly removed. Lastly, Fig. 10 demonstrates the
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Figure 10: More results produced by our method under different rain directions. Top row: inputs. Bottom row: our results.

Table 2: Improvement in on-road vehicle detection.

effectiveness of our method on real images with rain streaks

in different directions and over different backgrounds. Addi-

tional results can be found in the supplementary material.

Applications. We conducted preliminary experiments on

three applications to demonstrate how our method benefits

other computer vision algorithms. The first application is

edge detection using a recent edge detector [6]. First, we

randomly selected 30 images from the BSDS 500 dataset [6],

added rain over the images using the procedure as in [10],

and employed our method to remove rain in the images.

Then, we applied [6] to generate edge maps from the rained

images, as well as from our de-rained images, and compared

the results with the ground truths given in the BSDS 500

dataset [6]. To quantitatively evaluate the edge detection

accuracy, we followed [6] to use the fixed contour threshold

(ODS), per-image best threshold (OIS), and average preci-

sion (AP) metrics. From Table 2, we can see that the edge

detection accuracy improves after removing the rain streaks.

Second, we explored saliency detection with and without

rain using [31]. Here, we randomly selected 30 images from

the CSSD dataset [31], added rain to each of them, and then

applied our method to remove the rain. Then, we compare

the saliency detection accuracy using the AUC-Judd metric1.

Results show that the AUC-Judd value increases from 0.9012

to 0.9422 after we remove the rain streaks.

The last application is on-road vehicle detection in rain im-

ages using a state-of-the-art detector [4]. Here, we randomly

selected 30 images from the KITTI dataset [4] and synthe-

sized rain on them. We then removed the rain using our

1http://saliency.mit.edu/results_mit300.html

method. Results show that the average precision in terms

of detecting vehicles improves from ∼59.76% to ∼65.71%

after using our method to remove the rain in those images.

Limitations. First, some background details may still be

oversmoothed by our method, as shown in Fig. 8. Second,

two parameters of our method are required to be specified

by users for optimal performance. Lastly, our method does

not consider haze in the rain although dehazing and contrast

enhancement may certainly be applied as a separate process.
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7. Conclusion

We present a joint bi-layer optimization method for single-

image rain streak removal with the following novel compo-

nents. First, we automatically locate rain-dominated regions

in the input image, and then estimate the rain direction and

extract rain patches by analyzing the gradient statistics. With

this information, we model three regularization terms to pro-

gressively separate rain streaks from background details in

various aspects: integrating local and nonlocal sparsity via

a centralized sparse representation, measuring deviation of

gradients from the estimated rain direction, and measuring

the visual similarity between image patches and rain patches

to filter the rain layer. Comparing with the state-of-the-art

methods, we do not need to manually prepare rain and non-

rain inputs to train a data model, and our method can better

separate background details from rain streaks as shown in

the various results using real and synthetic rain images.
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