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Abstract

Free-head 3D gaze tracking outputs both the eye location

and the gaze vector in 3D space, and it has wide applica-

tions in scenarios such as driver monitoring, advertisement

analysis and surveillance. A reliable and low-cost monocu-

lar solution is critical for pervasive usage in these areas.

Noticing that a gaze vector is a composition of head pose

and eyeball movement in a geometrically deterministic way,

we propose a novel gaze transform layer to connect sepa-

rate head pose and eyeball movement models. The proposed

decomposition does not suffer from head-gaze correlation

overfitting and makes it possible to use datasets existing for

other tasks. To add stronger supervision for better network

training, we propose a two-step training strategy, which first

trains sub-tasks with rough labels and then jointly trains

with accurate gaze labels. To enable good cross-subject

performance under various conditions, we collect a large

dataset which has full coverage of head poses and eyeball

movements, contains 200 subjects, and has diverse illumi-

nation conditions.

Our deep solution achieves state-of-the-art gaze track-

ing accuracy, reaching 5.6◦ cross-subject prediction error

using a small network running at 1000 fps on a single CPU

(excluding face alignment time) and 4.3◦ cross-subject er-

ror with a deeper network.

1. Introduction

Gaze tracking has long been used in medical diag-

noses [8], psychological studies [31] and human-computer

interaction [11, 21, 27]. Recently, gaze tracking has also

been applied to VR/AR devices for controlling [29] and

foveated rendering [30]. Most existing gaze tracking sys-

tems need fixed head or head mounted devices. In fact, free-

head 3D gaze tracking has wider applications in areas such
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as driver monitoring [41, 4, 12, 50], advertising [2, 52] and

surveillance [28].

Some works have extended fixed-head solutions to allow

for a small range of head movements by adding compen-

sations [18, 20], but they cannot handle large head move-

ments. Recent works [38, 51, 13] learned gaze as a joint

function of head and eye features. However, their meth-

ods ignored the deterministic geometric constraints among

head pose, eyeball movement and gaze vector, and forced

this relationship to be learned from data, making it prone to

overfitting the head-gaze correlation in training set.

In this work, we propose to separately model head pose

and eyeball movement with two CNN networks, and then

connect them with a “gaze transform layer”. This decom-

position avoids head-gaze correlation overfitting and makes

it possible to take advantage of existing data for other tasks.

For example, we can use head pose datasets to aid our head

pose estimation and use fixed-head gaze tracking datasets

for our eye model training.

For head pose estimation, we find that facial landmark

based methods are ambiguous at both the within-subject

level (as sensitive to facial expression) and the cross-subject

level (as inter-person differences). So we propose to regress

head poses directly from head image patches.

In order to apply stronger supervision to network train-

ing, we further propose a coarse-to-fine two-step training

strategy which first trains separate models with coarse head

pose and eyeball movement labels, then does joint train-

ing with accurate gaze labels. During the second step, the

head pose and eyeball movement models adjust slightly to

achieve cross-subject consistent head pose while keeping

the composed gaze vector fixed.

To achieve robust cross-subject predictions in the wild,

we need a large and diverse training set. In this work, we

build a 200-subjects dataset with full coverage of different

head poses and eyeball movements, various lighting condi-

tions, and includes glasses occlusions and reflections.

Our contributions can by summarized as follows: 1). We

analyze head-gaze correlation overfitting and head pose am-

biguity issues which are ignored in previous works [38, 51,
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13]; 2). We propose separate head and eye modelings and a

coarse-to-fine training strategy to solve the two issues; 3). A

large gaze tracking dataset is introduced, which has a good

coverage of different head poses, eyeball movements, light-

ing conditions, and glasses occlusions and reflections.

2. Related Works

Gaze tracking has been studied for decades [6, 3]. Most

early works are model-based as they build geometric mod-

els of the eyeball [47, 32, 48] or iris contour [42, 45].

Model-based gaze tracking has been successfully used in

many commercial gaze tracking systems. However, most of

them need expensive specialized equipments with infrared

lighting, and all of them have limited working distance.

Because of these limitations, recent research works focus

more on appearance-based methods as they have the po-

tential to predict gaze direction with low-resolution images

given a large volume of training data. Appearance-based

methods learn a mapping function from image patches to

gaze predictions. Different mapping functions have been

explored, including Neural Networks [1, 46, 51, 13], lo-

cal interpolation [39, 19], Gaussian process regression [37],

and random forests [38]. Zhang et al. [51] showed that Con-

volutional Neural Network (CNN) can achieve better per-

formance than other mapping methods.

Given those previous studies and the success of deep

learning, we use deep CNNs for gaze mapping in this work.

2.1. Freehead 3D gaze tracking

Free-head 3D gaze tracking outputs both the starting lo-

cation, i.e. eye coordinates, and gaze direction in 3D space.

This is different from early works [6, 3] which only pre-

dict gaze points on a screen and provide no information on

eye locations and gaze vector. Kyle et al. [13] and Huang

et al. [9] proposed free-head gaze tracking solutions by us-

ing a large volume of training data captured from daily life.

Unfortunately, they can only predict gaze intersections on

screen rather than 3D gaze vectors. Free-head 3D gaze

tracking is necessary for applications which need to know

what objects or regions a person is looking at. This can be

achieved by calculating the intersection point between the

3D gaze vector and objects in 3D scene.

To handle different eye appearances at various head

poses, previous works have evaluated compensation meth-

ods [18] and warping methods [20, 26]. Although those

methods can help reduce model complexity, they cannot

work well for large head movements. To overcome these

limitations, recent works [38, 51, 9, 13] relies on large

datasets to cover various head poses and gaze directions.

Our monocular free-head 3D gaze tracking solution esti-

mates eye location by solving a PnP problem [16] and pre-

dicts a 3D gaze vector using the networks shown in Fig-

ure 4.
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Figure 1: (a) Two subsets sampled from UnityEye [44] for

cross-set evaluation; (b) Compare joint modeling [51] with

separate modeling on synthetic data and real life datasets.

2.2. Deep learning with geometry constraints

Recent years have witnessed great success of deep learn-

ing in image understanding, including image classifica-

tion [14], object detection [33] and semantic segmenta-

tion [17]. However, when moving from the 2D image plane

to the 3D world, we still need the help of classical geo-

metric principles. Some recent works [53, 40, 15] have

explored combining the multi-view geometric relationships

with data-driven learning processes. Particularly, Zhou et

al. [53] integrated the geometric constraints among depth

map, camera motion and pixel correspondences with CNN

network training.

For free-head gaze tracking, there is a deterministic re-

lationship among head pose, eyeball movement, and gaze

vector, as shown in Eq. (2). We propose to use this geomet-

ric relationship to decompose gaze estimation into separate

head pose and eyeball movement predictions. Our solution

is shown to be less prone to overfitting and can make use of

existing datasets of other tasks.

3. Gaze Tracking Issues

In this section, we will analysis two critical issues in

free-head gaze tracking, including head-gaze correlation

overfitting and head pose ambiguity.

3.1. Headgaze correlation overfitting

As a gaze vector is a combination of head pose and eye-

ball movement, it is correlated with one’s head pose in na-

ture. Figure 10 compares different head-gaze correlation
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Figure 2: Within-subject head pose ambiguity: when a per-

son pouts his/her mouth, the head pose will change even if

the skull is fixed.

patterns of several gaze tracking datasets. As we can see,

these datasets present various gaze-head distribution pat-

terns, which depend on the data collection setting.

Previous works, such as [38, 51, 13], learned the gaze

vector as a joint function of head and eye features, which

can be denoted as g = f(e, h), where e denotes the eye

feature, h indicates the head pose label [51] or head fea-

tures [13], and f(.) is the joint function. In particular, both

[51] and [13] defined f(.) as a linear function, while [38]

used a random forest regressor for f(.).
We argue that learning f(.) in a data-driven fashion is

problematic, as the training set may exhibit biased head-

gaze correlation pattern, thus leading to an overfitted f(.).
To show the existence of this overfitting, we experimen-

tally compare the performances of joint modeling and sep-

arate modeling under within-dataset and cross-dataset set-

tings. For joint modeling, we follow [51] to model gaze

as a linear function of the head pose label and eye patch

features, using our tiny-AlexNet as the CNN structure; for

separate modeling, we remove the linear function, and train

a eyeball movement model with the same network structure

as in joint modeling, then predict gaze vector by combin-

ing head pose and eyeball movement prediction following

Eq. (2).

We do comparisons on both synthetic and real life data.

For synthetic data, we first divide millions of eye images

generated by UnityEye [44] into training and testing parts

in a ratio of 4 : 1, then choose two subsets with differ-

ent yaw distributions from both training and testing sets re-

spectively. Figure 1a illustrates the two subsets selected by

different slopes (
√
3 and 1/

√
3) in the yaw space. Both sets

have head poses which range from −30◦ to 30◦), and eye-

ball range of 30◦ around the middle line. Each subset in the

training part contains approximately 300, 000 images. For

realistic data, we train on MPIIGaze dataset [51] and test on

UT Multiview dataset [38].

Figure 1b shows the results, from which we can see: 1)

under the within-dataset setting, joint modeling [51] per-

forms slightly better than separate modeling; 2) under the

cross-dataset setting, joint modeling [51] has much lower

performance than separate modeling. This is a clear sign of

overfitting.

Figure 3: Cross-subject head pose ambiguity introduces in-

consistent eye appearance. These images are sampled from

MultiView [38], which share the same head and eye labels.

However, they present different appearances: the first three

are looking upward but the last two are looking forward.

To show what happened, we inspected the weights for

head pose learned in the joint model [51] trained on MPI-

IGaze dataset [51]. We found that the weights are close

to zero, indicating that gaze vectors are irrelevant to head

poses. Of course, this is ridiculous. After checking the joint

distribution of head pose and gaze direction as shown in

Figure 10, we find this is not suprising given the horizontal

distribution shape of MPIIGaze dataset [51].

In Section 6.3, we will further show that our separate

head/eye modeling associated with the two-step training

strategy achieves superior performance to joint modeling

methods [51, 13].

3.2. Head pose ambiguity

It is intuitive to define head pose based on facial land-

mark locations. Sugano et al. [38] first recovered 3D fa-

cial landmarks from multi-view images captured simulta-

neously, then defined a head coordinate as shown in Fig-

ure 5, based on which head pose was defined as the rotation

between camera coordinate and head coordinate. Zhang et

al. [51] used the same definition of head pose, but cast head

pose estimation as a PnP problem [16] as they used single

camera for data collection. We argue that facial landmark

based head pose estimation is sensitive to facial expression

and face configuration, thus making head pose ambiguous

at both within-subject level and cross-subject level:

1. Within-subject ambiguity. Facial landmark location

will change with facial expressions, thus making the

within-subject head pose unstable. Figure 2 illustrates

that head pose changes when a person pouts his/her

mouth, even if the skull and the eyeballs are fixed.

2. Cross-subject ambiguity. Inter-person face configu-

ration differences will introduce more ambiguities. As

shown in Figure 3, those differences lead to inconsis-

tent eye appearances for the same eyeball movement

label. This inconsistency will confuse data-driven

learning processes. For monocular gaze tracking, this

ambiguity will be even severer: for example, when

solving the PnP problem for a long face with an aver-

age 3D landmark template, we will get a biased pitch

angle.
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Figure 5: An illustration of head (blue) and camera (green)

coordinate system. Gaze vector (g) can be represented as

gh and gc in head and camera coordinate system respec-

tively. The relationship between gh and gc is defined by

head pose R, as illustrated in Equation 2.

4. Our Approach

This section will first introduce our gaze tracking ap-

proach which has solved the two issues analyzed in Sec-

tion 3. Particularly, in order to avoid head-gaze correla-

tion overfitting, we separately model head pose and eyeball

movement and then aggregate them into gaze vector using a

gaze transform layer; in order to overcome head pose am-

biguity introduced by landmark based methods, we propose

to regress head pose from appearance directly using a CNN

network. Then a two-step training strategy is proposed for

better network training.

Our separate modeling approach associated with the

two-step training strategy has the following advantages:

1. Less overfitting risk. By using the deterministic geo-

metric relationship, our model will not suffer from the

head-gaze distribution bias in training set;

2. More training data. We can use existing head pose

datasets (e.g. [5, 49]) for head pose pre-training, and

use eye images from head mounted devices (e.g. [23,

22]) for eyeball movement pre-training.

3. More explainable and flexible. Providing separate

head pose and eyeball movement predictions not only

makes it easier for gaze tracking diagnoses and im-

provements, but also enables scenarios where only

head poses are needed or only eyeball movements are

needed (e.g. head mounted devices).

4.1. Gaze factorization

A gaze vector is composed of eyeball movement and

head pose, as is illustrated in Figure 5. We use g to denote

the physical gaze vector, which can be represented as gh

and gc in head and camera coordinate system respectively.

Head coordinate system. We define the rough head co-

ordinate system based on facial landmarks as in [38, 51]. It

is necessarily rough at this stage due to inherent ambiguities

of the head pose. The accurate head coordinate system that

is within-subject stable and cross-subject consistent will be

learned automatically by our gaze transform layer in the

second training step.

Eyeball movement. As shown in Figure 5, eyeball move-

ment is defined as the angles between the gaze vector g and

head coordinate axes, and is denoted as (θ, φ), where θ and

φ mean horizontal and vertical rotation angles respectively.

In fact, eyeball movement depicts a gaze vector in head co-

ordinate system as:

gh = [− cos(φ) sin(θ), sin(φ),− cos(φ) cos(θ)]T (1)

Head pose. Head pose reflects the rotation matrix R be-

tween the head and camera coordinate systems. As ex-

plained in Section 5.2, after data normalization, the 3DOF

head pose can be normalized to 2DOF as (y, p), where y is

the yaw and p is the pitch angles in the normalized spheri-

cal coordinate system. (y, p) and R can be interconverted

as shown in [38]. Herein we denote this as R = f(y, p).
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dataset #subject #pose #target #image

[24] 20 1 16 videos

[43] 20 19 2-9 2220

[35] 56 5 21 5880

[25] 16 cont. cont. videos

[38] 50 8+syn. 160 64,000

[51] 15 cont. cont. 213,659

Ours 200 cont. cont. 240,000

Table 1: Comparison with 3D annotated Datasets.

Gaze transform layer. The gaze vector gc is defined in

camera coordinate system, and the transformation between

gc and gh is defined by the head pose R:

gc = Rgh, (2)

We build a neural network layer named the “gaze trans-

form layer” to encode the transformation from gh to gc.

The forward operation of this layer is described in Eq. (2),

and the backward operation is defined as:

∂gc

∂y
=

∂gc

∂R

∂R

∂y
,

∂gc

∂p
=

∂gc

∂R

∂R

∂p
,

∂gc

∂θ
=

∂gc

∂gh

∂gh

∂θ
,

∂gc

∂φ
=

∂gc

∂gh

∂gh

∂φ
.

(3)

Note that our gaze transform layer contains no learnable

parameters; it simply acts as a gradient conductor between

gc and the four inputs.

4.2. Training strategy

Given the network structure shown in Figure 4, we can

directly use gaze label and apply gaze loss Lg to guide

the learning process of the two CNN networks. In fact,

this training strategy works fairly well as shown in Fig-

ure 11. Noticing that we can also add supervision informa-

tion for the two separate CNNs, we hypothesize that adding

stronger supervision at these mid-points may lead to better

network learning. However, as analyzed in Section 3.2, fa-

cial landmark based methods could not provide accurate,

cross-subject consistent head pose labeling. So we pro-

pose a two-step training strategy to first train the two sepa-

rate CNNs (Le + Lh) with rough labels, and then fine-tune

the whole network using gaze label (Lg) to achieve within-

subject stable and cross-subject consistent head pose.

Two-step training. In the first step, we train eyeball

movement and head pose models using the rough labels

estimated from facial landmarks detected by [54]; In the

second step, we fine tune the 2-branch network shown in

Figure 4 using only accurate gaze labels.

dataset distribution device ind. 3D anno.

[9] wide no no

[13] wide no no

[38] narrow yes yes

[51] narrow yes inaccurate

Ours wide yes yes

Table 2: Attribute comparison for some recent datasets.

In the first step, parameters of the two CNNs are opti-

mized to give a coarse estimation of head poses and eyeball

movements, so they can achieve fairly good though still in-

accurate gaze predictions. In the second step, the parame-

ters will adjust slightly to achieve within-subject stable and

cross-subject consistent head pose. Experimental results in

Figure 11 show that this two-step training strategy signifi-

cantly improves gaze accuracy.

We need to point out that our second training step

is different from previous joint modeling methods such

as [51, 13]. This is because our gaze is represented as a

fixed function of head pose and eyeball movement, and the

gaze transform layer contains no learnable parameters.

5. Data Collection

We argue that a good gaze tracking dataset should meet

the following requirements:

1. Wide distribution. The dataset should have full cov-

erage of head poses, eyeball movements and their com-

binations; it should include a large number of subjects

for good cross-subject performances; and it should

take illumination variations, occlusions and glasses re-

flection into consideration.

2. Device independent. A model learned from the train-

ing set should be easily deployed to other devices with

distinct camera parameters and/or target screen.

3. 3D annotation. Annotating head pose and gaze vec-

tor in the 3D space makes it possible to predict a 3D

gaze vector rather than only gaze intersection with the

screen. Thus the system can be used to predict gaze

intersection with any surrounding objects.

Table 2 uses these criteria to compare our dataset with

four largest ones. TabelGaze [9] and GazeCapture [13] col-

lected a huge number of videos and images in daily life

using tablet or smart phone. However, they are not de-

vice independent as lack of camera intrinsic parameters,

and they could not be accurately 3D annotated because of

using monocular camera for data collection. In UT Multi-

view dataset [38], images with fixed head pose were first

collected, and then virtual cameras were used to synthesize
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(a) head target and eyeball target (b) 12 cameras config (c) our collection environment

Figure 6: Our data collection setup. (a). Head pose targets and eyeball targets are used to guide head pose and eyeball

movement respectively; (b). 12 synchronized cameras are used for wide head pose range and also provide 3D annotations; (c).

Two TV screens are used for target presentation, and we add 3 extra light sources to generate random lighting combinations.

(a) one eye in 12 cameras (b) different eyeball angle

Figure 7: (a). Eye images by 12 synchronized cameras from

different directions. (b). Example images showing large

eyeball movement range.

images from other view points. They have relatively large

head pose and eyeball movement ranges, but the lighting

conditions are almost fixed. In addition, no occlusions from

glasses or hair is included due to the requirements of the

3D reconstruction algorithm. MPIIGaze dataset [51] col-

lected a large number of pictures using laptop cameras dur-

ing the subjects’ daily life to include extreme lighting con-

ditions and glasses occlusions. However, limited by the us-

age habits of the subjects, MPIIGaze dataset [51] contains

a small gaze range as shown in Figure 10. In addition, be-

cause of the use of a monocular camera for data collection,

they cannot get accurate 3D annotations.

Table 1 compares dataset size and diversity with existing

3D annotated datasets. As we can see, our dataset is large

in both the subject number and the image number aspects.

In the following, we will introduce our data collection

setup and procedures to show how to achieve a large dataset

with wide distribution of head poses, eyeball movements

and illuminations.

5.1. Collection Procedure

Figure 6 shows the setup of our data collection system.

We use two TV screens (60 inches, screen size of a sin-

gle screen: 1345mm * 780mm) for target presentation, and

a camera array for full head pose range coverage. The

multi-camera systems are pre-calibrated, and the positions

of TV screens in world coordinate are calibrated with a mir-

ror [34]. We guide participants to adjust their head and

��

Figure 8: A person’s head pose range δ is enlarged to Nδ
by N cameras with unparallel optical axes.

eyeballs according to two types of targets, i.e., head pose

targets and eyeball targets as shown in Figure 6a. In fact,

during collection, we repeat: 1) showing a head pose target

randomly and asking the participant to turn his/her head to-

wards it; 2) then showing eyeball targets randomly around a

previous head pose target and asking the participant to track

them by moving his/her eyeballs. Note that, head pose tar-

gets play an ancillary role and will not be used for annota-

tion generation, so the deviations during head pose turning

will not influence our data accuracy.

To ensure robust gaze predictions at the testing stage, it

is critical to get full coverage of eyeball movements, head

poses and their combinations. To get high quality data with-

out noise labeling, we need to make sure participants are

looking at the appointed targets at the time of capture. We

make an effort to assure these criteria in the following man-

ner:

Full head pose coverage. Full head pose coverage is

achieved by the combination of head movements and the

use of multiple cameras. In fact, if N cameras are placed

with unparallel optical axes, they will contribute to N sam-

ples with different head poses at a single point in time. If we

further allow participants to move their head within a range,

the N cameras will contribute to N regions within the head

pose space. We give a 1D example to illustrate this in Fig-

ure 8: when the participant moves his head within a small

range of δ, we can get δ × N head pose range. Note that,
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Figure 9: Eyeball movement (first line) and head pose (sec-

ond line) distribution on MPIIGaze dataset [51], MultiView

dataset [38] and ours.

it is equivalent to have “fixed cameras with moving head”

v.s. “moving cameras with fixed head”, so by allowing head

movements during data collection, we will get a continuous

distribution of camera location.

Full eyeball movement coverage. The large TV screens

make it possible to sample eyeball targets far from associ-

ated head targets, thus leading to a large eyeball movement

range. Example images showing the large eyeball move-

ment range can be observed in Figure 7b. To achieve full

eyeball movement around each head pose, we need to sym-

metrically sample eyeball targets around each head pose tar-

get.

Figure 9 shows that our dataset has the largest head pose

and eyeball movement range; and Figure 10 shows that

we have full coverage of possible head-gaze distribution.

In comparison, MPIIGaze [51] covers the smallest region

due to relatively fixed laptop usage habits; and UT Multi-

View [38] has relatively large coverage by using multiple

virtual cameras.

Lighting coverage. In addition to the natural lighting in

the room, we add three light sources and control the voltage

of each light source in a continuous and random way, thus

leading to a huge number of lighting combinations.

Data verification. For head pose verification, we run on-

line head pose tracking utilizing the face alignment method

in [54] to ensure that the actual head pose is close to the

appointed head pose target. If this check is not passed, the

collection program will not start.

For gaze direction verification, we display changing

characters at the eyeball target location, and ask partici-

pants to press a key immediately when a certain character

shows up. This procedure effectively makes participants fo-

cus their sights on appointed locations.

(a) MPIIGaze [51] (b) MultiView [38] (c) Ours

(d) MPIIGaze [51] (e) MultiView [38] (f) Ours

Figure 10: Head-gaze distribution on MPIIGaze

dataset [51], UT MultiView dataset [38] and our dataset.

Blue dots represent data samples and the parallelograms

in green dashed line illustrate the possible region for the

distribution of eyeball movement ([−50◦, 50◦]) and head

pose ([−90◦, 90◦]).

5.2. Data processing

In general, object pose has 6 DOF relative to the camera,

including 3 DOF of translation and 3 DOF of rotation. Nor-

malizing training samples to a lower space can significantly

reduce the required number of training samples, thus saving

data collection costs. In this work, we follow [38] to do data

normalization.

We detect facial landmarks as in [54] and reconstruct

their 3D coordinates using multiple cameras. Note that we

only need multi-view reconstruction during the data col-

lection stage. At the testing stage, a monocular camera

is enough. With 3D facial landmarks, we normalize eye

patches following the method introduced in [38]. The un-

derlying principle is that we can warp the original image

following a homography transformation to simulate camera

rotation (around its pinhole) and zoom in/out. Particularly,

the normalization is done in two steps: First, rotate the cam-

era around its pinhole to a status where 1) the x axis of head

coordinate system lies in the camera’s X-O-Z plane and 2)

the eye center lies in the Z axis of the camera. Then, zoom

the camera in or out to a new focal length to get a fixed mag-

nification ratio (ratio of the size on image to the size in real

3D world).

After this normalization, the head pose is reduced from

6DOF to 2DOF. So we can represent the head pose using

the longitude and latitude angles in the spherical coordinate

system. Please refer to the original paper for more details.

6. Experiments

6.1. Network designing

For speed consideration, we propose a tiny-AlexNet

network, which is a simplified version of the original
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AlexNet [14]. Our tiny-Alexnet can run a forward pass

within 1ms on a single Intel Xeon 2.4GHz CPU. In order

to see the influence of deeper structure and more parame-

ters, we compare tiny-AlexNet with BN-Inception [10] net-

work. In the following experiments, if not explicitly speci-

fied, tiny-AlexNet is used as the default structure.

Our tiny-AlexNet has the same number of layers as

the original AlexNet, but with fewer channels. We also

change the Local Response Normalization [14] into batch

normalization [10] due to its fast convergence speed and

training stability. The detailed structure of tiny-AlexNet can

be described as: C(3,1,6)-BN-PReLU-P(2,2)-C(3,1,16)-

BN-PReLU-P(2,2)-C(3,1,24)-BN-PReLU-C(3,1,24)-BN-

PReLU-C(3,1,16)-BN-PReLU-P(2,2)-FC(256)-PReLU-

FC(128)-PReLU-FC(2), where C(k,s,c) means a convolu-

tion layer with kernel size k, stride s and channel number

c; P(k,s) means max pooling with kernel size k and stride

s; PReLU is defined by [7]; and FC means fully connected

layer. Euclidean loss is used both for eyeball movement

and head pose regression.

Images are histogram equalized to alleviate illumination

differences before inputting to the CNN. For tiny-AlexNet,

images are first resized to 72× 72 and then cropped to 62×
62. For BN-Inception, images are first resized to 256× 256
and then cropped to 224× 224.

We train the network using classical Stochastic Gradient

Descent (SGD). For the first training step (Le and Lh), we

use an initial learning rate of 0.001 and 25,000 iterations

at a batch size of 256, and we decrease the learning rate

by 1/10 at the iterations of 12, 000 and 20, 000; For the

second training step (Lg), we use the same parameters but

skip the first 12, 000 iterations to jointly fine-tune the whole

networks.

6.2. Twostep training strategy

In this section, we compare different training strategies

and study whether the proposed two-step training strategy

can improve gaze prediction accuracy.

Our two-step learning strategy first trains the 2-branch

network with Le + Lh, leading to a sub-optimal solution

which suffered from head pose ambiguity. Then in the sec-

ond step, only the gaze loss Lg is applied, as we have accu-

rate gaze ground truth labeling.

Figure 11 compares the two-step training strategy with

other different training strategies. From the figure, we can

observe that: 1) head pose ambiguity has a significant im-

pact on gaze accuracy with the worse case occurring when

only Le + Lh is used; 2) simply using Lg for a one-step

training also acquires relatively good performance, indicat-

ing that the 2-branch network can learn good eyeball move-

ment and head pose models given only gaze supervision; 3)

two-step training can significantly improve gaze prediction,

especially for large BN-Inception network where more pa-
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Figure 11: Performance comparison among MPIIGaze

method [51], iTracker method [13] and our different train-

ing strategies. For iTracker [13] method we stack the fea-

ture vectors of eye and head, and then use a fully connected

layer for gaze regression. As we can see our separate mod-

eling associated with the two-step training strategy achieves

the best performance.

rameters have to be learned.

6.3. Comparison with stateoftheart

Since public 3D annotated datasets [38, 51] only provide

eye patches rather than the whole face image, we cannot di-

rectly compare our method with other state-of-the-art meth-

ods on those datasets. So we compare our solution with

state-of-the-art methods on our dataset. We randomly di-

vide the 200 subjects into 5 groups and report the 5-fold

cross validation results for different methods.

As Zhang et al. [51] has already shown, CNN-based gaze

tracking outperforms other mapping functions (e.g. ran-

dom forest [36], kNN, adaptive linear regression and sup-

port vector regression), herein we only compare with CNN-

based gaze tracking. Particularly, we compare with the

MPIIGaze method [51] which learns gaze as a linear func-

tion of head pose and eye features, and with the iTracker

method [13] which learns gaze as a function of eye feature

and head feature. Note that, for fair comparison, we change

the network structure of [51] and [13] into the same as ours,

i.e., tiny-AlexNet or BN-Inception. Figure 11 shows that

our separate modeling associated with the two-step training

strategy outperforms MPIIGaze method [51] and iTracker

method [13].

7. Conclusions

In this work, we analyzed the head-gaze correlation over-

fitting and head pose ambiguity issues which are ignored by

existing free-head gaze tracking works, then propose a so-

lution using separate modeling and a two-step training strat-

egy to solve these two issues. To enable free-head gaze

tracking under various conditions, a large dataset is col-

lected with full coverage of head pose, eyeball movements,

illuminations and occlusions. Experiments validate that our

methods are less likely to overfit. We achieve state-of-the-

art gaze tracking accuracy.
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