
TORNADO: A Spatio-Temporal Convolutional Regression Network for Video

Action Proposal

Hongyuan Zhu⋆

I2R, A∗Star, Singapore

zhuh@i2r.a-star.edu.sg

Romain Vial∗

MINES ParisTech, France

romain.vial@mines-paristech.fr

Shijian Lu

NTU, Singapore

Shijian.Lu@ntu.edu.sg

Abstract

Given a video clip, action proposal aims to quickly gen-

erate a number of spatio-temporal tubes that enclose can-

didate human activities. Recently, the regression-based net-

works and long-term recurrent convolutional network (L-

RCN) have demonstrated superior performance in object

detection and action recognition. However, the regression-

based detectors perform inference without considering the

temporal context among neighboring frames, and the LRC-

N using global visual percepts lacks the capability to cap-

ture local temporal dynamics. In this paper, we present a

novel framework called TORNADO for human action pro-

posal detection in un-trimmed video clips. Specifically, we

propose a spatio-temporal convolutional network that com-

bines the advantages of regression-based detector and L-

RCN by empowering Convolutional LSTM with regression

capability. Our approach consists of a temporal convolu-

tional regression network (T-CRN) and a spatial regression

network (S-CRN) which are trained end-to-end on both RG-

B and optical flow streams. They fuse appearance, mo-

tion and temporal contexts to regress the bounding boxes

of candidate human actions simultaneously in 28 FPS. The

action proposals are constructed by solving dynamic pro-

gramming with peak trimming of the generated action box-

es. Extensive experiments on the challenging UCF-101 and

UCF-Sports datasets show that our method achieves supe-

rior performance as compared with the state-of-the-arts.

1. Introduction

Human can understand a video by analyzing how many

peoples are inside, where are they and how they interact

with each other in a single glance. Developing a fast and

accurate algorithm which can well mimic this human ca-

pability can unlock great potentials for a series of respon-

sive and automatic applications, such as assistive robots and

video surveillance [7, 43, 24, 20]. However, directly feeding

∗H.Zhu and R.Vial are first authors with equal contributions.

raw video volumes to existing learning algorithms is com-

putationally extensive. On the other hand, human visual

system assigns computational resources to a small number

of regions that correspond to salient and meaningful human

actions, which highly motivates the development of video

action proposal.

Action proposal takes an un-trimmed video as input and

outputs a number of tubes which consist of the potential

human action boxes. It is a challenging task due to the il-

lumination variation, abrupt motion changes, background

clutters, etc., and so requires a systematic and principled

modeling approach. In contrast to static object propos-

al [4, 44, 29] which considers appearance cue only, action

proposal in videos is much more complex and requires to

integrate several components including (1) a fast and accu-

rate candidate action box generator that can simultaneous-

ly consider appearance, motion and temporal context; (2)

a robust and accurate actionness estimator for the generated

proposals; (3) an efficient association mechanism to link the

candidate boxes into action proposals.

With the above objectives in mind, a number of action

proposal methods [11, 22, 39, 42, 16, 9] have been devel-

oped in recent years and very promising results have been

achieved. Different approaches have been explored includ-

ing segmentation-and-merging [11, 22, 19], dense trajec-

tories clustering [39], human detection [42], deep learn-

ing [16], etc. However, segmentation-and-merging [11, 22,

39, 26] and human detection [42] approaches rely on low-

level cues which fall behind the state-of-the-art. Recently,

Li et al.[16] explored to use Region Proposal Network (RP-

N) [29] for action box detection, but RPN processes each

video frame individually and ignores the temporal context

among adjacent video frames. They trained additional de-

tector using low-level descriptors to remedy detection miss-

es, but such separate sequential processing approach accu-

mulates error and is also difficult to optimize.

To handle these challenges, we propose a new frame-

work TORNADO for video action proposal. The TORNA-

DO consists of a temporal convolutional regression network

(T-CRN) and a spatial convolutional regression network (S-
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Figure 1. Conceptual illustration of our method. Our method consists of a spatial convolutional regression network (S-CRN) and a temporal

convolutional regression network (T-CRN). Both neworks use fully convolutional networks (FCN) to extract discriminative deep features

xt, t ∈ {0, n} from RGB or Flow frames. Then the T-CRN performs sequential inference using ConvLSTM (Sec.3.1) to regress temporal

bounding boxes (or region proposals) ot, t ∈ {0, n} of candidate human actions, and the S-CRN regresses spatial candidate action boxes

o
′

t, t ∈ {0, n} using cues in single frame with normal convolutional layer. These candidate boxes are then fused and the action proposals

are finally constructed by using efficient dynamic programming and peak pattern trimming.

CRN) which are combined to regress the bounding boxes of

human action proposals. The T-CRN is inspired by recen-

t advances in regression-based image detector [28, 18, 29]

and LRCN [5] for action classification. Specifically, we

replace the normal LSTM in LRCN with a Convolution-

al LSTM (ConvLSTM) to preserve the spatio-temporal s-

moothness among neighboring pixels and frames. In addi-

tion, we exploit temporal context with recurrent unfolding

to empower ConvLSTM with regression capability (for can-

didate boxes prediction) which is largely neglected in the re-

cent literature. The S-CRN shares a similar architecture as

T-CRN which fully exploits the appearance cues in a single

frame to improve the action candidate boxes generation per-

formance. Action proposals are finally constructed by solv-

ing dynamic programming with peak-trimming. Extensive

experiments on both UCF-101 and UCF-Sports datasets

demonstrate that the proposed TORNADO achieves supe-

rior performance as compared with the state-of-the-arts.

Our contributions are two folds. First, we propose the

first framework that integrates the complementary spatial

and temporal information into an end-to-end trainable sys-

tem for video action proposal with state-of-the-art perfor-

mance. Second, a novel and efficient path trimming method

is proposed to handle untrimmed video by examining ac-

tioness and background score pattern without using extra

detectors.

2. Related Work

Recurrent Neural Network: Recurrent Neural Net-

works, especially LSTM [10] have become recent prevalent

recurrent structure because it incorporates memory that has

explicit control of when to ’forget’ and when to ’update’

given new information. LSTM has been used for video ac-

tion classification [5], image-sentence generation [12], ob-

ject detection refinement [21] etc. Although LSTM is suit-

able for certain time series tasks, it treats all input data as

flatten vectors which ignores the spatial correlation among

adjacent pixels. Hence they are more focus on global ap-

pearance changes as argued by Ballas et al. [1].

The Convolutional LSTM [33, 1] has recently become

popular because it has a smaller memory footprint by using

convolution layer with a sparser connection instead of the

fully dense connection in LSTM, hence should theoretical-

ly better to capture the spatio-temporal smoothness change

among local pixels in video related tasks. Actually, Con-

vLSTM has been applied to image segmentation [30], opti-

cal flow estimation[23] and video action classification [17]

with promising performance. However, the study to extend

ConvLSTM for sequence bounding boxes regression task

is largely neglected in recent literature to the best of our

knowledge. Our experiment shows that ConvLSTM with

regression capability is effective for video action proposal.

Video based Action Proposal: Early success in ac-

tion detection is based on exhaustive search using sliding

cuboids [13, 15, 35]. The rigid cuboid often lacks suffi-

cient capacity to capture the versatile shape of the human

actions. Besides cuboid search, structure output regres-

sion [37, 36] has been explored to detect spatial-temporal

action tubes but it can only search the best action path

with fixed size window. Recently, Yu et al.[42] address

the limitation of the fixed detection window by replacing

it with human detectors and use max sub-path search for

action proposal. Several recent systems[39, 3, 2] gener-

ate action proposals by clustering long term point trajec-

tories, but they cannot detect actions with small motions
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well [39]. Some segmentation-and-merging strategy is pro-

posed in [11, 22, 19] where videos are firstly segmented and

then hierarchically merged into action proposals. On the

other hand, the quality of video segmentation becomes the

bottleneck especially under unconstrained setting. Further-

more, aforementioned methods are based on low-level cues,

which are sensitive to abrupt appearance and scale changes

and accordingly degrade their performance greatly.

Recently, deep learning based on frame-level region pro-

posal have become a new paradigm for spatial temporal

action localization. Shou et al. [34] propose to use CN-

N for action localization in temporal domain. Gkioxari

and Malik[9] uses appearance and motion based two-stream

R-CNN[8] with SelectiveSearch[38] to find more accurate

spatial-temporal candidate action regions which are further

seamed together using dynamic programming. However, it

needs to search the proposal region class-by-class and their

method can only work on temporally trimmed video. Sa-

ha et al.[32] and Peng et al.[25] extends the approach in

[9] by using Fast-RCNN which first detect class-specific ac-

tion regions, and then seam them to be class-specific action

tubes using dynamic programming. Vial et al. [40] propose

to use LSTM based regression detector, however, they are

based on dense connection, which can only runs at 5FPS.

Our system also uses dynamic programming to seam action

proposal, but we propose a novel path trimming approach

by checking the score pattern along the path for better effi-

ciency and accuracy in untrimmed video.

Detection-and-tracking methods have also been used for

action localization and action proposal. For example, Wein-

zaepfel et al.[41] train a two-stream R-CNN to detect class-

specific actions one-by-one for tracking. Later, Li et al.[16]

use a single stream Faster-RCNN [29] to replace the R-

CNN which achieves the state-of-the-art performance. An

improved dynamic programming of [42] is designed to gen-

erate action proposal where the missing detection are reme-

died by tracking-by-detection.

Our method belongs to the two-stream deep learning

based approach. We train a S-CRN detector to detect frame-

level action candidates in the similar way. In addition, we

perform the reasoning by training a T-CRN detector to cap-

ture the long-term dependency and contexts among adjacent

frames which are largely neglected in most existing meth-

ods. Furthermore, we approximate detection-by-tracking

methods using efficient dynamic programming and trim-

ming. Experiments demonstrate superior performance of

our proposed method as compared with the state-of-the-arts

using extra detectors.

3. Methodology

The core idea of our work is to formulate the video ac-

tion proposal task as a sequence bounding boxes regres-

sion problem using RNN. It first maps a variable-length un-

Figure 2. Human action not only accounts for local kinematics and

motions, the temporal context of adjacent frames is also important.

The S-CRN detector (left column) performs inference using single

image cues and it produces false alarms for the player dressed in

black, while the T-CRN detector (right column) can resolve such

ambiguity by using information from earlier frames. The green

boxes are the ground-truth, while the red-boxes are the detected

action paths with the highest actioness score.

trimmed video into sequences of candidate action boxes.

Action proposals are then constructed by linking up these

boxes by using an efficient dynamic programming and trim-

ming technique. Fig. 1 shows an overview of our method.

3.1. TORNADO for Action Proposal

Our system consists of a temporal convolutional regres-

sion network (T-CRN) and a spatial convolutional regres-

sion network (S-CRN) as illustrated in Fig. 1. The T-CRN

is mainly responsible for modeling the rich temporal dy-

namics and contexts, while the S-CRN is mainly used for

modeling the rich spatial appearance cues in each frame.

We’ll first describe T-CRN in the following parts, as S-CRN

is a static variant of it with small modification.

Previous deep learning based action proposal

methods[16, 9, 41] process video frames individually

without using temporal contexts, which often lead to

many false-alarm detections while inferring using local

patches. Inspired by the recent popular LRCN for video

action classification [5], ConvLSTM for image instance

segmentation [30] and regression based image object

detection [27, 28, 29, 18], the T-CRN explores to empower

LRCN with spatio-temporal regression capability for more

accurate action proposal generation through examining the
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spatio-temporal contexts among neighboring video frames.

Fig.2 illustrates the difference between static modeling and

temporal modeling.

Fig.1 depicts the structure of the T-CRN. The inference

process starts by passing an input frame ft ∈ R
h×w×c at

time t to a fully convolutional neural network, which con-

sists of a series of convolution and pooling layers, to out-

put a spatial-preserved inner representation of the image

xt ∈ R
h′×w′×d. This RNN uses a function fW to map xt

and previous hidden state ht−1 into a new hidden state ht

and output ot. The inference is conducted from left to right,

where h1 = fW (x1, h0), then h2 = fW (x2, h1), etc, and

the h0 is initialized to zero. During training, an output label

lt will be provided to measure the quality of the prediction

ot which helps to learn the network parameters.

Conventional RNN (including the recent popular LST-

M) flattens input feature maps xt into vectors, where both

input-to-hidden and hidden-to-hidden transformations are

fully connected. It ignores the spatial correlations among

local feature maps which could often leads to sub-optimal

results for video activity analysis. The reason is that human

actions typically take up a small portion of videos and it is

difficult to ensure shift, scale and distortion invariance by

using fully connected structures as argued in [1, 17].

The Convolutional LSTM (ConvLSTM) overcomes

these limitations by replacing the dense layer of LSTM with

the convolutional layers, which preserves the local spatial

information and reduce the parameters of the network. The

ConvLSTM we use in this work is similarly defined as in

[33, 1]:

it = σ(Wxi ∗ xt + Uhi ∗ ht−1 + b̂i)

ft = σ(Wxf ∗ xt + Uhf ∗ ht−1 + b̂f )

ot = σ(Wxo ∗ xt + Uho ∗ ht−1 + b̂o)

gt = σ(Wxc ∗ xt + Uhc ∗ ht−1 + b̂c)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(1)

where ∗ denotes a convolution operation, σ and ⊙ is the

element-wise activation and product function respectively,

Wxi, Wxf , Wxo, Wxc and Uxi, Uxf , Uxo, Uxc are 2D-

Convolutional Kernels. b̂i, b̂f , b̂o, b̂c are the biases. In ad-

dition, it is the input gate, ft is the forget gate, ot is the

output gate, gt is the input modulation gate. ct is the sum

of previous memory cell ct−1 which is modulated by forget

gate ft and modulation gate gt.

The output ot is a tensor of the shape S × S × (B × 5 +
|C|), which means to divide the image into S×S grids, and

each grid predicts B bounding boxes’ coordinates and ob-

jectness score, hence each bounding box is parametrized by

(x, y, w, h, s), where (x, y) represents the center of the box

relative to the bounds of the grid cell. The width (height)

are normalized with respect to the image’s width (height).

The confidence s predicts the IOU between the predicted

box and any ground-truth box. Moreover, each cell will al-

so predict a pair of action and background score (sac, sbg),
which can be seen as an actionness and a backgroundness

score for the given cell, respectively. The label lt is a tensor

of the same shape as ot, which encodes the ground-truths

(x̂i, ŷi, ŵi, ĥi, ŝi, ŝ
i
ac, ŝ

i
bg) for each grid i.

The loss function between lt and ot is adapted from Y-

OLO [27] for implementation simplicity:

λcoord

S2

∑

i=0

B∑

j=0

1objij ‖(xi, yi)− (x̂i, ŷi)‖2

+ λcoord

S2

∑

i=0

B∑

j=0

1objij ‖(
√

hi,
√
wi)− (

√

ĥi,
√

ŵi)‖2

+

S2

∑

i=0

B∑

j=0

1objij (si − ŝi)
2

+ λnoobj

S2

∑

i=0

B∑

j=0

1noobjij (si − ŝi)
2

+

S2

∑

i=0

1obji

∑

c∈{ac,bg}

(sic − ŝic)
2

(2)

where 1obji denotes if object appears in cell i, 1objij denotes

that the jth bounding box predictor in cell i is responsible

for the prediction (i.e. has the higher IoU with the ground

truth between the B boxes) and 1noobjij denotes that the jth

bounding box predictor in cell i is not responsible for the

prediction or there is no ground truth boxes in cell i. The

notion λcoord and λnoobj are two trade-off factors. The loss

function therefore penalizes classification error if object ap-

pears in the grid cell. It also penalizes bounding box coor-

dinate error if that predictor has the highest overlap in that

grid cell.

T-CRN is doubly deep in spatial-temporal domain which

can learn the temporal action dynamics. We also train S-

CRN to exploit the rich appearance cues in individual frame

for further performance improvement. The S-CRN shares

the same architecture as the T-CRN but it replaces the last

ConvLSTM layer with a normal Convolutional layer for

bounding box regression. Both RGB and Flow stream has

an S-CRN and T-CRN, these networks run in parallel. The

two sets of bounding boxes from both networks and streams

are simply combined into one set. These networks comple-

ment each other and fusing their outcomes further improves

the performance. The detail architectures of both networks

are to elaborated in the implementation details.
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3.2. Action Path Linking and Trimming

At the end of the detection process (Sec. 3.1), a set of

bounding boxes for each video frame B = {{b(j)i , j ∈
[1 . . . Nbi ]}, i ∈ [1 . . . T ]} are generated, where T is the

length of the video and Nbi is the number of predicted box-

es in frame i. For each box b
(j)
i we have its confidence score

sc(b
(j)
i ), actionness score sac(b

(j)
i ) and background score

sbg(b
(j)
i ). The next objective is to create a set of propos-

al paths P = {pi = {bmi
, bmi+1

. . . bni
}, i ∈ [1 . . . |P|]}

where mi and ni are the starting and ending frames of the

path pi, respectively.

3.2.1 Action path linking

In order to link frame-level boxes into coherent path, we

firstly define a score for a path as in [9] given the confidence

scores sc of each box and the IoU of successive boxes:

S(p) =

T∑

i=1

sc(bi)

︸ ︷︷ ︸

unary

+λ0 ×
T∑

i=2

IoU(bi, bi−1)

︸ ︷︷ ︸

pairwise

(3)

where λ0 is a trade-off factor. Maximizing Eq. 3 will give

a path whose detection boxes have high confidence scores,

and overlap significantly.

Given the set of boxes B, the maximization problem can

be solved and the best path p̂ found by using the Viterbi

algorithm. After the optimal path is found, the boxes in p̂

are removed and the algorithm is solved again. This process

is repeated until one of the frames contains no predicted

boxes.

Figure 3. Examples of the peak trimming method on two UCF-

101 videos. Blue and green lines are background and actionness

scores, respectively. Blue and green crosses are detected peaks in

background and actionness scores, respectively. Green patches are

ground-truth paths and the red patches are extracted paths with the

peak trimming method. One can see that our models are able to

trim the initial predicted path accurately thanks to the patterns in

the action and background scores.

3.2.2 Trimming with peaks detection

The first pass of dynamic programming aims to extract con-

nected paths by penalizing regions which do not overlap in

time. However not all detection boxes within a path exhibit

strong actionness scores.

We propose an empirical method by looking at the pat-

tern in the actionness and background scores for the path

trimming (e.g. in Fig.3).In particular, the scores are first s-

moothed by computing their running average. All peaks are

then detected for both scores, where a peak is defined as a

local maximum among at least n neighbors:

peaksac = {t, sac(bt) = max(V (ac)
n (t))}

peaksbg = {t, sbg(bt) = max(V (bg)
n (t))}

(4)

where V
(k)
n (t) = {sk(bi), i ∈ [t − n . . . t + n]}, k ∈

{ac, bg}.

Once we have found the peaks, we can select all subse-

quences by applying the following algorithm to generate the

final action proposals:

subseq = ∅
for p ∈ peaksac do

s = max(peaksbg < p)
e = min(peaksbg > p)
add path {bs . . . be} at subseq

end

The generated proposals are ranked according to their

avearaged boxes’ scores along the path, the top K (K = 30)

paths are kept.

3.3. Implementation Details

The CNN feature extractor we use is based on Y-

OLO [27] which has 24 convolution layers and 2 fully-

connected layer. We remove the last two fully-connected

layer and replace them with a 1 × 1 convolution layer with

256 filters. The 1 × 1 convolution helps to reduce network

complexity and improve training stability. The last layer of

the T-CRN and S-CRN is a ConvLSTM layer and a con-

volutional layer with 12 parameters respectively. The input

frames are resized to 448× 448. The output of T-CRN and

S-CRN are of the same shape 7×7×12, which means to di-

vide the image into 7×7 grids, each grid will predict S = 2
actioness scores and B = 2 bounding boxes, each of which

predicts four coordinates and one objectness score.

We train our network in a two-stream fashion, one is the

RGB stream and the other is Flow stream. The flow map

is generated by using the dense optical flow [6], where x-,

y- and flow magnitude are normalized to the range of [0,

255] to form the final flow map. For the RGB stream, the

convolutional part of our model is pre-trained on the Im-

ageNet 1000-class dataset [31]. For the Flow stream, the
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Figure 4. Ablation study of two stream’s T-CRN and S-CRN on the UCF-101 (top-row) and UCF-Sports (bottom row) datasets, left column

shows RGB stream, middle column shows the Flow stream and right column shows their ensemble.
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Figure 5. Comparison with other state-of-the-arts on UCF-101 (left) and UCF-Sports (right) datasets, where performance is measured by

recall for various IoU thresholds.

convolutional part is pre-trained with the weights of the RG-

B stream. We make an extensive use of data augmentation

(i.e. mirroring, corner and center cropping) to prevent over-

fitting. We also use Adam [14] optimizer during training

with default parameters. While training the S-CRN, a batch

size of 32 frames from different videos is set during 100 e-

pochs with an initial learning rate of 10−4 decaying at 10−5

after the 20th epoch. While the T-CRN, the weighs of the

convolutional layers are frozen to avoid a catastrophic for-

getting. We then use a batch size of 10 sequences of 10

frames from different videos during 50 epochs. The same

learning rate planning is used. We train and test our network

on a server with 16 cores XEON, 64G RAM and 4 Nvidia

Titan X. Test shows that the T-CRN and S-CRN can run at

a 28 FPS.

4. Experiment

In this section, we’ll discuss the detail of the experimen-

tal evaluation, including the dataset and evaluation metrics,

the training details, the ablation study of different compo-

nents, and the overall performance comparison with base-

lines and state-of-the-arts and baselines.

4.1. Datasets and Evaluation Metric

We evaluate the proposed approach on two publicly

available datasets: UCF-Sports and UCF-101.

UCF-101 dataset has 24 classes containing bound-

ing box annotations of 3,204 videos of which 25% are

untrimmed.

UCF-Sports dataset has 150 short sports videos of 10

action classes which has been widely used for action detec-

tion. These videos have been trimmed to contain a single

action and each frame contains a bounding box annotation
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Figure 6. Comparison with other state-of-the-arts on UCF-101 (left) and UCF-Sports (right) datasets, where performance is measured by

the recall on each action class.

Figure 7. Examples of our method on 3 videos from the UCF101 dataset. Green boxes are ground truth and red boxes are from the best

predicted path. Best viewed in colors.

of each action.

Evaluation Metric We follow the metric proposed by

van Gemert et al [39]. The overlap (OV) between a path

d = {ds . . . de} with respect to a ground truth path g =
{gs . . . ge} is defined as follows:

OV (d,g) =
1

|Θ| ×
∑

i∈Θ

di
⋂
gi

di
⋃

gi

where ds and de are the detected bounding boxes in the s-

tarting and ending frame of a path, gs and ge are the bound-

ing boxes in the starting and ending frame of the ground-

truth path, respectively. The Θ denotes the set of frames

where there is either d and g is not empty.

Average Best Overlap (ABO) measures the best localiza-

tion from the set of action proposals D = {dj |j = 1...m}
for the each ground-truth annotation G, where Average Best

Overlap for a given class c (ABO(c)) is computed for each

ground-truth annotation Gc of class c. The mean ABO

(MABO) summarizes the performance across all classes.

An instance of action, gi is correctly detected by an action

proposal dj if the overlap score is higher than a threshold

η i.e.: OV (dj , gi) ≥ η where η ∈ [0, 1]. In our work,

we target to maximize the recall at a 0.5 threshold as other

works [39, 16].

4.2. Ablation Study

We first evaluate the performance of T-CRN, S-CRN

and their ensemble TORNADO in RGB, FLOW and RG-

B+FLOW streams, respectively. Fig. 4 and Tables 1 and 2

shows the ablation analysis of the components.

We first look at the RGB stream. In UCF-101 and UCF-

Sports, the S-CRN has a slightly better recall than T-CRN.

We think this is because S-CRN captures more static ki-

netic cues. On the other hand, their ensemble-TORNADO

(RGB) improves around 3.5%, which shows the comple-

mentarieness between T-CRN and S-CRN where T-CRN is

more good at capturing temporal dynamics.

For the FLOW stream, the T-CRN performs slightly bet-

ter than the S-CRN. This is largely because flow field cap-

ture the objects with large dynamic motion, which helps e-

liminate the interference from the background and allows

T-CRN to focus on motion regions, as proved in [17]. On

the other hand, the performance of their ensemble also im-

proves around 2.5%, which further confirms the their com-
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plementariness.

For the RGB+Flow stream, TORNADO exhibits anoth-

er 2% improvement for both UCF-101 and UCF-Sports

datasets that demonstrates the effectiveness of training on

two data modalities. In addition, the performance on the

UCF-Sports dataset is significantly better than the UCF-101

dataset, the underlying reason is that UCF-Sports has been

trimmed to contain one salient actions only.

4.3. Comparison to state­of­the­arts

We compare our method with state-of-the-arts on both

UCF-sports and UCF-101 datasets. We evaluate the recal-

l by varying the IoU threshold (η) in [0, 1]. Fig. 5 shows

recall vs. IoU curve for different approaches. In UCF-

101 dataset, our approach out-perform [16] by nearly 27%,

while the performance of [16] is quite close the unsuper-

vised region merging method [39]. This suggests the valid-

ity of complementariness between different modalities and

different networks. In UCF-Sports, our method and [16]

achieve very high recall in [0, 0.7], which suggest the dis-

criminative of the deep neural networks for action proposal.

Fig. 6 shows the recall performance for each action cate-

gory. We can observe that our approach out-performs [16]

in many classes, especially in the classes which have abrupt

motion changes. We conjecture this is more related with our

spatial-temporal modeling using RNN.

Finally, we report the overall performance of two

datasets in Table. 1 and 2 using several commonly used

metrics, including ABO (Average Best Overlap), MABO

(Mean ABO over all classes) and average number of pro-

posals per video. Our method achieves the highest MABO

and Recall with around 30 proposals. Some qualitative re-

sults are displayed in Fig.7, which shows that our method

can produce action proposals with good localization. More-

over, Li et al.[16] achieves higher ABO than us, but the

magnitude between ABO and MABO in [16] is too large

which we believe they used a different definition of the met-

ric.

5. Conclusion

We propose a novel framework for searching action pro-

posals in untrimmed video clips. Given a video as input,

our method produces a relatively small number of spatially

compact and temporally smooth action proposals. The pro-

posed T-CRN detector explored the regression capability of

ConvLSTM to sequentially regress the bounding boxes that

enclose the action candidates. Together with the S-CRN,

our method can exploit the static, motion and temporal con-

text together to produce more robust and accurate bounding

boxes within each frame in fast speed. Then these bound-

ing boxes are further integrated by maximizing an energy

function using efficient dynamic programming with effi-

cient peak pattern trimming. The experimental results on

popular UCF-Sports and UCF-101 datasets demonstrate the

effectiveness of our approach.

UCF101 ABO MABO Recall #Prop.

Brox & Malik [2] 13.28 12.82 1.40 3

Yu et al. [42] n.a n.a 0.0 10,000

APT [39] 40.77 39.97 35.45 2299

Li et al. [16] 63.76 40.84 39.64 18

S-CRN (RGB) 50.91 51.22 56.10 30

T-CRN (RGB) 50.52 50.89 55.10 30

TORNADO-RGB 53.10 53.30 59.59 30

S-CRN (FLOW) 46.23 46.28 44.30 30

T-CRN (FLOW) 47.54 47.44 47.29 30

TORNADO-FLOW 48.79 48.80 49.70 30

TORNADO-RGB+OF(NO TRIM) 50.44 50.71 57.92 30

TORNADO-RGB+OF 54.28 54.93 61.42 30
Table 1. Quantitative comparison on the UCF-101 dataset. Recall

is computed at a precision threshold of 0.5.

UCF Sports ABO MABO Recall #Prop.

Brox & Malik [2] 29.84 30.90 17.02 4

Jain et al. [11] 63.41 62.71 78.72 1642

Oneata et al. [22] 56.49 55.58 68.09 3000

Gkioxari et al. [9] 63.07 62.09 87.23 100

APT [39] 65.73 64.21 89.36 1449

Li et al. [16] 89.64 74.19 91.49 12

S-CRN (RGB) 72.73 73.83 96.79 30

T-CRN (RGB) 69.34 70.89 94.67 30

TORNADO-RGB 73.19 74.26 96.79 30

S-CRN (FLOW) 68.32 69.29 94.67 30

T-CRN (FLOW) 67.55 67.99 92.54 30

TORNADO-OF 69.80 70.59 94.67 30

TORNADO-RGB+OF(NO TRIM) 75.23 76.20 96.79 30

TORNADO-RGB+OF 75.23 76.20 96.79 30
Table 2. Quantitative comparison on the UCF-Sports dataset. Re-

call is computed at a precision threshold of 0.5.

References

[1] N. Ballas, L. Yao, C. Pal, and A. C. Courville. Delving deep-

er into convolutional networks for learning video representa-

tions. CoRR, abs/1511.06432, 2015.

[2] T. Brox and J. Malik. Object segmentation by long term

analysis of point trajectories. In ECCV, 2010.

[3] W. Chen and J. J. Corso. Action detection by implicit inten-

tional motion clustering. In ICCV, 2015.

[4] M. Cheng, Z. Zhang, W. Lin, and P. H. S. Torr. BING: bina-

rized normed gradients for objectness estimation at 300fps.

In CVPR, 2014.

[5] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,

S. Venugopalan, T. Darrell, and K. Saenko. Long-term recur-

rent convolutional networks for visual recognition and de-

scription. In CVPR, 2015.
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