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Abstract

Low-cost consumer depth cameras and deep learning

have enabled reasonable 3D hand pose estimation from sin-

gle depth images. In this paper, we present an approach that

estimates 3D hand pose from regular RGB images. This task

has far more ambiguities due to the missing depth informa-

tion. To this end, we propose a deep network that learns

a network-implicit 3D articulation prior. Together with de-

tected keypoints in the images, this network yields good es-

timates of the 3D pose. We introduce a large scale 3D hand

pose dataset based on synthetic hand models for training

the involved networks. Experiments on a variety of test sets,

including one on sign language recognition, demonstrate

the feasibility of 3D hand pose estimation on single color

images.

1. Introduction

The hand is the primary operating tool for humans.

Therefore, its location, orientation and articulation in space

is vital for many potential applications, for instance, object

handover in robotics, learning from demonstration, sign lan-

guage and gesture recognition, and using the hand as an in-

put device for man-machine interaction.

Full 3D hand pose estimation from single images is dif-

ficult because of many ambiguities, strong articulation, and

heavy self-occlusion, even more so than for the overall hu-

man body. Therefore, specific sensing equipment like data

gloves or markers are used, which restrict the application to

limited scenarios. Also the use of multiple cameras severly

limits the application domain. Most contemporary works

rely on the depth image from a depth camera. However,

depth cameras are not as commonly available as regular

color cameras, and they only work reliably in indoor en-

vironments.

In this paper, we present an approach to learn full 3D

hand pose estimation from single color images without the

need for any special equipment. We capitalize on the ca-

pability of deep networks to learn sensible priors from data

in order to resolve ambiguities. Our overall approach con-

Figure 1: Given a color image we detect keypoints in 2D

(shown overlayed) and learn a prior that allows us to esti-

mate a normalized 3D hand pose.

sists of three deep networks that cover important subtasks

on the way to the 3D pose; see Figure 2. The first network

provides a hand segmentation to localize the hand in the im-

age. Based on its output, the second network localizes hand

keypoints in the 2D images. The third network finally de-

rives the 3D hand pose from the 2D keypoints, and is the

main contribution of this paper. In particular, we introduce

a canonical pose representation to make this learning task

feasible.

Another difficulty compared to 3D pose estimation at

the level of the human body is the restricted availability of

data. While human body pose estimation can leverage sev-

eral motion capture databases, there is hardly any such data

for hands. To train a network, a large dataset with ground

truth 3D keypoints is needed. Since there is no such dataset

with sufficient variability, we created a synthetic dataset

with various data augmentation options.

The resulting hand pose estimation system yields very

promising results, both qualitatively and quantitatively on

existing small-scale datasets. We also demonstrate the use

of 3D hand pose for the task of sign language recognition.

The dataset and our trained networks are available online. 1

2. Related work

2D Human Pose Estimation. Spurred by the MPII Hu-

man Pose benchmark [3] and the advent of Convolutional

1https://lmb.informatik.uni-freiburg.de/projects/hand3d/
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Figure 2: Our approach consists of three building blocks. First, the hand is localized within the image by a segmentation

network (HandSegNet). Accordingly to the hand mask, the input image is cropped and serves as input to the PoseNet. This

localizes a set of hand keypoints represented as score maps c. Subsequently, the PosePrior network estimates the most likely

3D structure conditioned on the score maps. This figure serves for illustration of the overall approach and does not reflect the

exact architecture of the individual building blocks.

Neural Networks (CNN) this field made large progress in

the last years. The CNN architecture of Toshev and Szegedy

[24] directly regresses 2D cartesian coordinates from color

image input. More recent works like Thompson et al. [22]

and Wei et al. [19] turned towards regressing score maps.

For parts of our work, we employ a comparable network

architecture as Wei et al. [19].

3D Human Pose Estimation. We only discuss the most

relevant works here and refer to Sarafianos et al. [17] for

more information. Like our approach, many works use a

two part pipeline [23, 7, 6, 21, 5]. First they detect key-

points in 2D to utilize the discriminative power of current

CNN approaches and then attempt to lift the set of 2D de-

tections into 3D space. Different methods for lifting the rep-

resentation have been proposed: Chen et al. [6] deployed a

nearest neighbor matching of a given 2D prediction using

a database of 2D to 3D correspondences. Tome et al. [21]

created a probabilistic 3D pose model based upon a mixture

of probabilistic PCA bases. Bogo et al. [5] optimizes the

reprojection error between 3D joint locations of a statistical

body shape model and 2D prediction. Pavlakos et al. [15]

proposed a volumetric approach that treats pose estimation

as per voxel prediction of scores in a coarse-to-fine man-

ner, which gives a natural representation to the data, but is

computationally expensive and limited by the GPU memory

to fit the voxel grid. Recently, there have been several ap-

proaches that apply deep learning for lifting 2D keypoints to

3D pose for human body pose estimation [26, 11, 16]. Fur-

thermore Mehta et al. [10] uses transfer learning to infer the

3D body pose directly from images with a single network.

While these works are all on 3D body pose estimation, we

provide the first such work for 3D hand pose estimation,

which is substantially harder due to stronger articulation

and self-occlusion, as well as less data being available.

Hand Pose Estimation. Athitsos and Sclaroff [4] pro-

posed a single frame based detection approach based on

edge maps and Chamfer matching. With the advent of low-

cost consumer depth cameras, research focused on hand

pose from depth data. Oikonomidis et al. [14] proposed

a technique based on Particle Swarm Optimization (PSO).

Sharp et al. [18] added the possibility for reinitialization.

A certain number of candidate poses is created and scored

against the observed depth image. Tompson et al. [22] used

a CNN for detection of hand keypoints in 2D, which is con-

ditioned on a multi-resolution image pyramid. The pose in

3D is recovered by solving an inverse kinematics optimiza-

tion problem. Approaches like Zhou et al. [27] or Ober-

weger et al. [12] train a CNN that directly regresses 3D co-

ordinates given hand cropped depth maps. Whereas Ober-

weger et al. [12] explored the possibility to encode corre-

lations between keypoint coordinates in a compressing bot-

tleneck, Zhou et al. [27] estimate angles between bones of

the kinematic chain instead of Cartesian coordinates. Ober-

weger et al. [13] utilizes a CNN that can synthesize a depth

map from a given pose estimate. This allows them to suc-

cessively refine initial pose estimates by minimizing the dis-

tance between the observed and the synthesized depth im-

age.

There aren’t any approaches yet that tackle the problem

of 3D hand pose estimation from a single color image with a

learning based formulation. Previous approaches differ be-

cause they rely on depth data [22, 27, 12, 13], they use ex-

plicit models to infer pose by matching against a predefined

database of poses [4], or they only perform tracking based

on an initial pose rather than full pose estimation [14, 18].
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Figure 3: Proposed architecture for the PosePrior network. Two almost symmetric streams estimate canonical coordinates

and the viewpoint relative to this coordinate system. Combination of the two predictions yields an estimation for the relative

normalized coordinates wrel.

3. Hand pose representation

Given a color image I ∈ R
N×M×3 showing a single

hand, we want to infer its 3D pose. We define the hand pose

by a set of coordinates wi = (xi, yi, zi), which describe the

locations of J keypoints in 3D space, i.e., i ∈ [1, J ] with

J = 21 in our case.

The problem of inferring 3D coordinates from a single

2D observation is ill-posed. Among other ambiguities, there

is a scale ambiguity. Thus, we infer a scale-invariant 3D

structure by training a network to estimate normalized co-

ordinates

w
norm
i =

1

s
·wi, (1)

where s = ‖wk+1 −wk‖2 is a sample dependent constant

that normalizes the distance between a certain pair of key-

points to unit length. We choose k such that s = 1 for the

first bone of the index finger.

Moreover, we use relative 3D coordinates to learn a

translation invariant representation of hand poses. This is

realized by subtracting the location of a defined root key-

point. The relative and normalized 3D coordinates are given

by

w
rel
i = w

norm
i −w

norm
r (2)

where r is the root index. In experiments the palm keypoint

was the most stable landmark. Thus we use r = 0.

4. Estimation of 3D hand pose

We estimate three-dimensional normalized coordinates

w
rel from a single input image. An overview of the general

approach is provided in Figure 2. In the following sections,

we provide details on its components.

4.1. Hand segmentation with HandSegNet

For hand segmentation we deploy a network architecture

that is based on and initialized by the person detector of Wei

et al. [19]. They cast the problem of 2D person detection as

estimating a score map for the center position of the hu-

man. The most likely location is used as center for a fixed

size crop. Since the hand size drastically changes across

images and depends much on the articulation, we rather

cast the hand localization as a segmentation problem. Our

HandSegNet is a smaller version of the network from Wei

et al. [19] trained on our hand pose dataset. Details on the

network architecture and its training prcedure are provided

in the supplemental material. The hand mask provided by

HandSegNet allows us to crop and normalize the inputs in

size, which simplifies the learning task for the PoseNet.

4.2. Keypoint score maps with PoseNet

We formulate localization of 2D keypoints as estimation

of 2D score maps c = {c1(u, v), . . . , cJ(u, v)}. We train a

network to predict J score maps ci ∈ R
N×M , where each

map contains information about the likelihood that a certain

keypoint is present at a spatial location.

The network uses an encoder-decoder architecture simi-

lar to the Pose Network by Wei et al. [19]. Given the image

feature representation produced by the encoder, an initial

score map is predicted and is successively refined in resolu-

tion. We initialized with the weights from Wei et al. [19],

where it applies, and retrained the network for hand key-

point detection. A complete overview over the network ar-

chitecture is located in the supplemental material.

4.3. 3D hand pose with the PosePrior network

The PosePrior network learns to predict relative, nor-

malized 3D coordinates conditioned on potentially incom-

plete or noisy score maps c(u, v). To this end, it must learn

the manifold of possible hand articulations and their prior

probabilities. Conditioned on the score maps, it will output

the most likely 3D configuration given the 2D evidence.

Instead of training the network to predict absolute 3D co-

ordinates, we rather propose to train the network to predict

coordinates within a canonical frame and additionally esti-
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mate the transformation into the canonical frame. Explicitly

enforcing a representation that is invariant to the global ori-

entation of the hand is beneficial to learn a prior, as we show

in our experiments in section 6.2.

Given the relative normalized coordinates we propose to

use a canonical frame w
c, that relates to w

rel in the follow-

ing way: An intermediate representation

w
c* = R(wrel) ·wrel (3)

with R(wrel) ∈ R
3×3 being a 3D rotation matrix is calcu-

lated in a two step procedure. First, one seeks the rotation

Rxz around the x- and z-axis such that a certain keypoint

w
c*
a is aligned with the y-axis of the canonical frame:

Rxz ·w
c*
a = λ · (0, 1, 0)⊤ with λ ≥ 0. (4)

Afterwards, a rotation Ry around the y-axis is calculated

such that

Ry ·Rxz ·w
c*
o = (η, ζ, 0) (5)

with η ≥ 0 for a specified keypoint index o. The total trans-

formation between canonical and original frame is given by

R(wrel) = Ry ·Rxz. (6)

In order to deal appropriately with the symmetry between

left and right hands, we flip right hands along the z-axis,

which yields the side agnostic representation

w
c
i =

{

(xc*
i
, yc*

i
, zc*

i
)⊤ if its a left hand

(xc*
i
, yc*

i
,−zc*

i
)⊤ if its a right hand

(7)

that resembles our proposed canonical coordinate system.

Given this canonical frame definition, we train our network

to estimate the 3D coordinates within the canonical frame

w
c and separately to estimate the rotation matrix R(wrel),

which we parameterize using axis-angle notation with three

parameters. Estimating the transformation R is equivalent

to predicting the viewpoint of a given sample with respect

to the canonical frame. Thus, we refer to the problem as

viewpoint estimation.

The network architecture for the pose prior has two par-

allel processing streams; see Figure 3. The streams use

an almost identical architecture given in the supplementary.

They first process the stack of J score maps in a series of

6 convolutions with ReLU non-linearities. Information on

whether the image shows a left or right hand is concate-

nated with the feature representation and processed further

by two fully-connected layers. The streams end with a fully-

connected layer with linear activation, which yields estima-

tions for viewpoint R and canonical coordinates wc. Both

estimations combined lead to an estimation of wrel.

4.4. Network training

For training of HandSegNet we apply standard softmax

cross-entropy loss and L2 loss for PoseNet. The PosePrior

network uses two loss terms. First a squared L2 loss for the

canonical coordinates

Lc =
∥

∥w
c
gt −w

c
pred

∥

∥

2

2
(8)

based on the network predictions wc
pred and the ground truth

w
c
gt. Secondly, a squared L2 loss is imposed on the canoni-

cal transformation matrix:

Lr = ‖Rpred −Rgt‖
2

2
. (9)

The total loss function is the unweighted sum of Lc and Lr.

We used Tensorflow [2] with the Adam solver [9] for

training. Details on the learning procedure are in the sup-

plementary material.

5. Datasets for hand pose estimation

5.1. Available datasets

There are two available datasets that apply to our prob-

lem, as they provide RGB images and 3D pose annotation.

The so-called Stereo Hand Pose Tracking Benchmark [25]

provides both 2D and 3D annotations of 21 keypoints for

18000 stereo pairs with a resolution of 640× 480. The

dataset shows a single person’s left hand in front of 6 differ-

ent backgrounds and under varying lighting conditions. We

divided the dataset into an evaluation set of 3000 images

(S-val) and a training set with 15000 images (S-train).

Dexter [20] is a dataset providing 3111 images showing

two operators performing different kinds of manipulations

with a cuboid in a restricted indoor setup. The dataset pro-

vides color images, depth maps, and annotations for finger-

tips and cuboid corners. The color images have a spatial

resolution of 640×320. Due to the incomplete hand anno-

tation, we use this dataset only for investigating the cross-

dataset generalization of our network. We refer to this test

set as Dexter.

We downsampled both datasets to a resolution of 320×
240 to be compatible with our rendered dataset. We trans-

form our results back to coordinates in the original resolu-

tion, when we report pixel accuracies in the image domain.

The NYU Hand Pose Dataset by Tompson et al. [22],

commonly used for hand pose estimation from depth im-

ages, does not apply to a color based approach, because

only registered color images are provided. In the supple-

mentary we show more evidence why this dataset cannot be

used for our task.

5.2. Rendered hand pose dataset

The above datasets are not sufficient for training a deep

network due to limited variation, number of available sam-

ples, and partially incomplete annotation. Therefore, we
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Figure 4: Our new dataset provides segmentation maps with

33 classes: three for each finger, palm, person, and back-

ground. The 3D kinematic model of the hand provides 21
keypoints per hand: 4 keypoints per finger and one keypoint

close to the wrist.

complement them with a new dataset for training. To avoid

the known problem of poor labeling performance by human

annotators in three-dimensional data, we utilize freely avail-

able 3D models of humans with corresponding animations

from Mixamo 2. Then we used the open source software

Blender 3 to render images. The dataset is publicly avail-

able online.

Our dataset is built upon 20 different characters perform-

ing 39 actions. We split the data into a validation set (R-val)

and a training set (R-train), where a character or action can

exclusively be in one of the sets but not in the other. Our

proposed split results into 16 characters performing 31 ac-

tions for training and 4 characters with 8 actions in the val-

idation set.

For each frame we randomly sample a new camera loca-

tion, which is roughly located in a spherical vicinity around

one of the hands. All hand centers lie approximately in

a range between 40cm and 65cm from the camera center.

Both left and right hands are equally likely and the camera

is rotated to ensure that the hand is at least partially visible

from the current viewpoint. After the camera location and

orientation are fixed, we randomly sample one background

image from a pool of 1231 background images downloaded

from Flickr 4. Those images show different kinds of scenes

from cities and landscapes. We ensured that they do not

contain persons.

To maximize the visual diversity of the dataset, we ran-

domize the following settings for each rendered frame: we

apply lighting by 0 to 2 directional light sources and global

illumination, such that the color of the sampled background

image is roughly matched. Additionally we randomize light

positions and intensities. Furthermore, we save our render-

ings using a lossy JPG compression with the quality factor

being randomized from no compression up to 60%. We also

randomized the effect of specular reflections on the skin.

2http://www.mixamo.com
3http://www.blender.org
4http://www.flickr.com

AUC EPE median EPE mean

G
T R-val 0.724 5.001 9.135

S-val 0.817 5.522 5.013

N
et

R-val 0.663 5.833 17.041
S-val 0.762 5.528 18.581

Dexter 0.489 13.684 25.160

Table 1: The top rows (GT) report performance for the

PoseNet operating on ground truth cropped hand images.

The bottom rows (Net) show results when the hand crops

are generated using HandSegNet. PoseNet was trained

jointly on R-train and S-train, whereas HandSegNet was

only trained on R-train. End point errors are reported in

pixels with respect to the uncropped image and AUC is cal-

culated over an error range from 0 to 30 pixels.

In total our dataset provides 41258 images for train-

ing and 2728 images for evaluation with a resolution of

320×320 pixels. All samples come with full annotation of

a 21 keypoint skeleton model of each hand and additionally

33 segmentation masks are available plus the background.

As far as the segmentation masks are concerned there is a

class for the human, one for each palm and each finger is

composed by 3 segments. Figure 4 shows a sample from

the dataset. Every finger is represented by 4 keypoints: the

tip of the finger, two intermediate keypoints and the end lo-

cated on the palm. Additionally, there is a keypoint located

at the wrist of the model. For each of the hand keypoints,

there is information if it is visible or occluded in the image.

Also keypoint annotations in the camera pixel coordinate

system and in camera centered world coordinates are given.

The camera intrinsic matrix and a ground truth depth map

are available, too, but were not used in this work.

6. Experiments

We evaluated all relevant parts of the overall approach:

(1) the detection of hand keypoints of the PoseNet with and

without the hand segmentation network; (2) the 3D hand

pose estimation and the learned 3D pose prior. Finally, we

applied the hand pose estimation to a sign language recog-

nition benchmark.

6.1. Keypoint detection in 2D

Table 1 shows the performance of PoseNet on 2D key-

point estimation. We report the average endpoint error

(EPE) in pixels and the area under the curve (AUC) on the

percentage of correct keypoints (PCK) for different error

thresholds; see Figure 6.

We evaluated two cases: one using images, where the

hand is cropped with the ground truth oracle (GT), and one

using the predictions from HandSegNet for cropping (Net).
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Figure 5: Exemplary 2D keypoint localization results. The first two columns show samples from Dexter, the following three

depict R-val and the last one are samples from S-val.
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Jointly (AUC=0.49)

Figure 6: Results on 2D keypoint estimation when using

different training sets for PoseNet. Shown is the percentage

of correct keypoints (PCK) over a certain threshold in pixels

evaluated on Dexter. Jointly training on R-train and S-train

yields the best results.

The first case shows the performance of PoseNet in isola-

tion, while the second shows the performance of the com-

plete 2D keypoint estimation. The difference between the

median and the mean for the latter case show that HandSeg-

Net is reliable in most cases but is sometimes not able to

segment the hand correctly, which makes the 2D keypoint

prediction fail.

The results show that the method works on our synthetic

dataset (R-val) and the stereo dataset (S-val) equally well.

The Dexter dataset is more difficult because the dataset is

different from the training set and because of frequent oc-

clusions of the hand by the handled cube. We did not have

samples with occlusion (apart from self-occlusion) in the

training set.

In Figure 6 we show that training on more diverse data

helps cross-dataset generalization. While training only on

our synthetic dataset R-train yields much better results on

Dexter than training on the limited stereo dataset S-train,

training on R-train and S-train together yields the best re-

sults. Figure 5 shows some qualitative results of this con-

figuration. Additional examples are in the supplementary.

Direct Bottleneck Local NN Prop.

R-train 20.2 9.2% 20.1 8.6% 35.1 90% 0.0−100% 18.5
R-val 20.9 11.2% 20.9 11.2% 39.1 108% 26.9 43% 18.8

Table 2: Average median end point error per keypoint of

the predicted 3D pose for different lifting approaches given

a noisy ground truth 2D pose. Networks were trained on

R-train. The results are reported in mm and the subscript

gives the relative performance to the proposed approach.

6.2. Lifting the estimation to 3D

6.2.1 Pose representation

We evaluated the proposed canonical frame representation

for predicting the 3D hand pose from 2D keypoints by com-

paring it to several alternatives. All variants share a com-

mon base architecture that is identical to one stream of the

PosePrior proposed in 4.3. They were trained on score

maps c with a spatial resolution of 32 by 32 pixels. To avoid

overfitting, we augmented the score maps by applying chan-

nelwise dropout with a drop probability of 0.2. This forces

the networks to deal with incomplete score maps. Addition-

ally we disturbed the keypoint location with Gaussian noise

and randomly translated the keypoints by up to 2.5 pixel.

Table 2 shows the resulting end point errors per keypoint.

The Direct approach tries to lift the 2D keypoints directly

to the full 3D coordinates w
rel without using a canonical

frame. This is disadvantageous, because it is difficult for

the network to learn separate the global rotation of the hand

from the articulation.

The Bottleneck approach is inspired by Oberweger et

al. [12], who introduced a bottleneck layer before estimat-

ing the coordinates. We inserted an additional FC layer be-

fore the final FC output layer, parameterize it as in Ober-

weger et al. with 30 channels and linear activation. The

outcome was not better than with the Direct approach.
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Figure 7: Qualitative examples of our complete system. Input to the network are color image and the information if its a left

or right hand. The network estimates the hand segmentation mask, localizes keypoints in 2D and outputs the most likely 3D

pose. The samples on the left hand side are from a dataset we recorded for qualitative evaluation, on the top right hand side

is a sample from the sign language dataset and the bottom right sample is taken from S-val. In the supplementary material

we provide more qualitative examples.

Figure 8: The left most column shows the input image as

gray scale with the input score map overlayed as red dots.

Every row corresponds to a separate forward pass of the net-

work. The two columns to the right visualize the predicted

3D structure of the network from different viewpoints in

canonical coordinates. Ground truth is displayed in dashed

green and the network prediction is shown in solid red.

The Local approach incorporates the kinematic model of

the hand and uses the network to estimate articulation pa-

rameters of the model. We generalize [27] by estimating

not only the angles but also the bone length. The network is

trained to estimate two angles and one length per keypoint,

which results in 63 parameters. The angles express rota-

tions in a bone local coordinate system. This approach only

works if the hand is always shown from the same direction,

but cannot capture the global pose of the hand.

Finally, the NN approach matches the 2D keypoints to

20 30 40 50

0.4

0.6

0.8

1

threshold in mm

P
C

K

PSO (AUC=0.709)

ICPPSO (AUC=0.748)

CHPR (AUC=0.839)

[26] (AUC=0.770)

Ours (AUC=0.948)

Figure 9: Results for our complete system on S-val com-

pared to approaches from [25] and [26]. Shown is the per-

centage of correct keypoints (PCK) over respective thresh-

olds in mm. PoseNet and PosePrior are trained on S-train

and R-train, whereas the HandSegNet is trained on R-train.

the most similar sample from the training set and retrieves

the 3D coordinates from this sample [6]. While this ap-

proach trivially works best on the training set, it does not

generalize well to new samples.

The generalization of the other approaches is quite good

showing similar errors for both the training and the valida-

tion set. The proposed approach from 4.3 worked best and

was used for the following experiments.

6.2.2 Analysis of the learned prior

To examine the 3D prior learned by the network we input

score maps that lack keypoints and Figure 8 shows the 3D

pose prediction from two different viewpoints. The extreme

case, with no keypoints provided as input at all, shows the

canonical prior learned by the network. As more keypoints

4909



are added, the network adjusts the predicted pose to this

additional evidence. This experiment also simulates the sit-

uation of occluded 2D keypoints and demonstrates that the

learned prior allows the network to still retrieve reasonable

poses.

6.2.3 Comparison to literature

Since there is no work on 3D hand pose estimation from

RGB images yet, we cannot compare to alternative ap-

proaches. To still relate our results coarsely to literature,

we compare them to Zhang et al. [25], who provide results

in mm for state-of-the-art 3D hand pose tracking on depth

data. They run their experiments on the stereo dataset S-

val, which also contains RGB images. Since in contrast to

Zhang et al. our approach does not use the depth data, it

still comes with ambiguities with regard to scale and abso-

lute depth. Thus, we accessed the absolute position of the

root keypoint and the scale of the hand to shift and scale

our predicted 3D hand pose, which yields metric world co-

ordinates w by using (1) and (2). For this experiment we

trained PosePrior on score maps predicted by PoseNet us-

ing the same schedule as for the experiment in section 6.2.2.

PoseNet is trained separately as described in 6.1 and then

kept fixed. Figure 9 shows that our approach largely out-

performs the approaches presented in Zhang et al. [25] al-

though we use the depth map only for rescaling and shifting

in the end. Additionally we report results of the lifting ap-

proach presented by Zhao et al. [26] in conjunction with our

PoseNet, which we train in a similar manner. Results are

inferior to the proposed PosePrior. We believe the reason

is that using score maps as input for the lifting is advanta-

geous over coordinates, because it can handle ambiguities in

hand keypoint detection. Qualitative 3D examples on three

different datasets with the complete processing pipeline are

shown in Figure 7.

6.3. Sign language recognition

Previous hand pose estimation approaches depending on

depth data cannot be applied to most sign language recog-

nition datasets, as they only come with color images. As a

last exemplary experiment, we used our hand pose estima-

tion system and trained a classifier for gesture recognition

on top of it. The classifier is a fully connected three layer

network with ReLU activation functions; c.f. the supple-

mental material for the network details.

We report results on the so-called RWTH German Fin-

gerspelling Database [8]. It contains 35 gestures repre-

senting the letters of the alphabet, German umlauts, and the

numbers from one to five. The dataset comprises 20 differ-

ent persons, who did two recordings each for every gesture.

Most of the gestures are static except for the ones for the

letters J, Z, Ä, Ö, and Ü, which are dynamic. In order to

Method Word error rate

Dreuw et al. [8] 35.7 %

Dreuw on subset [1] 36.56 %

Ours 3D 33.2 %

Table 3: Word error rates in percent on the RWTH Ger-

man Fingerspelling Database subset of non dynamic ges-

tures. Results for Dreuw et al. [8] on the subset from [1].

keep this experiment simple, we ran the experiments on the

subset restricted to 30 static gestures.

The database contains recordings by two different cam-

eras, but we used only one camera. The short video se-

quences have a resolution of 320×240 pixels. We used the

middle frame from each video sequence as color image and

the gesture class labels as training data. This dataset has

1160 images, which we separated by signers into a valida-

tion set with 232 images and a training set with 928 im-

ages. We resized image to 320× 320 pixels and trained

on randomly sampled 256× 256 crops. Because the im-

ages were taken from a compressed video stream they ex-

hibit significant compression artifacts previously unseen by

our networks. Thus, we labeled 50 images from the train-

ing set with hand keypoints, which we used to fine-tune

our PoseNet upfront. Afterwards the pose estimation part

is kept fixed and we solely train the GestureNet. Table 3

shows that our system archives comparable results to Dreuw

et al. [8] on the subset of gestures we used for the compari-

son.

7. Conclusions

We have presented the first learning based system to es-

timate 3D hand pose from a single image. We contributed

a large synthetic dataset that enabled us to train a network

successfully on the task. We have shown that the network

learned a 3D pose prior that allows it to predict reasonable

3D hand poses from 2D keypoints in real world images.

While the performance of the network is even competitive

to approaches that use depth maps, there is still much room

for improvements. The performance seems mostly limited

by the lack of an annotated large scale dataset with real-

world images and diverse pose statistics.
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