
 

 

Abstract 

 

The handwritten signature is perhaps the most 

accustomed way for the acknowledgement of the consent 

of an individual or the authentication of the identity of a 

person in numerous transactions. In addition, the 

authenticity of a questioned offline or static handwritten 

signature still poses a case of interest, especially in 

forensic related applications. A common approach in 

offline signature verification system is to apply several 

predetermined image analysis models. Consequently, any 

offline signature sample which originates from either 

authentic persons or forgers, utilizes a fixed feature 

extraction base. In this proposed study, the feature space 

and the corresponding projection values depend on the 

training samples only; thus the proposed method can be 

found useful in forensic cases. In order to do so, we 

reenter a groundbreaking unsupervised learning method 

named archetypal analysis, which is connected to effective 

data analysis approaches such as sparse coding. Due to 

the fact that until recently there was no efficient 

implementation publicly available, archetypal analysis 

had only few cases of use. However, a fast optimization 

scheme using an active set strategy is now available. The 

main goal of this work is to introduce archetypal analysis 

for offline signature verification. The output of the 

archetypal analysis of few reference samples is a set of 

archetypes which are used to form the base of the feature 

space. Then, given a set of archetypes and a signature 

sample under examination archetypal analysis and 

average pooling provides the corresponding features. The 

promising performance of the proposed approach is 

demonstrated with the use of an evaluation method which 

employs the popular CEDAR and MCYT75 signature 

datasets. 

 

1. Introduction 

Biometric characteristics have been found to be 

utilizable in numerous conditions which eventually require 

the authentication of a person or evidence of his/hers 

deliberate consent [1]. In general, they can be partitioned 

into two main groups. The first addresses the verification 

of one person’s physical attendance; physiological 

biometric traits like face [2], fingerprint [3] and iris [4] are 

typically utilized. The second group usually addresses the 

confirmation of either the attendance of a person or 

his/hers deliberate consent on a transaction; behavioral 

traits are usually employed like handwriting [5, 6]. The 

most acknowledged mean for validating the identity of a 

person is the handwritten signature. It is a private motoric 

pattern shaped from a potential mixture of letters and/or an 

intricate flourish [7]. The production of the signature is the 

combined result of a person's individual motoric process as 

it is portrayed by a trace onto a sheet of paper or an 

electronic device. 

Signatures are a part of behavioral traits; hence they are 

carriers of intrinsic ambiguity. They are different even 

when they are created from the same person [6]. Upon 

request, forensic document examiners (FDEs) provide a 

justified estimation concerning the genuineness or not of a 

sample under question [8]. Automated signature 

verification (ASV/SV) systems [6] have been also 

employed in order to facilitate the verification of an 

individual with the use of machine vision and pattern 

recognition (PR) techniques. Bridging the gap between 

FDEs and ASVs presents several obstacles to overcome, as 

there are numerous terminologies and modalities which the 

PR and FDEs communities are treating in a dissimilar way 

[9, 10, 11, 12, 13, 14].  

A key issue of an SV system is the feature extraction 

procedure, which converts the input signature image into a 

set of numbers-features that eventually form now a new 

feature space. This conversion preferably must preserve all 

the essential intrapersonal information, which is vital for 

the subsequent verification step. A substantial amount 

regarding feature extraction methods depends on the 

utilization of global and/or local signature descriptors [15]. 

In particular, local features tend to exploit statistics 

between the pixels-members of the signature image. 

During the preceding decade, a variety of methods which 

employ local feature analysis for offline SV has been 

presented with notable results for verification tasks [16], 

[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. An 
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important issue that is encountered often in offline 

signature feature extraction is that the conversion of a 

signature sample, emanating from genuine persons or 

imitators, involves a fixed image analysis model. 

Following are the novelty characteristics of the proposed 

approach:  

1. The feature extraction procedure adapts to a narrow 

set of randomly selected genuine reference samples, 

making it attractable to forensic cases. Thus, for any 

questioned signature sample, the extracted features exploit 

the relation between it and a representation of genuine 

samples.  

2. In order to provide a mean for the representation of 

the reference signatures we reenter a groundbreaking 

unsupervised learning method named archetypal analysis 

[29], which is connected to effective data analysis 

approaches such as sparse coding [30]. Due to the fact that 

until recently there was no efficient implementation 

publicly available, archetypal analysis had only a few 

cases of use [31, 32, 33]. Recently, a fast optimization 

scheme using an active set strategy was presented [34] and 

an efficient open-source implementation interface has been 

also provided to facilitate computations [35].  

The main goal of this work is to introduce archetypal 

analysis for offline signature verification. The output of 

archetypal analysis performed on a collection of a user’s 

signature samples is a set of learned archetypes, 

constituting the model of the particular individual’s 

signature. Archetypes are a special case of dictionary 

elements, which in the context of this work are used in 

order to form a feature space for the representation of test 

samples. Thus, given a set of archetypes and a signature 

sample under examination, archetypal analysis is used 

again, only in that stage it provides the corresponding 

representation coefficients, in a manner similar to other 

popular coding schemes (i.e. LLC, sparse coding etc.). In 

the presented approach, archetypal analysis is used as a 

means to learn and compute efficient local features, 

operating on a patch-level rather that in whole-image level. 

The global signature descriptor is derived through average 

pooling of the local features, over a specially designed 2-

level spatial pyramid. 

The rest of the paper is organized as follows. Section 2 

presents the basic postulates of the archetypal analysis.  

Section 3 provides the systems architecture, establishes the 

link between archetypal analysis and signature verification 

and provides the proposed feature extraction method. 

Section 4 reports experimental methods and results. 

Finally, section 5 provides the conclusion. 

2. Postulates of Archetypal Analysis 

Following the seminal work of Chen et al. [34] let us 

consider a matrix 1 2[ , ,..., ] m n
nX x x x R ×= ∈ in which each -

column is a vector which belongs to mR . The role of the 

xi -vector is to denote any data point in an m-dimensional 

data space. Archetypal analysis learns a factorial 

representation of X by solving a corresponding archetypal 

problem. Specifically, it looks for a set Z of p-archetypes  

in which each z
j

-column is a vector which also belongs 

to mR . These ,  1:z j p
j

=  column vectors are denoted as 

the archetypes; they are elements which are formed in 

order to comply with two geometrical constraints. The first 

one, points out that, each ix -vector must be approximated 

adequately by a convex combination of some 

archetypes z
j

, while the second one, addresses a dual 

constraint; each z
j

-archetype must also be approximated 

by a convex combination of the x
i
-vector. Consequently, 

given a set of archetypes Z each x
i
-vector should be 

approximated by the product Za
i

, where , 1:a i n
i

= , 

p
a R
i
∈ is a coefficient column vector which resides in the 

simplex 
p

Δ : 

{ } s.t  0 and (j) 1 , [1: ]
1

pp
a R a a i n

p i i ij
Δ ∈ ≥ = ∀ ∈ =  (1) 

Likewise, each archetype jz  should be approximated by 

the product jX β , where ,  1:j j pβ = , n
j Rβ ∈  is another 

coefficient column vector which resides in the simplex 

nΔ : 

{ }1
 s.t  0 and (i) 1 , [1: p]

nn
n j j ji

R jβ β β
=

Δ ∈ ≥ = ∀ ∈  (2) 

The resulting formulation is the following problem of 

minimizing the residual sum of squares (RSS):  

2

2 for 1:n
1

min(RSS) min  
i p

n

i i
a i

i

x Za
∈Δ =

=

−     (3) 

where ,  j jj z X β∀ = , which in the matrix factorization 

form is equivalent to:  
2

 for 1:n

 for j 1:p

min
i p

j n

Fa i
X XBA

β
∈Δ =
∈Δ =

− ,        (4) 

with, 

1 2 1 2[ , ,... ] R , [ , ,... ] R ,Z Bp n n p
n pA a a a B Xβ β β× ×= ∈ = ∈ =  

The formulation of eq. (3) is a non-convex optimization 

problem, but it is convex with respect to one of the 

variables A or B, when the other is kept fixed. Then, a 

block-coordinate descent scheme guarantees in a 

asymptotically way a stationary point of the problem [36]. 

When fixing all variables except one column ia  of A and 

minimizing with respect to ia , the problem is solved with 
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the use of a quadratic program: 

2

2
1

min
i p

n

i i
a

i

x Za
∈Δ

=

−          (5) 

In a similar way, when fixing all variables but one 

column jβ of B, the problem is again solved with the use 

of a quadratic program: 
2

,min ( )
j n

j
old j old j

F
X XB A X a

β
β β

∈Δ
− + −      (6) 

where ,j oldβ is the current value of jβ , and 1j na R ×∈  

corresponds to  the j-th row of A. Both situations as 

described by eqs. (5)-(6) share the same form of least-

squares optimization problem  equipped with a simplicial 

constraint. In order to proceed with an intuitional 

description of the solution we recall some elements from 

the sparse coding theory [30]. In particular, eq. (1) states 

that each ix -vector should be approximated by the product 

iZa , under the constraints a) that the sum of any ia  

coefficients is equal to one, and b) 0ia ≥ . Consequently, 

this is a direct example of the utilization of the 1l -norm of 

the ia  coefficients constrained to be one. Thus, archetypal 

analysis provides sparse approximation of the data and the 

jz -archetypes act similar to the dictionary elements jd  in 

the following sparse coding formulation [30]:  

2

1 2

1
min  s.t. 1,  j

2m p

p n

jF
D R

A R

X DA A dλ
×

×
∈
∈

− + ≤ ∀     (7) 

Therefore, the main difference between sparse coding 

and archetypal analysis (aside from the non- negativity of 

ia ) is that archetypes must be convex mixtures of the data 

points X . Consequently, the vectors jβ  are also 

constrained to be in the simplex nΔ , something that 

provides them with the sparsity attribute. Then, an active 

set algorithm, [37] can be used to efficiently solve the 

quadratic programs provided by eqs. (5) - (6). In our 

experiments, a dedicated fast and accurate implementation 

of the SPAMS toolbox [35], has been employed in order a) 

to realize the aforementioned evaluation of the reference-
REFZ  archetypal matrix given the union of the genuine 

reference signature set (1 ,2 .3 ,...)st nd rdREFX X=  and b) the 

coefficients: ( )sampleA , ( )sampleB  given the reference 

archetypal matrix REFZ  along with any other input 

signature. The number of iterations for archetypal analysis 

was set to 100, which has been reported to provide a good 

performance in terms of time and accuracy in several 

experiments [34]. 

At this point we present some necessary terminology in 

order to facilitate the readability of the following 

paragraphs. The km n
X R

×∈ data matrix contains the union 

of the kn -signature pixels { },  1:
mx R i ni k∈ =  

information, where m  represents the raw data 

dimensionality; the value of m is directly related to the 

selection of the granularity of the image probing element, 

defined hereafter as patch size spN . The value of kn  

corresponds to the total number of the signature pixels of 

the thk  signature sample, while the value of p  represents 

the selection of the number of archetypes. Summarizing, 

each jz  archetype becomes a convex combination of a 

few data points only, which is useful for interpreting jz  by 

means of the information stored on the non-zero entries in 

jβ . Clearly these values specify the analogy in which an 

input data point { }m
ix R∈  is associated to the jz  

archetype. On the other, each non-zero entry stored in the 

ia  coefficients provides information regarding the use of 

each jz archetype for efficient reconstruction of the 

ix signature input data point.  

3. System design 

The proposed architecture is summarized in figure 1. 

During the first phase of the learning stage-enrollment, a 

population of Ngen -reference genuine signature samples 

is enrolled. Then, the union of the signature pixels of all 

reference images forms the matrix 1
[ ]

Ngen

kk
m nREFX R =

×
∈  .  

With the use of eq. (3) the REFZ  reference matrix is 

evaluated and stored as the representative entity of a set of 

reference signatures. 

In the second phase of the learning stage, which 

includes training, for each of the genuine reference input 

(1 ,2 ....)
st nd

REFX X=
REFZ

positiveA
negativeA

questionedA

 

Figure 1: Proposed system architecture. 
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signatures along with a number of random forgeries i.e. 

other writers genuine signatures,  similar data matrices 
TX  are formed, and analyzed into the corresponding TA  

matrices by keeping REFZ  fixed while solving eq. (3). 

Average pooling across the rows of the TA  matrices 

creates the signature features with dimensionality 

proportional to the value of p . Next a binary SVM 

classifier [10] is built with the genuine reference features 

as the positive class and the random forgeries features as 

the negative class.  

In the testing stage, any questioned input signature 

sample and corresponding data form QX  is analyzed with 

the use of average pooling on the derived QA matrix that 

provides the associated feature vector. In turn, the 

classifier provides a score, which will be used in order to 

assess the verification efficiency by means of receiver 

operating characteristics (ROC) or detection error tradeoff 

(DET) analysis. In our study the equal error rate (EER), 

which is the point in which the false acceptance rate (FAR) 

and the false rejection rate (FRR) are equal, has been 

chosen as the performance measure. 

3.1. Preprocessing and patch extraction 

Typical preprocessing includes thresholding, thinning 

and equimass segmentation [38, 39] into four equimass 

segments, denoted hereafter as , 1: 4gEMS g = in order to 

distinguish them from the entire signature image 1 1IMG × . 

Following the description provided in the previous section 

and prior to the REFZ  estimation, the format of the matrix 
m nX R ×∈ of any input signature image is clarified. 

Following, for every i-pixel with (r,c)-coordinates being 

part of entire signature trace 1 1IMG × an elementary 

rectangular window of size sp spm N N= ×  denoted 

hereafter as the patch ( , ) i
Nsp Nspp r c p , is imposed in 

order to locate and store the local neighborhood pixel 

intensities. Next, the patch i
Nspp is stored with a one-

dimensional column vector format ,1i D
NSpp , ki 1: n= .The 

concatenation of all the image patches of a specific 

signature image ,1 , 1:i D
kNSp

i

p i n= , ultimately defines the 

matrix of the specific signature sample as: 

k,i 1: nk i
Nspi

X p= = . 

3.2. Application of archetypal analysis 

 In accordance to the exposed material so far, the 

genuine reference data matrix is defined by the union of 

the patches of all reference signature 

images REF k

k
X X= , 1:k Ngen= . Then, given REFX , 

along with the number of archetypes p , eq. (3) is solved in 

order to provide the REFZ matrix of archetypes. In order to 

illustrate the method, figure 2 presents the derived 

archetypes for the case of one signature sample for various 

values of the patch size spN  and the number of 

archetypes p  as a system parameter. Additionally, figure 3 

displays an example of the way that one archetype is 

220 0.048β = 369 0.002β = 436 0.005β = 990 0.261β =

1076 0.087β = 1315 0.287β = 1328 0.297β = 1352 0.011β =
 

Figure 3: An archetype and its convex decomposition into 8 

components and corresponding jβ weights. ( , )spN p : (5, 10)  

(a)

(e

(c)(b)

(d)

Figure 2: a) A signature image. b-e) Archetypes for 

parameters ( , )spN p : (5,10), (20,10), (5,49), (20,49). 

Figure 4: Location of patches (marked with red color) on a 

signature image which are forming the set of archetypes. 

( , )spN p (5, 10) 

5517



 

synthesized from some convex combination of patches and 

figure 4 provides an illustrative example of the location of 

the patches, used to form the entire set of archetypes, on 

the signature. The minimum value of the patch size is 

usually set such that to confine a minimum amount of the 

signature stroke, after the thinning operation. For example, 

the CEDAR signature dataset [40] contains signatures, 

which after a minimal thinning-trimming result into traces 

that fit within a patch size 5spN = , thus enabling the 

detection of signature microstructures. Consequently, the 

minimum patch size along with the corresponding data 

dimensionality m  equals to sp spN N× = 25. The maximum 

patch size clearly can be chosen according to the amount 

of the signature trace that one wishes to capture and 

contains more shaped characteristics.  

An interesting analysis has been drawn in order to 

investigate the effect of the number of patches per 

archetypes as a function of the patch size – dimensionality 

of the problem spN  and the number of archetypes p . 

Figure 5 presents graphically the results of this analysis for 

one writer although similar patterns apply for any other 

writer. According to it, the average number of signature 

patches which participates to the forming of the archetypes 

decreases as the number of archetypes is increasing while 

satisfies the sparsity property. Additionally, given that the 

number of archetypes p  is kept fixed, then the number of 

average number of signature patches that forms the 

archetypes increases as a function of the patch size spN . 

Furthermore, an additional analysis of the magnitude of the 

jβ  coefficients indicates that if the patch size spN  is fixed 

then the increase of the number p  of requested archetypes 

leads to a lesser number of signature patches that forms the 

archetypes, but with jβ  magnitudes of lower uncertainty. 

This is demonstrated with the use of the following 

measure. Since a) 1 2[ , ,... ] Rn p
pB β β β ×= ∈ , b) the sum of 

each jβ  coefficients is one and c) 0jβ ≥  one can make 

use of the entropy definition:  

2

1

( ) - ( ) log ( ( ))
kn

j j j

i

H i iβ β β
=

= × , , 1:j j p∀ =   (8) 

in order to provide a qualitative measure of the uncertainty 

which accompanies the formation of the archetypes from 

each participating patch. Figure 6, presents graphically the 

evolution of the uncertainty of the participating patches, as 

expressed with the average entropy of the archetypes 

1

1
( )

p

jj
H H

p
β

=
=  , as a function of a) the number of 

archetypes p  and b) the patch size spN . Inspection of both 

figures 5 and 6 indicates that as the number of archetypes 

increases, the number of participating patches and their 

average entropy H  decreases.   

3.3. Feature extraction 

As figure 1 describes, the genuine reference samples for 

one writer are forming the model of his handwriting style 

by means of the claimed identity as it is represented by the 
REF

writerZ  archetype matrix. For any other signature sample Q 

claiming this identity, the feature extraction stage utilizes 

its set of Qm nQX R
×

∈  patches and the 
REF

writerZ . The 

solution of eq. (3) provides a) the  1 1
Qp nQA R

×
× ∈  coefficient 

matrix of the entire signature in order to provide its global 

representation. Additionally, the EMSgm nQ
EMSgX R

×
∈ , 

g 1: 4= image patches, which belong to the corresponding 

gEMS image segments, are also analyzed and four 

corresponding matrices EMSgp nQ
EMSgA R

×
∈  also provide 

localized information. In this work, inspired by [35], the 

feature vector 5   1Q pf R ×∈ is simply formed by a) average 

Figure 6: Average of entropy of the jβ values as a function of 

the number of archetypes and the patch size for one writer. 

Figure 5: Example of the average number of patches per 

archetype as a function of the patch size and the number of 

archetypes for one writer. 
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pooling of the A coefficients of each archetype and b) 

concatenation of the resulting values for all segments. Let 

us denote with the notation: 

{ }  1 4   1
1 1 ,{ }Q QQ p p

EMSgf f R f R× ×
×= ∈ ∈  the features which 

represents any Q-signature sample where each j-feature 

component is evaluated as: 
1 1

1 1 1 11 1
1

1

1
(j) (j,c), 1:

1
(j) (j,c), 1: , 1: 4

g

IMG

Q Q

c

EMS

Q Q
EMGg EMSg

g c

f j p
IMG

f j p g
EMS

×

× ××
=

=

= =

= = =





A

A

 (9) 

It is easily deducted that the dimensionality of the 

average feature vector is directly related to the number of 

selected archetypes p .  

4. Experimental protocol 

In order to demonstrate and evaluate the efficiency of 

the proposed method, the CEDAR [40] and MCYT75 [41] 

signature datasets, which have been widely used in 

signature verification research were adopted. The CEDAR 

dataset contains offline signatures from 55 volunteers. For 

each writer, 24 genuine and 24 skillfully forged signatures 

were provided (i.e., 1320 genuine and 1320 forged 

signatures in total). The scanned signatures are composed 

of 8-bit gray-level images at 300 dpi. The second signature 

database used was the off-line version of the MCYT75 

signature database. A whole of thirty (15 genuine and 15 

simulated) signature samples were recorded for each one 

of the 75 enrolled writers at a resolution of 600 dpi. 

For each one of the writers a specific model is built by 

randomly gathering Ngen  reference signature samples. 

The number of Ngen in this work has been set to five 

( Ngen =5) for representation of cases in which only a few 

samples are available. Then, the 
REF

writerZ archetype matrix is 

evaluated from all the genuine reference samples and 

henceforth models the handwriting of the specific writer. 

In the training procedure, each one of the Ngen  genuine 

samples is once more analyzed with the use of eq. (3) in 

order to provide the positive class  (5 )Ngen pRω⊕ ×∈  with 

the feature extraction procedure of eq. (9). The negative 

class 10  (5 )pRω− ×∈   is composed from 10 out of 54 or 74 

samples, by taking one random sample from 10 out of the 

remaining writers. Thus, a corresponding learning feature 

population (N 10)  (5p)
[ ]

gen
Rω ω⊕ − + ×∈  is used as an input to 

a binary SVM classifier, with a radial basis, while a 

holdout cross-validation procedure returns the optimal 

values of the optC and gamma- optγ parameters with respect 

to a maximum cross validation value of the Area Under 

Curve. In addition, the cross-validation procedure returns 

the SVM output scores conditioned on the positive ω⊕  

class samples CVS⊕ . 

The testing stage utilizes primarily the remaining 

genuine signatures and the skilled forgeries (S). The 

receiver operating characteristic parameters FAR(S) and 1-

FRR are computed as a function of the sliding threshold 

whose extremes are the minimum and maximum values of 

the CVS⊕ . The EER: FAR(S) = FRR is then computed 

and reported. Additionally, at the threshold point of the 

EER the genuine samples of the remaining writers are used 

for the evaluation of the random forgery-(R) FAR(R) error 

rate. The experiments were repeated ten times and their 

average values are reported.  

4.1. Overall performance 

The influence of two critical parameters, namely the 

patch size spN  and the number of archetypes p  is 

examined and reported by allowing several values. 

Specifically, for the patch size spN  two distinct values 

were selected in order to define two major categories. The 

first utilizes a patch size of five (5), which corresponds to 

the category of analyzing the signature trace by 

microstructural probing; the second category utilizes a 

patch size of nineteen (19) which corresponds to the case 

of having archetypes representing elongated shape 

characteristics. Regarding the value of p , we employed 

values starting from ten (10) up to fifty (50) with a step of 

10 and corresponding feature dimensionality of 50 – 250 

 

TABLE 1: ERROR RATES (%) FOR THE PROPOSED METHOD. NGEN=5. CEDAR DATASET 

NSP 

Number of archetypes p  

10 20 30 40 50 

EER FAR(R) EER FAR(R) EER FAR(R) EER FAR(R) EER FAR(R) 

5 3.10 0.93 2.83 0.45 2.07 0.17 2.14 0.19 2.26 0.23 

19 5.36 1.22 5.58 0.96 6.14 0.98 6.02 0.88 6.12 1.22 
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( 5 p ). Table 1 and table 2 depict the error rates of the 

proposed method. Examination of these results reveals that 

the analysis of a signature with the use of archetypes which 

are synthesized from signature patches of small size, 

provide superior error rates when compared to the ones 

derived with the use of archetypes created from larger 

signature patches. This is a potential indication that larger 

shape archetypes are more sensitive to the intra-class 

handwriting variability, especially for the unstable 

CEDAR dataset [22, 27]. Regarding the observed high 

efficiency of the small patch size, examination of the 

associated plots of figure 6, shows that the use of a small 

patch size is related with smaller amounts of mean 

entropy H . Consequently, when a small patch size is 

selected, a small fraction of signature patches is employed, 

but with lesser uncertainty, in order to assemble the 

archetypes. Again, one may assume that the archetypes, 

expressed as a convex combination of signature patches 

with lower entropy carry an inherent property of the 

signature generation process. These archetypes are 

employed to analyze any Q-input signature by means of 

the coefficient QA  matrix. Potentially, the Q p
ia R∈ , 

i=1:nQ coefficients and the corresponding features, map 

this inherent property regarding the generation of each 

archetype. Another observation which can be drawn from 

table 1 is that, for the case of using a small valued patch 

size, the verification accuracy, tends to increase when the 

number of archetypes p equals the dimensionality of the 

patch data m.  

4.2. Comparisons with state-of-the-art 

The comparison of the derived results with other, state 

of the art systems, is generally considered a rather hard 

task given the various degrees of freedom regarding the 

type or number of signatures utilized during the classifier 

construction and evaluation [28]. Nevertheless, Table 3 

and Table 4 provide evidence that the proposed method 

achieves a low error of verification when a few genuine 

samples are available which is at least comparable to the 

ones derived from state of the art methods. It is also 

important to mention the fact that the training stage of our 

method includes only genuine and random forgeries, and 

not any sort of skilled forgeries while testing in a common 

context both genuine, random and skilled forgeries. 

4.3. Comparison to sparse coding 

Finally, it is very interesting to explore other popular 

variations from the general family of coding problems 

similar to that of eq. (7), involving different constraints to 

the dictionary and coefficients. Due to page limitations 

TABLE 2: ERROR RATES (%) FOR THE PROPOSED METHOD. NGEN=5. MCYT75 DATASET 

NSP 

Number of archetypes p  

10 20 30 40 50 

EER FAR(R) EER FAR(R) EER FAR(R) EER FAR(R) EER FAR(R) 

5 6.24 0.96 4.72 0.73 3.97 0.23 4.08 0.25 4.31 0.26 

19 7.57 0.79 5.59 0.63 4.99 0.37 5.15 0.45 5.46 0.61 

 

TABLE 3: ERROR RATES (%) OF THE PROPOSED METHOD COMPARED TO OTHER SYSTEMS WITH THE CEDAR DATASET. 

First Author Method #Signatures for training FRR 
FAR  

(R) 

FAR 

(S) 

Kumar R. [22] Surroundness 24 genuine + 24 forgeries 8.33 - 8.33 

Kumar M. [42] Chord Moments 16 genuine + 16 forgeries 6.36 - 5.68 

Guerbai [43] Curvelet Transform 12 genuine 5.60 - 5.60 

Serdouk [24] Gradient Local Binary Patterns + LRF 16 genuine 2.12 - 4.93 

Kalera [40] Gradient, Structural and Concavity 16 genuine + 16 forgeries 21.9 - 21.9 

Srihari [44] Gradient, structural, and concavity 16 genuine + 5 forgeries 8.5 - 10.1 

Serdouk [45] Gradient Local Binary Patterns 16 genuine + 16 forgeries 4.31 - 6.36 

Okawa [28] Bag of Visual Words with KAZE 16 genuine + 16 forgeries 1.60 - 1.60 

Zois [27] Partially Ordered Sets 5 genuine +10(R) forgeries 4.44 1.61 15.9 

Ganapathi [46] Gradient Direction Histogram 14 genuine + 14 forgeries 6.01 - 6.01 

Shekar [47] Local Morphological Pattern Spectrum 16 genuine + 15 forgeries 9.58 - 9.58 

Hamadene [26] Directional Co-occurrence Matrix 5 genuine 4.21 - 0 

Zois [52] K-SVD dictionary learning – OMP 5 genuine+10(R)forgeries 7.32 0.34 6.83 

Proposed Archetypes (p=30, Nsp=5) 5 genuine+10(R)forgeries 2.07 0.17 2.07 
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though, we have limited our study to the other extreme of 

the sparse coding problem defined as:  

 
2

0,

1
min  s.t. ,  

2
iFD A

X DA a s p i− ≤ ≤ ∀   (10) 

where the only constraint is essentially the sparsity s of the 

representation coefficients. The solution to the above 

problem can be approximated using greedy techniques. In 

reference [52] the K-SVD and OMP [53] algorithms was 

employed to solve the dictionary construction and sparse 

coding problems (10) respectively, in a greedy fashion. 

Results in [52] derived for both CEDAR and MYT75 

datasets, are directly comparable to that of archetypal 

analysis, since the exact same feature pooling scheme, 

patch size and experimental protocol was utilized, and the 

dictionary size (60 atoms) is rather similar. 

From the corresponding results of Tables 3 and 4 it is 

evident that the convexity constraints imposed on 

archetypes and coefficients come to a great benefit to the 

discrimination capacity of the final descriptor. Although 

standard sparse coding still exhibits a good ability to 

express variations of microstructures of different 

signatures, thus delivering a good FAR on random 

forgeries, it significantly lacks of discriminative capacity 

when it comes to the more fine-grained distinction between 

genuine and skilled forgeries exhibiting larger FAR(S). 

We believe this behavior has its root to the degenerate 

structure of the manifold where patches of signatures lie 

on, in contrast to the corresponding manifold of natural-

images, for which standard sparse coding reportedly 

exhibits [34] better performance on image classification 

tasks under similar settings. 

5. Conclusion 

The offline handwritten signature forms a particular 

gender of image signals which exhibit a degenerate 

structure and therefore lie on a low dimensional subspace. 

On the other, parsimony, a biologically inspired notion has 

been lately exploited in a plethora of pattern recognition, 

machine learning, and computer vision applications. The 

proposed method can be summarized as follows:  

1) The use of archetypal analysis for establishing 

primitives, defined as archetypes which can be used as a 

mean to represent the handwritten strokes. 

2) The creation of a reference archetypal matrix which 

represents a population of some reference genuine 

samples. 

3) The use of average pooling in order to provide 

features for offline signature verification. 

4) Experimental results show that this analysis further 

improves the verification error rates on two popular 

signature datasets.  

Our future research plan among others includes the use 

of additional signature datasets, the use of several other 

pooling feature extraction techniques, and the use of 

individual reference samples, instead of a reference set as 

a whole for the construction of the classifier.    
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