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Abstract

During the last years, Convolutional Neural Networks

(CNNs) have achieved state-of-the-art performance in im-

age classification. Their architectures have largely drawn

inspiration by models of the primate visual system. How-

ever, while recent research results of neuroscience prove the

existence of non-linear operations in the response of com-

plex visual cells, little effort has been devoted to extend the

convolution technique to non-linear forms. Typical convo-

lutional layers are linear systems, hence their expressive-

ness is limited. To overcome this, various non-linearities

have been used as activation functions inside CNNs, while

also many pooling strategies have been applied. We ad-

dress the issue of developing a convolution method in the

context of a computational model of the visual cortex, ex-

ploring quadratic forms through the Volterra kernels. Such

forms, constituting a more rich function space, are used as

approximations of the response profile of visual cells. Our

proposed second-order convolution is tested on CIFAR-10

and CIFAR-100. We show that a network which combines

linear and non-linear filters in its convolutional layers, can

outperform networks that use standard linear filters with

the same architecture, yielding results competitive with the

state-of-the-art on these datasets.

1. Introduction

Convolutional neural networks (CNNs) have been shown

to achieve state-of-the-art results on various computer vi-

sion tasks, such as image classification. Their architectures

have largely drawn inspiration by models of the primate vi-

sual system, as the one described by Hubel and Wiesel [13].

The notion of convolution, used to mimic a functional as-

pect of neurons in the visual cortex, is critical to understand

their success.

Typical convolutional layers are linear systems, as their

outputs are affine transformations of their inputs. Due to

their linear nature, they lack the ability of expressing possi-

ble non-linearities that may actually appear in the response

of complex cells in the primary visual cortex [25]. Hence,

we claim that their expressiveness is limited. To overcome

this, various non-linearities have been used as activation

functions inside CNNs, while also many pooling strategies

have been applied. Little effort has been devoted to explore

new computational models that extend the convolution tech-

nique to non-linear forms, taking advantage of the research

results of neuroscience, that prove the existence of non-

linear operations in the response of visual cells [31][24].

The complexity of human visual cortex demonstrates gaps

that need to be bridged by CNNs, regarding the way con-

volution operations are applied. One of these gaps, is the

exploration of higher-order models.

In this work, we study the possibility of adopting an al-

ternative convolution scheme to increase the learning capac-

ity of CNNs by applying Volterra’s theory [32], which has

been used to study non-linear physiological systems, adapt-

ing it to the spatial domain. Considering the convolution

operation, instead of summing only linear terms to compute

a filter’s response on a data patch, we propose to also sum

the non-linear terms produced by multiplicative interactions

between all the pairs of elements of the input data patch.

Transforming the inputs through a second-order form, we

aim at making them more separable. In this way, convolu-

tion filters with more rich properties in terms of selectivity

and invariance are created.

The novelties of the proposed work are:

• The incorporation of a biologically plausible non-

linear convolution scheme in the functionality of

CNNs

• The derivation of the equations that describe the for-

ward and backward pass during the training process of

this filter type

• A CUDA-based implementation of our method as a
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non-linear convolutional layer’s module in Torch71[5]

The rest of the paper is organized as follows: in Sec-

tion 2, related work is outlined. In Section 3, the proposed

method is described, theoretically grounded to Volterra’s

computational method, and the concept of training is math-

ematically explained, while a description of our scheme’s

practical implementation is given in Section 4. In Section 5

experimental results on CIFAR-10 and CIFAR-100 datasets

are drawn and finally in Section 6 the paper is concluded.

2. Related Work

One of the first biologically-inspired neural networks,

was Fukushima’s Neocognitron [8], which was the prede-

cessor of CNN, as it was introduced by LeCun et al. in [6].

Convolutional layer is the core building block of a CNN.

Early implementations of CNNs have used predefined Ga-

bor filters in their convolutional layers. This category of

filters can model quite accurately the properties of simple

cells found in the primary visual cortex (V1) [21].

This type of visual cell has a response profile which

is characterized by spatial summation within the receptive

field. Finding the optimal spatial stimuli [7] for simple cells

is a process based on the spatial arrangement of their exci-

tatory and inhibitory regions [23]. However, this does not

hold true for complex visual cells. Also, we cannot obtain

an accurate description of their properties, by finding their

optimal stimulus.

This fact has been ignored by most of the CNN imple-

mentations so far, as they have settled to the linear type of

convolution filters, trying to apply quantitative rather than

qualitative changes in their functionalities. He et al. [10]

proposed Residual Networks (ResNets), which have short-

cut connections parallel to their normal convolutional lay-

ers, as a solution to the problems of vanishing/exploding

gradient and hard optimization when increasing the model’s

parameters (i.e. adding more layers). Zagoruyko & Ko-

modakis [34] showed that wide ResNets can outperform

ResNets with hundrends of layers, shifting the interest to

increasing the number of each layer’s filters. Alternatively

to works that focus on creating networks with more con-

volutional layers or more filters, we evaluate the impact of

using both non-linear and linear terms as approximations of

convolution kernels to boost the performance of CNNs.

Apart from ResNets, very low error rates have also been

achieved in the ImageNet Challenge [27] by methods that

used their convolutional layers in new ways, enhancing their

representation ability. Lin et al. [20] proposed “Network

in Network (NIN)”, as a remedy to the low level of ab-

straction that typical filters present. Instead of the con-

ventional convolution filter, which is a generalized linear

1http://torch.ch/

model, they build micro neural networks with more com-

plex structures to abstract the data within the receptive field.

To map the input data to the output, they use multilayer

perceptrons as a non-linear function approximator, which

they call “mlpconv” layer. The output feature maps are

obtained by sliding the micro networks over the input in

a similar manner as CNN. Szegedy et al. [30] introduced

a new level of organization in the form of the “Inception

module”, which uses filters of variable sizes to capture dif-

ferent visual patterns of different sizes, and approximates

the optimal sparse structure. Xie et al. [33] proposed a way

to exploit the split-transform-merge strategy of “Inception”

models, performing a set of transformations, each on a low-

dimensional embedding, whose outputs are aggregated by

summation.

The authors of [19], based on the abundancy of recur-

rent synapses in the brain, proposed the use of a recurrent

neural network for image classification. They proved that

inserting recurrent connections within convolutional layers,

gives boosted results, compared to a feed-forward architec-

ture. Their work is a biologically plausible incorporation of

mechanisms originating from neuroscience into CNNs.

In [28], a Boltzmann learning algorithm is proposed,

where feature interactions are used to turn hidden units into

higher-order feature detectors. In [22], an efficient method

to apply such learning algorithms on higher-order Boltz-

mann Machines was proposed, making them computation-

ally tractable for real problems.

In [1], Bergstra et al. created a model for neural activa-

tion which showed improved generalization on datasets, by

incorporating second-order interactions and using an alter-

native non-linearity as activation function.

In [2], an attempt is made to analyze and interpret

quadratic forms as receptive fields. In their study, it was

found that quadratic forms can be used to model non-linear

receptive fields due to the fact that they follow some of

the properties of complex cells in the primary visual cor-

tex. These properties include response to edges, phase-shift

invariance, direction selectivity, non-orthogonal inhibition,

end-inhibition and side-inhibition. In constrast to the stan-

dard linear forms, in quadratic and other non-linear forms

the optimal stimuli do not provide a complete description

of their properties. It is shown that no invariances occure

for an optimal stimulus while for other general sub-optimal

stimuli there may exist many invariances which could be

of a large number but lack easy interpretation. Although

the optimal stimulus is not related to a filter’s invariance,

its neighborhood is studied under a more loose sense of

transformation invariance. It is shown that proper quadratic

forms can demonstrate invariances in phase-shift and orien-

tation change. From the previous discussion we conclude

that using non-linear forms to convolutional layers may be

a reasonable future direction in computer vision.
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3. Proposed Method

The proposed method, as earlier stated, makes use of the

Volterra kernel theory to provide means of exploiting the

non-linear operations that take place in a receptive field. Up

to now, and to the best of our knowledge, non-linearities

were exploited mainly through the activation functions and

pooling operations between different layers of CNNs. Nev-

ertheless, such non-linearities may be an approach to code

inner processes of the visual system, but not the ones that

exist in a receptive field’s area.

Our method follows the typical workflow of a CNN, by

lining up layers of different purposes (convolution, pooling,

activation function, batch normalization, dropout, fully-

connected etc.), while a non-linear convolutional layer can

be plugged in practically in all existing architectures. Nev-

ertheless, due to its augmentation of trainable parameters

involved, care should be taken for the complexity of the

overall process. To that end, a CUDA implementation in

Section 4 is also provided.

3.1. Volterra­based convolution

The Volterra series model is a sequence of approxima-

tions for continuous functions, developed to represent the

input-output relationship of non-linear dynamical systems,

using a polynomial functional expansion. Their equations

can be composed by terms of infinite orders, but practical

implementations based on them use truncated versions, re-

taining the terms up to some order r.

In a similar way to linear convolution, Volterra-based

convolution uses kernels to filter the input data. The first-

order Volterra kernel, contains the coefficients of the filter’s

linear part. The second-order kernel represents the coeffi-

cients of quadratic interactions between two input elements.

In general, the r-th order’s kernel represents the weights

that non-linear interactions between r input elements have

on the response. In the field of computer vision, Volterra

kernels have been previously used in [17] for face recog-

nition, serving effectively as approximations of non-linear

functionals.

3.2. Forward pass

For our proposed convolution, we adopted a second-

order Volterra series. Given an input patch I ∈ IRkh×kw

with n elements (n = kh·kw), reshaped as a vector x ∈ IRn:

x =
[

x1 x2 · · · xn

]T

(1)

the input-output function of a linear filter is:

y(x) =

n∑

i=1

(
wi

1
xi

)
+ b (2)

where wi
1

are the weights of the convolution’s linear

terms, contained in a vector w1, and b is the bias. In our ap-

proach, this function is expanded in the following quadratic

form:

y(x) =

n∑

i=1

(
wi

1
xi

)
+

n∑

i=1

n∑

j=i

(
wi,j

2
xixj

)
+ b (3)

where wi,j
2

are the weights of the filter’s second-order

terms. To avoid considering twice the interaction terms for

each pair of input elements (xi, xj), we adopt an upper-

triangular form for the matrix w2 containing their weights,

so that the number of trainable parameters for a second-

order kernel is n(n + 1)/2. The generic type to compute

the total number of parameters, nV , for a Volterra-based fil-

ter of order r is:

nV =
(n+ r)!

n!r!
(4)

In a more compact form, (3) is written as:

y(x) = xTw2x
︸ ︷︷ ︸

quadratic term

+ w1
Tx

︸ ︷︷ ︸

linear term

+b (5)

while for the Volterra kernels we have:

w2 =









w1,1
2

w1,2
2

· · · w1,n
2

0 w2,2
2

· · · w2,n
2

...
...

. . .
...

0 0 · · · wn,n
2









(6)

containing the coefficients wi,j
2

of the quadratic term,

and:

w1
T =

[

w1

1
w2

1
· · · wn

1

]

(7)

containing the coefficients wi
1

of the linear term. The

proposed convolution’s output can thus be rewritten as:

y(x) =











w1,1
2

w1,2
2

w1,3
2

...

wn,n
2











T 









x1x1

x1x2

x1x3

...

xnxn











+











w1

1

w2

1

w3

1

...

wn
1











T 









x1

x2

x3

...

xn











+ b (8)

Note that superscripts (i, j) to weights wi,j
2

denote cor-

respondence to the spatial positions of the input elements xi

and xj that interact.
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3.3. Backward pass

The derivation of the equations for the backward pass of

the Volterra-based convolution, is done by adapting the clas-

sic backpropagation scheme to the aforementioned input-

output function of (3). To train the weights of the Volterra

kernels, we need to compute the gradients of the layer’s

output y(x), with respect to the weights wi
1

and wi,j
2

. To

propagate the error, we have to compute the gradients of the

layer’s output y(x), with respect to the inputs xi. Hence,
∂y

∂wi
1

, ∂y

∂w
i,j
2

and ∂y
∂xi

are the terms that will be used to opti-

mize the weight parameters of our Volterra-based convolu-

tional layer and minimize the network loss. The mathemat-

ical equations of backpropagation, are as follows:

∂y

∂wi
1

= xi

∂y

∂wi,j
2

= xixj (9)

∂y

∂xi

= wi
1
+

i∑

k=1

(
wk,i

2
xk

)
+

n∑

k=i

(
wi,k

2
xk

)
(10)

4. Quadratic convolution filter implementation

In order to experiment with the non-linear convolution

filters, we used the Torch7 scientific framework. Volterra-

based convolution was implemented as a module integrated

with the CUDA backend for the Neural Network (cunn)

Package of Torch7. Writing a module in Torch7 mainly

consists of implementing the module’s forward pass (3) as

well as the computation of the module’s gradients ( ∂E
∂w

and
∂E
∂x

), that are used in back-propagation. We denote by E the

error defined by the network’s criterion function and refer to
∂E
∂w

as the layer’s weight gradient and ∂E
∂x

as the layer’s in-

put gradient. To implement the forward pass in CUDA, we

used the standard im2col [3] pattern to unfold data patches

into columns, followed by a matrix multiplication with the

Volterra-based filter weights. The im2col operation is con-

ducted in parallel by a CUDA kernel, while for the matrix

multiplication we used the well established CUDA BLAS

functions. Subsequently, computing the weight gradients

is, to some extent, similar to computing the forward pass.

Once again, the im2col operation is executed on the input

image as a CUDA kernel and its output matrix is multiplied

with the previous layer’s input gradient resulting into ∂E
∂w

.

The most expensive operation in a Volterra-based convolu-

tional layer is the computation of the input gradients. As

already mentioned before, in contrast to linear convolution,

where the input gradient is independent of the provided in-

put, our layer’s input gradient is input-dependent. Thus, to

compute the matrix of input gradients, firstly we compute

an unfolded matrix containing the gradients of the output

with respect to the input. This matrix is then multiplied

with the previous layer’s input gradient using CUDA BLAS

functions. Finally, an appropriate inverse col2im CUDA

kernel aggregate operation results in the final matrix of the

Volterra-based layer’s input gradients ∂E
∂x

.

A major difference between the proposed convolution

scheme and linear convolution, is the fact that in our case
∂y
∂xi

is a function dependent on xi. This means that, in con-

trast to standard filters, this term is different for every single

patch of a feature map, resulting in an extra computational

cost, when the error must be propagated to preceding train-

able layers in the network. This cost is proportionate to

Ho · Wo, where Ho and Wo are the height and the width

of the layer’s output feature map, respectively. Our layer’s

code is available at http://vcl.iti.gr/volterra.

5. Experiments

We measure the performance of our proposed Volterra-

based convolution on two benchmark datasets: CIFAR-10

and CIFAR-100 [15], running our experiments on a PC

equipped with Intel i7-5820K CPU, 64GB RAM and Nvidia

Titan X GPU. The Volterra-based convolutional layer was

implemented in Torch7. We first describe the experimental

setup, then we show a quantitative analysis, in terms of pa-

rameters, classification error and train loss, for the proposed

method.

5.1. CNN architecture selection

As explained in Section 4, using the proposed convolu-

tion in multiple layers of a CNN, an extra computational

overhead is introduced during backpropagation. For this

reason, we restrain ourselves to testing such filters only in

the first convolutional layer of a CNN model. We choose

the modern architecture of Wide ResNet [34], which mainly

consists of a convolutional layer, followed by 3 convolu-

tional groups and a classifier. If d is such a network’s depth,

then each convolutional group contains N = (d−4)/6 con-

volutional blocks. In a group, the number of each convo-

lutional layer’s filters, is controlled by the widening factor

k. In our architecture, we follow the above rules, making

three changes: a) we insert a Batch Normalization layer in

the start of the network b) we change the number of the

first convolutional layer’s output channels, from 16 to 16 · k
(i.e., equal to the number of the first group’s output chan-

nels) and c) we change the shortcut of the first block in the

first group, into an identity mapping, as a consequence of

our second change. The first change is crucial to prevent

the output of the Volterra-based convolution from explod-

ing, due to the multiplicative interaction terms xixj . In

our experiments, parameter γ of the affine transformation

y = γx̂ + β that is applied in this layer, settles to values

0 < γ < 1. The second change was chosen so that, when

the Volterra-based convolution is applied in the first con-

volutional layer, there are enough non-linear filters to be

learnt, producing a feature-rich signal. The third change is

4764
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Network stage Output size Model (d=28, N=4, k=10)

Initial convolution 32× 32
Batch Normalization

Conv 3× 3, 16 ·k

Group 1 32× 32 Conv

[

3× 3, 16 · k

3× 3, 16 · k

]

×N blocks

Group 2 16× 16 Conv

[

3× 3, 32 · k

3× 3, 32 · k

]

×N blocks

Group 3 8× 8 Conv

[

3× 3, 64 · k

3× 3, 64 · k

]

×N blocks

Pooling

8× 8 Batch Normalization

8× 8 ReLU

1× 1 Average Pooling, 8× 8

Classifier
Fully-Connected 10(100)

SoftMax 10(100)

Table 1: Network architecture used in our experiments.

done because when a block’s input and output channels are

equal, then its shortcut is an identity mapping, so that its

input is added to its output, without the need to adjust the

feature channels in the shortcut by using a convolutional

layer. In this case, the signal of the first convolutional layer

flows intact through the shortcuts of the first group’s blocks.

The model used in our experiments is described in Ta-

ble 1. To evaluate the impact of applying the Volterra-based

convolution on each dataset, we tested two versions of the

general CNN model. The first version, which serves as the

baseline model, does not use any non-linear convolution fil-

ter. The other version contains non-linear filters in the first

convolutional layer and linear filters in all the convolutional

groups of the network.

5.2. Experimental setup

In all our experiments we use Stochastic Gradient De-

scent (SGD) with momentum set to 0.9 and cross-entropy

loss, with a batch size of 128, training our network for 220

Epoch Learning rate Weight decay

1− 59 0.1 0.0005

60− 119 0.02 0.0005

120− 159 0.004 0.0005

160− 199 0.0008 0.0005

200− 220 0.0008 0

Table 2: Learning rate and weight decay strategy used in

our experiments.

epochs. Dropout is set to 0.3 and weight initialization is

done as in [10]. The learning rate and weight decay strategy

used in the experiments is shown in Table 2. For CIFAR-10

and CIFAR-100, the data-preprocessing operation applied

Batch Normalization

ReLU

Convolution

Batch Normalization

ReLU

Dropout

Convolution

Identity

Input

Output

Batch Normalization

Convolution

Group 1

Group 2

Group 3

Batch Normalization

ReLU

Avg Pooling

Fully-Connected

SoftMax

Input

Output

Figure 1: Structure of the proposed CNN model (left) and a

typical convolutional block (right).
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Network Depth #Parameters CIFAR-10 CIFAR-100

NIN [20] - - 8.81 -

DSN [18] 3 - 7.97 34.57

All-CNN [29] 9 1.3M 7.25 -

ResNet with Stochastic Depth [12] 110 1.7M 5.23 24.58

1202 10.2M 4.91 -

pre-act Resnet [11] 1001 10.2M 4.62 22.71

Wide ResNet [34] 40 55.8M 3.80 18.30

PyramidNet [9] 110 28.3M 3.77 18.29

Wide-DelugeNet [16] 146 20.2M 3.76 19.02

OrthoReg on Wide ResNet [26] 28 - 3.69 18.56

Steerable CNNs [4] 14 9.1M 3.65 18.82

ResNeXt [33] 29 68.1M 3.58 17.31

Wide ResNet with Singular Value Bounding [14] 28 36.5M 3.52 18.32

Oriented Response Net [35] 28 18.4M 3.52 19.22

Baseline Wide ResNet 28 36.6M 3.62 18.29

Volterra-based Wide ResNet 28 36.7M 3.51 18.24

Table 3: Test set classification error results on CIFAR-10 and CIFAR-100, using moderate data augmentation (horizontal

flipping, padding and 32× 32 cropping).

to both train and test set’s data, is subtracting the channel

means and then dividing by the channel standard deviations,

computed on the train set. We apply moderate data augmen-

tation, using horizontal flipping with a probability of 50%
and reflection-padding by 4 pixels on each image side, tak-

ing a random crop of size 32× 32.

Epoch

130 140 150 160 170 180 190 200

L
o

g
 L

o
s
s

-4.7

-4.6

-4.5

-4.4

-4.3

-4.2

-4.1

Volterra-based WRN

Baseline WRN

Figure 2: Train loss on CIFAR-100.

5.3. CIFAR­10 and CIFAR­100

CIFAR-10 and CIFAR-100 datasets contain 60.000 32×
32 RGB images of commonly seen object categories (e.g.,

animals, vehicles, etc.), where the train set has 50.000 and

the test set has 10.000 images. CIFAR-10 has 10 classes and

CIFAR-100 has 100 classes. All classes have equal num-

ber of train and test samples. In CIFAR-10, our Volterra-

based Wide ResNet yields a test error of 3.51%, which

shows an improvement over the 3.62% error that we got

using the baseline model, setting the state-of-the-art on this

dataset. In CIFAR-100, our Volterra-based Wide ResNet

yields a test error of 18.24%, which shows an improve-

ment over the 18.29% error that we got using the baseline

model. Our results on CIFAR-100 are outperformed only

by [33], due to the huge number of parameters their model

makes use of. The features fed to the convolutional groups,

when extracted by the non-linear convolution filters, make

the network avoid overfitting. This can be inferred by the

loss plot of our models on CIFAR-100, which is shown

in Figure 2. The Baseline Wide ResNet, although having

constantly lower loss than the Volterra-based Wide ResNet,

yields higher test error. Our Volterra-based Wide ResNets

have only 0.05% more parameters than the Baseline coun-

terparts. A summary of the best methods on these datasets

is provided in Table 3.

5.4. Weight visualization

To get an insight on what features do non-linear filters

learn, we visualize their weights in a simple but efficient
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Figure 3: Weight values of linear convolution filter weights (left), Volterra-based convolution first-order weights (middle)

and Volterra-based convolution second-order weights (right).

manner. For the linear term, the process is straightfor-

ward. For the second-order term, considering the weights

w2 of each filter, we can create n weight vectors qi, qi =
[wi1

2
, wi2

2
, ..., win

2
]. Reshaping each one of these vectors qi

into a kh × kw matrix, we can see the weights that corre-

spond to the interactions between xi and all of the recep-

tive field’s elements. Figure 4 shows the weights of the

linear term and the interactions captured by a second-order

3 × 3 filter, allowing us to explore their contribution to the

response. Another issue, is the values that the weights of

the non-linear terms settle to. We investigate these values,

given the filters of the first convolutional layer of our Wide

ResNet model, trained on CIFAR-100. The histograms of

Figure 4: Linear term and second-order multiplicative inter-

action weights of a Volterra-based 3× 3 filter.

the weight values are shown in Figure 3. The value distri-

bution of the linear convolution filters’ weights is similar to

that of the quadratic filters’ first-order weights. Also, the

values of the quadratic filters’ second-order weights have

reasonably smaller standard deviation.

5.5. Response profiles

Following the methodology of [2], we use a set of

Volterra-based filters of a Wide ResNet trained on CIFAR-

100, to partly characterize their response profiles. Given

the weights w1, w2 of a filter, we compute its optimal stim-

ulus, xo, and the optimal stimulus of its linear term, xl,

under the constraint that their norms are equal. Then, we

compute four responses, as described in Table 4, and plot

them in Figure 5. Comparing the various responses, we

can infer that the properties of a linear filter with weights

w1, can greatly change when it’s extended to a second-order

Volterra form by adding a weight set w2 with quadratic con-

tributions. The response of a Volterra-based filter is quite

different from the response of its first-order terms, proving

that the second-order interactions contribute significantly to

the functionality of a quadratic filter.

Given the weight subset w1 of a Volterra-based filter,

their optimal stimulus xl has a standard pattern. As the

norm of xl takes values inside a bounded space, the way

xl varies is just a linear increase in all its intensity values,

without altering its general pattern (i.e., all vectors xl are

parallel). However, this does not hold true for quadratic fil-

ters. As the norm of a Volterra-based second-order filter’s

optimal stimulus xo, takes values inside a bounded space, a

rich variety of alterations can be observed in the elements

of xo.

6. Conclusion

The exploration of CNN architectures that are optimized

for using non-linear convolution filters, is an open problem
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Figure 5: Various cases of responses. Red line denotes the response y1 of a Volterra-based convolution filter to its optimal

stimulus xo. Dashed red line denotes the response y2 of the linear subset of a Volterra-based filter’s weights, to xo. Blue line

denotes the response y3 of the linear subset of a Volterra-based filter’s weights, to xl. Dashed blue line denotes the response

y4 of a Volterra-based convolution filter, to xl.

Stimulus Filter Response

xo Quadratic (w1, w2) y1

xo Linear (w1) y2

xl Linear (w1) y3

xl Quadratic (w1, w2) y4

Table 4: Stimuli, filter weight sets and filter responses.

for biologically-inspired computer vision. Questions like

“which is the ideal ratio between linear and non-linear filters

in each convolutional layer?” and “which properties prevail

in the response profiles of each layer’s non-linear filters?”

are of great importance, to shed light in this hitherto unex-

plored category of filters. Any inference about the proper-

ties that are present to this group of quadratic filters, has

the risk of being biased by the dataset used to obtain and

observe them. This happens because the visual response

profiles of the non-linear filters trained in the experiments,

are constrained by the natural statistics of each dataset, as

happens with the sensory system of primates, which adapts

to its environment.

Based on the research results of neuroscience that prove

the existence of non-linearities in the response profiles of

complex visual cells, we have proposed a non-linear convo-

lution scheme that can be used in CNN architectures. Our

experiments showed that a network which combines linear

and non-linear filters in its convolutional layers, can outper-

form networks that use standard linear filters with the same

architecture. Our reported error rates set the state-of-the-

art on CIFAR-10, while being competitive to state-of-the-

art results on CIFAR-100. We didn’t apply our Volterra-

based convolution to more layers, because our target was

to demonstrate a proof of concept for the proposed method.

Our claim was confirmed, as replacing only the first con-

volutional layer’s linear filters with non-linear ones, we

achieved lower error rates. Further testing quadratic convo-

lution filters, is certainly an interesting direction for future

work, to build better computer vision systems.
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