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1. Derivations of Eq. (9)

The main results given in (9) in the main paper was de-
rived using Green’s Theorem. Recall, that Green’s Theo-
rem is a mechanism to convert a line integral about a Jordan
curve C to a double integral over the plane D bounded by C.
The Jordan curve C must be positive oriented and piecewise
smooth.

We begin by defining the area of D we wish to compute.
We assume we are in R?, defined by the (1, x2) coordinate
system. Using Green’s Theorem, we have

1
Area(D) = | f —zodzy + mdzs,  (SD)
C

where D is a non-self-intersecting polygon bounded by C.

In our case, this polygon and bounding Jordan curve C
are defined by a set of ¢ points on C. An example of this
curve was shown in Figure 3 (right-most image) in the main
paper. These points were defined as (X;1, . ..,X;:), where
i, = (Xik1, Xik2) -

We call the line segment from each X;; to X;(xy1)
T';. A parametrization of I'; is given by the function ~; :
[0,1] — R? and, hence, we have v;(a) = (Tir1, Tirz) +
a (Zighr1)1 — ikt L(ht1)2 — Tik2)-

We can now compute the line integral of this curve,

% —xodr1+x1dTe=
r;

1
/0 (—Zire—a(Zr1)2—Tik2) ) (Ti(es 1)1 —Tin1 ) da

1
+ /(—fik1—a(f(k+1)1—fik1))(jz'(kﬂ)z—fim)da
0

1
= / (= Zik2Zi(h1)1 T Tik1 Ti(h41)2) da
0

= Ti1Tik+1)2—Tik2Ti(h+1)1- (52)

Hence, the area of D is

[N

t—1
<Z (fiklfi(kﬂ)zfik2fi(k+1)1)> Jr(fmfiufiuim)] .

k=1
(S3)

2. Extended Experimental Results

The main paper presented comparative results with state-
of-the-art algorithms using the F'inal score of the Emo-
tioNet challenge, given in (18). Herein, we provide re-
sults with the two metric defining this final score: F} score
and Accuracy, given in (16) and (17), respectively. Fig-
ures S1, S2 and S3 plot the Accuracy values of the exper-
iments described in Sections 4.1 and 4.2. Figures S4, S5
and S6 show the F} scores of these same experiments. Ta-
bles S1, S2, S3 and S4 show the results from figures 7-9
in the main manuscript. A right tailed ¢-test shows that our
method is statistically better than state-of-the-art algorithms
(p<.0005, p<.005 and p<10~® with respect to JHU, I2R-
CCNU-NTU-2 and AlexNet).
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Figure S1. Results on the EmotionNet testing dataset. Accuracy
calculated using (17).

3. Extended Experimental Results on Land-
mark detection

Comparative results are given against state-of the-at al-
gorithms and the top performers on the 300-W challenge
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Figure S2. Average Accuracy for images at different scales.
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Figure S3. Accuracy for images with small occluders.
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Figure S4. Results on the EmotionNet testing dataset. F score is
calculated using (16).
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Figure S5. Average F} score for images at different scales.

dataset [1]. This dataset includes a large number of image
variations and a diverse group of people of distinct ethnic
and cultural backgrounds. The images are divided follow-
ing the protocol of [2]: 3,148 images are use for training
(to which we apply our data augmentation approach defined
above) and 689 faces serve as the testing set. We compare
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Figure S6. F} scores for images with small occluders.

Table S1. Final scores on the EmotionNet Dataset (given by (18)).

AU This paper | JHU IZIE,ES_I\ZIU_ AlexNet
1 .76 57 73 71
2 72 .74 .73 .65
4 75 .67 73 .69
5 5 .58 .79 T
6 .87 .84 .76 .85
9 73 72 1 .61
12 92 .86 .81 91
17 7 75 7 .6
25 93 .8 75 92
26 .78 .69 74 74
Average .79 72 74 74
Table S2. F scores on the EmotionNet Dataset (given by (16)).
AU This paper | JHU IZI;SS_I;U- AlexNet
1 .59 A7 .63 S1
2 5 .69 .6 4
4 .6 .59 .67 S1
5 .56 48 .69 5
6 .84 .8 .65 .8
9 .5 .68 .62 27
12 92 .81 .76 9
17 43 .68 .62 .24
25 93 72 71 93
26 .66 .6 .65 .58
Average .65 .65 .66 .56

our results with top performing algorithms: Explicit Shape
Regression (ESR) [3], Supervised Descent Method (SDM)
[4] and Local Binary Features (LBF) [2].

The detection error is the point-to-point squared Eu-
clidean distance, ||f;—y;||3, normalized by the Euclidean
distance between the outer corners of the eyes.

As shown in Table S5, our proposed global method
achieves the smallest error. Additionally, Figure S7 com-
pares the results of the proposed GL-CNN algorithm against
the top performers in the 300-W challenge [5, 6]. As seen in



Table S3. Average scores (given by (16)) for images at different
scales.

AU This paper | JHU IZIL_SSEU_ AlexNet
1 71 57 72 .65
2 71 73 73 .59
4 74 .66 73 .68
5 72 .58 78 .63
6 .79 .84 .76 8
9 71 Vi Vi 58
12 .88 .86 .82 .88
17 .69 75 7 55

25 .89 .8 74 .86
26 .76 .69 73 71
Average .76 72 T4 .69

Table S4. Final scores (equation (18)) for images with small oc-
cluders.

AU This paper | JHU IZRN—SS}\ZIU— AlexNet
1 .76 .55 72 .69
2 71 .74 .73 .64
4 75 .64 3 .68
5 74 .58 .78 .68
6 .87 .83 .76 .84
9 72 i i .59
12 91 .83 .81 .89
17 .69 75 Vi .58

25 92 78 5 91
26 77 .69 73 72
Average .78 71 74 2

Method  Mean normalized error
ESR 7.58
SDM 7.52
LBF 6.32
GL-CNN 5.47

Table S5. Average mean normalized error on the 300-W challenge
dataset.

this plot, the proposed approach yields results comparable
or slightly better than these algorithms but with the added
advantage that our method can run at >60 frames/s in Mat-
lab on a i7 desktop.
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Figure S7. Cumulative normalized root mean square (RMS) error
for the top performers on the 300-W challenge [5, 6] and our pro-
posed GL-CNN algorithm. The y-axis specifies the proportion of
images, with 1 indicating all images in the database are included.
Note that the proposed algorithm outperforms the others when all
images are included; demonstrating not only good local fits, but
global (overall) fits as well.

References

[1] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and
M. Pantic, “A semi-automatic methodology for fa-
cial landmark annotation,” in IEEE International Con-
ference on Computer Vision and Pattern Recognition
(CVPR-W), 5th Workshop on Analysis and Modeling of
Faces and Gestures, 2013. 2

[2] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment
at 3000 fps via regressing local binary features,” in
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 1685-1692,
2014. 2

[3] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment
by explicit shape regression,” International Journal of
Computer Vision, vol. 107, no. 2, pp. 177-190, 2014. 2

[4] X. Xiong and F. De La Torre, “Supervised descent
method and its applications to face alignment,” in Pro-
ceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), pp. 532-539, 2013. 2

[5] J. Deng, Q. Liu, J. Yang, and D. Tao, “M3 csr: Multi-
view, multi-scale and multi-component cascade shape
regression,” Image and Vision Computing, 2015. 2, 3

[6] H. Fan and E. Zhou, “Approaching human level facial
landmark localization by deep learning,” Image and Vi-
sion Computing, 2015. 2, 3



