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1. Derivations of Eq. (9)

The main results given in (9) in the main paper was de-
rived using Green’s Theorem. Recall, that Green’s Theo-
rem is a mechanism to convert a line integral about a Jordan
curve C to a double integral over the planeD bounded by C.
The Jordan curve C must be positive oriented and piecewise
smooth.

We begin by defining the area of D we wish to compute.
We assume we are in R2, defined by the (x1, x2) coordinate
system. Using Green’s Theorem, we have

Area(D) =
1

2

∮
C
−x2dx1 + x1dx2, (S1)

where D is a non-self-intersecting polygon bounded by C.
In our case, this polygon and bounding Jordan curve C

are defined by a set of t points on C. An example of this
curve was shown in Figure 3 (right-most image) in the main
paper. These points were defined as (x̃i1, . . . , x̃it), where
x̃ik = (x̃ik1, x̃ik2)

T .
We call the line segment from each x̃ik to x̃i(k+1),

Γi. A parametrization of Γi is given by the function γi :
[0, 1] → R2 and, hence, we have γi(a) = (x̃ik1, x̃ik2) +
a
(
x̃i(k+1)1 − x̃ik1, x̃(k+1)2 − x̃ik2

)
.

We can now compute the line integral of this curve,

∮
Γi

−x2dx1+x1dx2=∫ 1

0

(
−x̃ik2−a

(
x̃(k+1)2−x̃ik2

))(
x̃i(k+1)1−x̃ik1

)
da

+

∫ 1

0

(
−x̃ik1−a

(
x̃(k+1)1−x̃ik1

))(
x̃i(k+1)2−x̃ik2

)
da

=

∫ 1

0

(
−x̃ik2x̃i(k+1)1+x̃ik1x̃i(k+1)2

)
da

= x̃ik1x̃i(k+1)2−x̃ik2x̃i(k+1)1. (S2)

Hence, the area of D is

1

2

[(
t−1∑
k=1

(
x̃ik1x̃i(k+1)2−x̃ik2x̃i(k+1)1

))
+(x̃it1x̃i12−x̃i12x̃it1)

]
.

(S3)

2. Extended Experimental Results
The main paper presented comparative results with state-

of-the-art algorithms using the Final score of the Emo-
tioNet challenge, given in (18). Herein, we provide re-
sults with the two metric defining this final score: F1 score
and Accuracy, given in (16) and (17), respectively. Fig-
ures S1, S2 and S3 plot the Accuracy values of the exper-
iments described in Sections 4.1 and 4.2. Figures S4, S5
and S6 show the F1 scores of these same experiments. Ta-
bles S1, S2, S3 and S4 show the results from figures 7-9
in the main manuscript. A right tailed t-test shows that our
method is statistically better than state-of-the-art algorithms
(p<.0005, p<.005 and p<10−8 with respect to JHU, I2R-
CCNU-NTU-2 and AlexNet).

Figure S1. Results on the EmotionNet testing dataset. Accuracy
calculated using (17).

3. Extended Experimental Results on Land-
mark detection

Comparative results are given against state-of the-at al-
gorithms and the top performers on the 300-W challenge

1



Figure S2. Average Accuracy for images at different scales.

Figure S3. Accuracy for images with small occluders.

Figure S4. Results on the EmotionNet testing dataset. F1 score is
calculated using (16).

Figure S5. Average F1 score for images at different scales.

dataset [1]. This dataset includes a large number of image
variations and a diverse group of people of distinct ethnic
and cultural backgrounds. The images are divided follow-
ing the protocol of [2]: 3,148 images are use for training
(to which we apply our data augmentation approach defined
above) and 689 faces serve as the testing set. We compare

Figure S6. F1 scores for images with small occluders.

Table S1. Final scores on the EmotionNet Dataset (given by (18)).

AU This paper JHU
I2R-CCNU-

NTU-2 AlexNet

1 .76 .57 .73 .71
2 .72 .74 .73 .65
4 .75 .67 .73 .69
5 .75 .58 .79 .7
6 .87 .84 .76 .85
9 .73 .72 .71 .61
12 .92 .86 .81 .91
17 .7 .75 .7 .6
25 .93 .8 .75 .92
26 .78 .69 .74 .74

Average .79 .72 .74 .74

Table S2. F1 scores on the EmotionNet Dataset (given by (16)).

AU This paper JHU
I2R-CCNU-

NTU-2 AlexNet

1 .59 .47 .63 .51
2 .5 .69 .6 .4
4 .6 .59 .67 .51
5 .56 .48 .69 .5
6 .84 .8 .65 .8
9 .5 .68 .62 .27
12 .92 .81 .76 .9
17 .43 .68 .62 .24
25 .93 .72 .71 .93
26 .66 .6 .65 .58

Average .65 .65 .66 .56

our results with top performing algorithms: Explicit Shape
Regression (ESR) [3], Supervised Descent Method (SDM)
[4] and Local Binary Features (LBF) [2].

The detection error is the point-to-point squared Eu-
clidean distance, ‖fi−yi‖22, normalized by the Euclidean
distance between the outer corners of the eyes.

As shown in Table S5, our proposed global method
achieves the smallest error. Additionally, Figure S7 com-
pares the results of the proposed GL-CNN algorithm against
the top performers in the 300-W challenge [5, 6]. As seen in



Table S3. Average scores (given by (16)) for images at different
scales.

AU This paper JHU
I2R-CCNU-

NTU-2 AlexNet

1 .71 .57 .72 .65
2 .71 .73 .73 .59
4 .74 .66 .73 .68
5 .72 .58 .78 .63
6 .79 .84 .76 .8
9 .71 .7 .7 .58
12 .88 .86 .82 .88
17 .69 .75 .7 .55
25 .89 .8 .74 .86
26 .76 .69 .73 .71

Average .76 .72 .74 .69

Table S4. Final scores (equation (18)) for images with small oc-
cluders.

AU This paper JHU
I2R-CCNU-

NTU-2 AlexNet

1 .76 .55 .72 .69
2 .71 .74 .73 .64
4 .75 .64 .73 .68
5 .74 .58 .78 .68
6 .87 .83 .76 .84
9 .72 .7 .7 .59
12 .91 .83 .81 .89
17 .69 .75 .7 .58
25 .92 .78 .75 .91
26 .77 .69 .73 .72

Average .78 .71 .74 .72

Method Mean normalized error
ESR 7.58
SDM 7.52
LBF 6.32

GL-CNN 5.47
Table S5. Average mean normalized error on the 300-W challenge
dataset.

this plot, the proposed approach yields results comparable
or slightly better than these algorithms but with the added
advantage that our method can run at >60 frames/s in Mat-
lab on a i7 desktop.

Figure S7. Cumulative normalized root mean square (RMS) error
for the top performers on the 300-W challenge [5, 6] and our pro-
posed GL-CNN algorithm. The y-axis specifies the proportion of
images, with 1 indicating all images in the database are included.
Note that the proposed algorithm outperforms the others when all
images are included; demonstrating not only good local fits, but
global (overall) fits as well.
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