
Semantically Informed Multiview Surface Refinement

Supplemental Material
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1. Overview
The supplemental material is structured as follows: we first demonstrate the impact of the introduced energy terms (Sec-

tion 2, 3). Therefore, the single energies are minimized individually for a test area and resulting surface models are analyzed
qualitatively. In Section 4, we give details on the method used to predict the class-conditional probabilities and describe
the utilized feature set. Section 5 presents additional qualitative evaluations of the generated semantic surface models to
complement the evaluation section of the paper. In particular, we explain the key improvements achieved by our method in
comparison to the input and baseline models. Finally, in order to clarify the precision gain of our method, we scale the results
of the quantitative evaluation presented in the paper (Table 3) to pixel units.

2. Geometric Refinement - Impact of the Individual Energy Terms
To begin with, we demonstrate the impact of the individual geometric energy terms used in our approach. Thereby the

single data, intra- and inter-class energies are minimized independently and the generated surface models are evaluated
qualitatively. This experiment was performed on the Enschede A dataset comprising 15 nadir and oblique viewing angles and
images, respectively. For each energy term we apply five iterations of gradient decent in a standalone fashion and analyze the
resulting 3D models. As shown in Fig. 1(a,b), both data terms Ephoto and Esem contribute to recovering fine details such as
windows on facades or thin rails on roofs. The intra-class regularization enables semantically adaptive surface smoothness,
e.g., stronger regularization for roofs compared to vegetation as highlighted in Fig. 1(c). Fig. 1(d) shows that the presented
inter-class energy enforces smooth, anti-aliased transitions between two classes.

3. Label Refinement - Impact of the Individual Energy Terms
In this section, we illustrate the effects of the single energies used within the presented relabeling method. Column (a) of

Fig. 2 shows an example label map (top), the input model (middle), and the semantically labeled surface (bottom) derived by
re-projecting pixel-wise label likelihoods onto the surface, face-wise integration of the labels, and labeling the faces according
to the class with the highest score. As expected, solely relying on the data term results in scattered labels. However, the data
term also allows to recover fine details in some parts that were lost by the input method. Fig. 2(b) displays the surface labeling
obtained by additionally applying the pairwise term Esmooth, leading to more a homogeneous labeling and better performance
at class transitions. Additionally taking into account the surface normal dependent energy Egeo improves the correctness
of the labeling, in particular for surface areas where normals are reliable (Fig. 2(c)). For the experiments we applied 40
iterations of loopy belief propagation [5].

4. Features for the Computation of Semantic Likelihood Images
The utilized input likelihoods are computed using a multiclass boosting classifier trained on a few manually labeled

images [1]. In total, 94 features are extracted per pixel from the intensity images and the depthmaps. The depthmaps were
generated from the multiview RGB images using semi-global matching [3,6]. Fig. 3 shows a tuple of an intensity image, the
corresponding depthmap and ground truth labels (ground, roof, vegetation, facade) at a glance.



Figure 1: Illustrative support of our geometric update terms. Left-to-right: photometric and semantic data term, intra-
class and inter-class smoothness term. Top-down: scene images, input and output models. Exemplary improvements are
highlighted with solid black circles. The dashed circle for the intra-class smoothing highlights the vegetation as an unchanged
scene part because the smoothing has mainly been increased for the roof class.

More precisely, the feature vector comprises the appearance of a 5 × 5 pixel neighborhood, from which 75 features
are extracted. Additionally, 19 local geometry features are derived from the 3D point cloud based on the depthmaps [4].
These features take into account the 3D structure tensor (i.e. eigenvalues), the height, the local tangent plane, and the point
distribution in a vertical column - see Tab. 1 for a detailed list of all geometric features. Fig. 4 (b)-(e) illustrates the per-pixel
likelihoods of the respective semantic classes. These likelihoods serve as semantic input for our method.

5. Qualitative Evaluation of All Processed Data Sets
In this section, we provide additional qualitative evaluations highlighting the key improvements of our method in com-

parison to results obtained by the input [2] and baseline method (i.e. our own reimplementation of [7]). Fig. 5 and Fig. 6
illustrate the results of each method for six test scenes and underline the advantages of exploiting both modalities, geome-
try and semantics, during the surface refinement. Using semantics during geometric refinement enables us to treat different
classes individually as assumptions about shape are object specific. Specifically, this enables us to recover fine structures, and,
simultaneously apply adequate smoothing to roofs and facades (Fig. 5(1)); preserve the heavily regularized input for streets
(Fig. 5(2)); and apply limited smoothing for high fidelity surface structures such as vegetation (Fig. 5(3)). As expected, a
more homogeneous labeling can be achieved using MRF inference (Fig. 6(6)). Moreover, geometry is a powerful cue within
the labeling process. Surfaces with vertical normals are more likely to be ground or roof than facades and vice versa, hori-
zontal normals indicate building walls. This prior knowledge supports correctness of labeling as depicted by Fig. 6(4) and
enables the reconstruction of fine semantic details Fig. 6(5).

6. Complementary Quantitative Evaluation
In order to clarify the improvement regarding accuracy of the presented method, we scale results presented in Table 3 in

the paper to pixel units according to δpix = f
dav

∗ δobj . Thereby dav is the average distance from the cameras to the scene, f
is the focal length and δobj is the error in the object space. The corresponding values are given in Tab. 2. As discussed in the



Figure 2: Illustrative support of our semantic update terms. Left-to-right: semantic likelihood data term, smoothing term,
and geometric prior. Top-down: scene images/semantics, input and output models. Exemplary improvements are highlighted
with black circles. The two circles (solid and dashed) in column (c) highlight two different areas where the labeling was
improved by taking into account the surface normal dependent energy.

main paper, the use of additional semantic information leads to superior refinement performance on synthetic, as well as on
real world data experiments.
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Figure 3: Input data used to compute the per-pixel semantic likelihoods. Left-to-right: intensity image, depthmap [3, 6],
hand-labeled ground truth. The colors indicate ground (gray), roof (yellow), vegetation (green) and facades (purple).

(a) (b) (c) (d) (e)
Figure 4: (a) Intensity image and the resulting per-pixel likelihoods from [1] for the classes facade (b), ground (c), roof (d)
and vegetation (e). A yellow color indicates high values, while blue color indicates low values.

Type Feature definition

Height features
Height (z-component)
Height variance

Eigenvalue features

Anisotropy (λ1 − λ3)/λ1

Planarity (λ2 − λ3)/λ1

Sphericity λ3/λ1

Linearity (λ1 − λ2)/λ1

Local tangent plane features

Vertical component of plane normal
Deviation angle of plane normal from vertical
Variance of deviation angles
Distance from point to local plane
Variance of point-to-plane distances

Features based on histogram of signed z-
differences to other points in a vertical
column

# of bins above mean frequency
# of bins below mean frequency
Difference: # above bins - # below bins
# of local frequency maxima
Average distance between local maxima
Sum of positive values
Sum of negative values
# of elements in zero-bin

Table 1: Geometric features [4] used for the generation of the per-pixel semantic likelihoods (in combination with the RGB
values of the particular images).

Data set Modality Performance Measure Input [2] Baseline [7] Ours

SynthCity3 A Geometry
δpix [px] 1.25 1.06 0.91
δpix [px] 1.45 1.22 1.05

SynthCity3 B Geometry
δpix [px] 2.00 1.76 1.48
δpix [px] 2.31 2.05 1.72

Table 2: Complementary quantitative evaluation of our method. Best performance is shown in bold.



Figure 5: Qualitative evaluation of the proposed method for three data sets. Left-to-right: scene image, input model [2],
baseline [7], proposed method. Notice the high scene fidelity, and, at the same time an adaptive, class-specific surface
regularization, clean class transitions and less noisy semantics in our model. Exemplary improvements are highlighted with
black rectangles and corresponding close-ups are visualized. The detailed descriptions are in section Section 5. Colors
indicate ground (gray), facade (purple), roof (yellow), and vegetation (green).



Figure 6: Qualitative evaluation of the proposed method for three data sets. Left-to-right: scene image, input model [2],
baseline [7], proposed method. Notice the high scene fidelity, and, at the same time an adaptive, class-specific surface
regularization, clean class transitions and less noisy semantics in our model. Exemplary improvements are highlighted with
black rectangles and corresponding close-ups are visualized. The detailed descriptions are in section Section 5. Colors
indicate ground (gray), facade (purple), roof (yellow), and vegetation (green).


