
MIHash: Online Hashing with Mutual Information
Supplementary Material

1. Implementation Details of MIHash

We discuss the implementation details of MIHash. In
the online hashing experiments, for simplicity we model
MIHash using linear hash functions, in the form of φi(x) =
sgn(w>i x) ∈ {−1,+1}, i = 1, . . . , b. The learning capac-
ity of such a model is lower than the kernel-based OKH, and
is the same as OSH, AdaptHash, and SketchHash, which
use linear hash functions as well.

For the batch hashing experiments, as mentioned in the
paper, we similarly model MIHash using linear hash func-
tions in the first setting, but perform end-to-end learning
with the VGG-F network in the second setting. In this
case, the hash functions become φi(x) = sgn(fi(x;w)) ∈
{−1,+1}, i = 1, . . . , b, where fi are the logits produced by
the previous layer in the network.

We train MIHash using stochastic gradient descent. In
Eq. 11 in the paper, we gave the gradients of the mutual in-
formation objective I with respect to the outputs of the hash
mapping, Φ(x). Both I and ∂I/∂Φ(x) are parameter-free.
In order to further back-propagate gradients to the inputs of
Φ(x) and model parameters {wi}, we approximate the sgn
function using the sigmoid function σ:

φi(x) ≈ 2σ(Aw>i x)− 1, (1)

where A > 1 is a scaling parameter, used to increase the
“sharpness” of the approximation. We find A from the set
{10, 20, 30, 40, 50} in our experiments.

We note that A is not a tuning parameter of the mutual
information objective, but rather a parameter of the under-
lying hash functions. The design of the hash functions is
not coupled with the mutual information objective, thus can
be separated. It will be an interesting topic to explore other
methods of constructing hash functions, potentially in ways
that are free of tuning parameters.

2. Experimental Details

2.1. The streaming scenario

We set up a streaming scenario in our online hashing ex-
periments. We run three randomized trials for each experi-
ment. In each trial, we first randomly split the dataset into
a retrieval set and a test set as described in Sec. 4.1 in the

paper, and randomly sample the training subset from the re-
trieval set. The ordering of the training set is also randomly
permuted. The random seeds are fixed, so the baselines and
methods with the Trigger Update module observe the same
training sequences.

In a streaming setting, we also measure the cumulative
retrieval performance during online hashing, as opposed to
only the final results. To mimic real retrieval systems where
queries arrive randomly, we set 50 randomized checkpoints
during the online process. We first place the checkpoints
with equal spacing, then add small random perturbations
to their locations. We measure the instantaneous retrieval
mAP at these checkpoints to get mAP vs. time curves (e.g.
curves shown in Fig. 5 in the paper), and compute the area
under curve (AUC). AUC gives a summary of the entire on-
line learning process, which cannot be reflected by the final
performance at the end.

2.2. Parameters for online hashing methods

We describe parameters used for online hashing methods
in the online experiments. Some of the competing methods
require parameter tuning, therefore we sample a validation
set from the training data and find the best performing pa-
rameters for each method. The size of the validation sets are
2K, 2K and 10K for CIFAR-10, LabelMe and Places205,
respectively. Please refer to the respective papers for the
descriptions of the parameters.

• OSH: η is set to 0.1 for all datasets. The ECOC code-
book C is populated the same way as in OSH.

• AdaptHash: the tuple (α, λ, η) is set to
(0.9, 0.01, 0.1), (0.1, 0.01, 0.001) and (0.9, 0.01, 0.1)
for CIFAR-10, LabelMe and Places205, respectively.

• OKH: the tuple (C,α) is set to (0.001, 0.3),
(0.001, 0.3) and (0.0001, 0.7) for CIFAR-10, LabelMe
and Places205, respectively.

• SketchHash: the pair (sketch size, batch size) is set to
(200, 50), (100, 50) and (100, 50) for CIFAR-10, La-
belMe and Places205, respectively.

2.3. Parameters for batch hashing methods

We use the publicly available implementations for the
compared methods, and exhaustively search parameter set-
tings, including the default parameters as provided by the

1



Method Training Time (s)
OKH 10.8
OKH + TU 23.6
OSH 97.6
OSH + TU 175.8
AdaptHash 47.8
AdaptHash + TU 94.8
SketchHash 68.8
SketchHash + TU 80.0

Table 1. Online hashing: running times on the CIFAR-10 20k
training set, with 32-bit hash codes. For methods with the TU
plugin, the added time is due to maintaining the reservoir set and
computing the mutual information update criterion, and is domi-
nated by the maintaining of the reservoir set.

authors. For DPSH and DTSH we found a combination that
worked well for the first setting: the mini-batch size is set to
the default value of 128, and the learning rate is initialized
to 1 and decayed by a factor of 0.9 after every 20 epochs.
Additionally, for DTSH, the margin parameter is set to b/4
where b is the hash code length. VDSH uses a heavily cus-
tomized architecture with only fully-connected layers, and
it is unclear how to adapt it to work with standard CNN ar-
chitectures. In this sense, VDSH is more akin to nonlinear
hashing methods such as FastHash and SHK. We used the
full VDSH model with 16 layers and 1024 nodes per layer,
and found the default parameters to perform the best, ex-
cept that we increased the number of training iterations by
an order of magnitude during finetuning.

For MIHash, in the first setting we use a batch size of
100, and run SGD with initial learning rate of 0.1 and a
decay factor of 0.5 every 10 epochs, for 100 epochs. For
the second setting where we finetune the pretrained VGG-F
network, batch size is 250, learning rate is initially set to
0.001 and decayed by half every 50 epochs.

3. Running Time
3.1. Online Setting: Trigger Update Module

In Table 1 we report running time for all methods on
the CIFAR-10 dataset with 20k training examples, includ-
ing time spent in learning hash functions and the added pro-
cessing time for maintaining the reservoir set and comput-
ing TU. Numbers are recorded on a 2.3GHz Intel Xeon E5-
2650 CPU workstation with 128GB of DDR3 RAM. Most
of the added time is due to maintaining the reservoir set,
which is invoked in each training iteration; the mutual in-
formation update criterion is only checked after processing
every U = 100 examples. Methods with small batch sizes
(e.g. OSH, batch size 1) therefore incur more overhead than
methods with larger batches (e.g. SketchHash, batch size
50). Results for other datasets are similar.

We note that in a real retrieval system with large-scale

Method mAP Training Time (s)
SHK 0.682 180
SDH 0.592 4.8
FastHash 0.738 140
VDSH* 0.554 206
DPSH 0.553 450
DTSH 0.702 1728
MIHash, 1ep 0.609 1.9
MIHash 0.746 190

Table 2. Batch hashing: test performance and training time for
48-bit codes on the CIFAR-10, using the 5k training set. *VDSH
is trained with the full model as detailed in 2.3. 1ep stands for
training for one epoch only.

data, the bottleneck likely lies in recomputing the hash ta-
bles for indexed data, due to various factors such as schedul-
ing and disk I/O. We reduce this bottleneck significantly by
using TU. Compared to this bottleneck, the increase in train-
ing time is not significant.

3.2. Batch Setting

Table 2 reports CPU times for learning 48-bit hash map-
pings in the first experimental setting on CIFAR-10 (5K
training set). Retrieval mAP are replicated from Table 1
in the paper. For learning a single layer, our Matlab im-
plementation of MIHash achieves 1.9 seconds per epoch
on CPU. MIHash achieves competitive performance with
a single epoch, and has a total training time on par with
FastHash, while yielding superior performance.

4. Additional Experimental Results
4.1. Online Hashing: Other Code Lengths

In the online hashing experiments we reported in the pa-
per, all online hashing methods are compared in the same
setup with 32-bit hash codes. Additionally, we also present
results using 64-bit hash codes on all three datasets. The
parameters for all methods are found through validation as
described in 2.2.

Similar to Sec 4.2 in the paper, we show the comparisons
with and without TU for existing online hashing methods in
Fig. 1, and plot the mAP curves for all methods, includ-
ing MIHash, in Fig. 2. The 64-bit results are uniformly
better than 32-bit results for all methods in terms of mAP,
but still follow the same patterns. Again, we can see that
MIHash clearly outperforms all competing online hashing
methods, and shows potential for improvement given more
training data.

4.2. Parameter Study: θ

We present a parameter study on the parameter θ, the im-
provement threshold on the mutual information criterion in
TU. In our previous experiments, we found the default θ = 0

2



0 0.5 1 1.5 2

x 10
4

0.1

0.15

0.2

0.25

0.3

0.35

Reduction: 22X

Examples

 

 

0 0.5 1 1.5 2

x 10
4

0.24

0.26

0.28

0.3

0.32

0.34
Reduction: 20X

Examples

0 0.5 1 1.5 2

x 10
4

0.31

0.32

0.33

0.34
Reduction: 29X

Examples

0 0.5 1 1.5 2

x 10
4

0.2

0.3

0.4

0.5
Reduction: 22X

Examples

0 5 10

x 10
4

0

0.1

0.2

Reduction: 29X

Examples

0 5 10

x 10
4

0.285

0.29

0.295

0.3

0.305
Reduction: 22X

Examples

0 5 10

x 10
4

0.285

0.29

0.295

0.3

0.305
Reduction: 15X

Examples
0 5 10

x 10
4

0.26

0.27

0.28

0.29

0.3

0.31
Reduction: 29X

Examples

0 0.5 1 1.5 2

x 10
4

0.1

0.2

0.3

0.4

0.5
Reduction: 67X

Examples

0 0.5 1 1.5 2

x 10
4

0.3

0.35

0.4

0.45

0.5
Reduction: 22X

Examples

0 0.5 1 1.5 2

x 10
4

0.53

0.54

0.55

0.56
Reduction: 22X

Examples

 OKH

 OKH + TU

 AdaptHash

 AdaptHash + TU

 SketchHash

 SketchHash + TU

 OSH

 OSH + TU

C
if
a
r−

1
0

P
la

c
e
s
2
0
5

L
a
b
e
lM

e

Figure 1. 64-bit experiments: Retrieval mAP vs. number of training examples for four existing online hashing methods on the three
datasets, with and without Trigger Update (TU). We use default threshold θ = 0 for TU. Circles indicate hash table updates, and the ratio
of reduction in the number of updates is marked for each graph. TU substantially reduces the number of updates while having a stabilizing
effect on the retrieval performance. Note: since the OSH method assumes supervision in terms of class labels, it is not applicable to the
unsupervised LabelMe dataset.

0 0.5 1 1.5 2

Examples 10 4

0.2

0.3

0.4

0.5

0.6

0.7

m
A

P

Cifar-10

MIHash + TU

OSH + TU

OKH + TU

AdaptHash + TU

SketchHash + TU

0 0.5 1 1.5 2

Examples 10 4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

m
A

P

LabelMe

0 2.5 5 7.5 10

Examples 10 4

0.15

0.2

0.25

0.3

0.35

m
A

P
 @

 1
0

0
0

Places205

Figure 2. 64-bit experiments: Online hashing performance (mAP) comparison on three datasets, where all methods use the Trigger Update
module (TU) with θ = 0. Using the mutual information objective, MIHash clearly outperforms other methods. OKH, AdaptHash, ad
SketchHash perform very similarly on CIFAR-10. OSH, AdaptHash, ad SketchHash perform very similarly on Places205. Again, the OSH
method is not applicable to the unsupervised LabelMe dataset.

3



to work well, and did not specifically tune θ. However, tun-
ing for a larger θ could lead to better trade-offs, since small
improvements in the quality of the hash mapping may not
justify the cost of a full hash table update.

For this study, we vary parameter θ from −∞ to∞ for
all methods (with 32-bit hash codes). θ = −∞ reduces to
the baseline. On the other hand, θ = ∞ prevents any up-
dates to the initial hash mapping and hash table, and results
in only one hash table update (for the initial mapping) and
typically low performance. The performance metric we fo-
cus on in this study is the cumulative metric, AUC, since
it better summarizes the entire online learning process than
the final performance alone.

We use a custom update schedule for SketchHash: we
enforce hash table updates in the early iterations regard-
less of other criteria, until the number of observed exam-
ples reaches the specified size of the “data sketch”, which
SketchHash uses to perform a batch hashing algorithm.
This was observed to be critical for the performance of
SketchHash. Therefore, the number of hash table updates
for SketchHash can be greater than 1 even for θ =∞.

We present full results in Tables 3, 4, 5. In all cases, we
observe a substantial decrease in the number of hash table
updates as θ increases. With reasonable θ values (typically
around 0), the number of hash table updates can be reduced
by over an order of magnitude with no loss in AUC. Note
that the computation-performance trade-off achieved by the
default θ = 0 is always among the best, thereby in practice
it can be used without tuning.

4.3. Parameter Study: U

We simulate a data-agnostic baseline that updates hash
tables at a constant rate, using the update interval param-
eter U . In the paper, U is set such that the baseline up-
dates a total of 201 times for all datasets. This ensures that
the baseline is never too outdated (compared to 50 check-
points at which performance is evaluated), but is still fairly
infrequent: the smallest U in this case is 100, which means
the baselines process at least 100 training examples before
recomputing the hash table. For completeness, here we
present the results using different values of U , where all
methods again use 32-bit hash codes and the default θ = 0.

We used a simple rule that avoids unnecessary hash table
updates if the hash mapping itself does not change. Specif-
ically, we do not update if ‖Φt − Φs‖ < 10−6, where Φs

is the current snapshot and Φt is the new candidate. Some
baseline entries have fewer updates because of this rule (e.g.
AdaptHash on Places205). And as explained before, due to
the custom update schedule, SketchHash may have more
hash table updates than what is suggested by U .

Please see Tables 6, 7, 8 for the full results. In all experi-
ments, we run three random trials and average the results as
mentioned before, and the standard deviation of mAP and

CIFAR-10, 32 bits
OKH HT Updates AUC ∆AUC

≤ −0.1 201 0.259 –
−0.01 190 (5.8x) 0.260 +0.4%
−10−4 8.0 (25.1x) 0.287 +10.8%

0 8.0 (25.1x) 0.287 +10.8%
10−4 7.7 (26.1x) 0.287 +10.8%
0.01 3.3 (91.2x) 0.280 +8.1%
≥ 0.2 1.0 (201x) 0.134 −48.3%

OSH HT Updates AUC ∆AUC
≤ −0.01 201 0.463 –
−10−4 39.0 (5.2x) 0.466 +0.6%

0 36.7 (5.5x) 0.466 +0.6%
10−4 35.7 (5.6x) 0.466 +0.6%
0.01 6.7 (30x) 0.453 −2.1%
0.1 2.0 (100x) 0.386 −16%

≥ 0.3 1.0 (201x) 0.207 −55%

AdaptHash HT Updates AUC ∆AUC
≤ −0.1 201 0.218 –
−0.01 68.3 (2.9x) 0.238 +9.2%
−10−4 10.3 (19.5x) 0.250 +14.7%

0 10.0 (20.1x) 0.250 +14.7%
10−4 10.0 (20.1x) 0.250 +14.7%
0.01 3.3 (60.9x) 0.244 +11.9%
≥ 0.1 1.0 (201x) 0.211 −3.3%

SketchHash HT updates AUC ∆AUC
≤ −0.01 201 0.304 –
−10−4 9.0 (22.3x) 0.318 +4.6%
−10−6 7.3 (27.5x) 0.319 +4.9%

0 7.3 (27.5x) 0.319 +4.9%
10−4 7.3 (27.5x) 0.319 +4.9%
0.01 4.3 (46.7x) 0.318 +4.6%
≥ 0.1 4.0 (50.3x) 0.314 +3.3%

Table 3. Parameter study on the threshold value θ for online hash-
ing methods on CIFAR-10 (32 bits). We report the number of hash
table updates, where 100x indicates a 100 times reduction with re-
spect to the baseline. We also report the area under the mAP curve
(AUC) and compare to baseline.

AUC scores are less than 0.01. Generally, using smaller
U leads to more updates by both the baselines and methods
with TU; recall that U is also a parameter of TU which spec-
ifies the frequency of checking the update criterion. How-
ever, methods with the TU module appear to be quite in-
sensitive to the choice of U , e.g. the number of updates
for SketchHash with TU on CIFAR-10 only increases by 2x
while U is reduced by 20x, from 1000 to 50. We attribute
this to the ability of TU to filter out unnecessary updates.
Across different values ofU , TU consistently brings compu-
tational savings while preserving/improving online hashing
performance, as indicated by final mAP and AUC.

4



Places205, 32 bits
OKH HT Updates AUC ∆AUC

≤ −0.01 201 0.163 –
−10−4 8.3 (24.2x) 0.161 −1.2%
−10−6 7.0 (28.7x) 0.161 −1.2%

0 7.0 (28.7x) 0.161 −1.2%
10−6 7.0 (28.7x) 0.161 −1.2%
10−4 5.7 (35.3x) 0.161 −1.2%
0.01 2.0 (100x) 0.123 −25%
≥ 0.1 1.0 (201x) 0.014 −91%

OSH HT Updates AUC ∆AUC
≤ −0.001 201 0.246 –
−20−4 101 (2.0x) 0.246 0%
−10−4 9.3 (21.6x) 0.236 −4.1%

0 7.0 (28.7x) 0.236 −4.1%
10−4 5.7 (35.3x) 0.230 −6.5%
10−3 2.7 (74.4x) 0.224 −8.9%
≥ 0.1 1.0 (201x) 0.226 −8.1%

AdaptHash HT Updates AUC ∆AUC
≤ −0.01 199.7 0.237 –
−10−4 199 (1.0x) 0.237 0%
−10−6 9.7 (20.6x) 0.236 −0.4%

0 8.7 (23.0x) 0.236 −0.4%
10−6 8.7 (23.0x) 0.235 −0.8%
10−4 3.0 (66.6x) 0.235 −0.8%
≥ 0.01 1.0 (201x) 0.227 −3.4%

SketchHash HT Updates AUC ∆AUC
≤ −0.01 201 0.237 –
−10−4 52.3 (3.8x) 0.238 +0.4%
−10−6 15.3 (12.6x) 0.238 +0.4%

0 12.7 (15.8x) 0.236 −0.4%
10−6 15.3 (13.1x) 0.238 +0.4%
10−4 7.0 (28.7x) 0.239 +0.8%
≥ 0.01 2.0 (101x) 0.223 −5.9%

Table 4. Parameter study on the threshold value θ for online hash-
ing methods on Places205 (32 bits). We report the number of hash
table updates, where 100x indicates a 100 times reduction with re-
spect to the baseline. We also report the area under the mAP curve
(AUC) and compare to baseline.

LabelMe, 32 bits
OKH HT Updates AUC ∆AUC

≤ −0.2 201 0.198 –
−0.1 196 (1.0x) 0.199 +0.5%
−0.01 2.7 (74.4x) 0.373 +88%
−10−6 2.3 (87.4x) 0.374 +89%

0 2.3 (87.4x) 0.374 +89%
10−6 2.3 (87.4x) 0.374 +89%
0.01 2.0 (101x) 0.372 +88%
≥ 0.6 1.0 (201x) 0.111 −44%

AdaptHash HT Updates AUC ∆AUC
≤ −0.1 201 0.333 –
−10−6 149 (1.3x) 0.330 −0.9%
−10−4 9.3 (21.6x) 0.365 +9.6%
−10−2 8.7 (23.1x) 0.365 +9.6%

0 5.3 (37.9x) 0.369 +11%
10−6 8.7 (23.1x) 0.365 +9.6%
10−4 8.3 (24.2x) 0.358 +7.5%
10−2 2.7 (74.4x) 0.351 +5.4%
≥ 0.1 1 (201x) 0.296 −11%

SketchHash HT Updates AUC ∆AUC
≤ −0.1 201 0.446 –
−10−2 195 (1.0x) 0.446 0%
−10−4 9.3 (21.6x) 0.460 +3.1%

0 8.7 (23.1x) 0.460 +3.1%
10−4 10 (20.1x) 0.459 +2.9%
10−2 4.7 (42.8x) 0.446 0%
≥ 0.1 4.0 (50.3x) 0.439 −1.6%

Table 5. Parameter study on the threshold value θ for online hash-
ing methods on LabelMe (32 bits). We report the number of hash
table updates, where 100x indicates a 100 times reduction with re-
spect to the baseline. We also report the area under the mAP curve
(AUC) and compare to baseline. Note: OSH is not applicable to
this unlabeled dataset since it needs supervision in terms of class
labels.

5



CIFAR-10, 32 bits
Method TU HT Updates Final mAP AUC (mAP)

OKH, U = 10
× 1870 0.238 0.259
X 15.6 (119.3x) 0.297 0.293 (+13%)

OKH, U = 100
× 201 0.238 0.259
X 8 (25.1x) 0.291 0.287 (+10.8%)

OKH, U = 1000
× 21 0.238 0.255
X 2.6 (8x) 0.282 0.273 (+7%)

OSH, U = 10
× 2001 0.480 0.463
X 110.7 (18x) 0.483 0.466 (+0.6%)

OSH, U = 100
× 201 0.480 0.463
X 36.7 (5.4x) 0.483 0.466 (+0.6%)

OSH, U = 1000
× 21 0.480 0.454
X 11.3 (1.9x) 0.479 0.454

AdaptHash, U = 10
× 2001 0.244 0.224
X 19.6 (101.7x) 0.267 0.261 (+16%)

AdaptHash, U = 100
× 201 0.244 0.224
X 10.0 (10.1x) 0.255 0.250 (+11.6%)

AdaptHash, U = 1000
× 21 0.244 0.222
X 5 (4.2x) 0.252 0.234 (+5%)

SketchHash, U = 50
× 400 0.306 0.303
X 9 (44.4x) 0.318 0.318 (+5%)

SketchHash, U = 100
× 202 0.306 0.304
X 7.3 (27.5x) 0.320 0.319 (+4.9%)

SketchHash, U = 1000
× 24 0.306 0.305
X 4.6 (5.2x) 0.317 0.314 (+2.9%)

Table 6. Online hashing results (32 bits) with different update interval parameters (U ) on the CIFAR-10 dataset. All results are averaged
from 3 random trials. For the number of hash table updates, we report the reduction ratio (e.g. 8x) for TU. For AUC, we report the relative
change compared to baseline. Note: SketchHash uses a batch size of 50, therefore the smallest U is set to 50.

LabelMe, 32 bits
Method TU HT Updates Final mAP AUC (mAP)

OKH, U = 10
× 2001 0.119 0.200
X 8 (250x) 0.382 0.377 (+88.5%)

OKH, U = 100
× 201 0.119 0.200
X 2.3 (86.2x) 0.380 0.374 (+87%)

OKH, U = 1000
× 21 0.119 0.193
X 2 (10.5x) 0.373 0.357 (+85%)

AdaptHash, U = 10
× 2001 0.318 0.319
X 12.6 (157.9x) 0.380 0.371 (+16.3%)

AdaptHash, U = 100
× 201 0.318 0.318
X 8.6 (23.1x) 0.379 0.365 (+14.7%)

AdaptHash, U = 1000
× 21 0.318 0.317
X 5 (4.2x) 0.343 0.337 (+6.3%)

SketchHash, U = 50
× 400 0.445 0.447
X 9.6 (41.6x) 0.461 0.460 (+2%)

SketchHash, U = 100
× 202 0.445 0.446
X 8.67 (23.2x) 0.462 0.460 (+3.1%)

SketchHash, U = 1000
× 24 0.445 0.445
X 8.3 (2.8x) 0.456 0.455 (+2%)

Table 7. Online hashing results (32 bits) with different update interval parameters (U ) on the LabelMe dataset. All results are averaged
from 3 random trials. For the number of hash table updates, we report the reduction ratio (e.g. 8x) for TU. For AUC, we report the
relative change compared to baseline. Note: since LabelMe is an unsupervised dataset, the OSH method is not applicable since it requires
supervision in the form of class labels.

6



Places205, 32 bits
Method TU HT Updates Final mAP AUC (mAP)

OKH, U = 50
× 2001 0.182 0.163
X 8 (250.1x) 0.173 0.169 (+3.7%)

OKH, U = 500
× 201 0.182 0.163
X 7 (28.7x) 0.165 0.161 (-1.2%)

OKH, U = 5000
× 21 0.182 0.156
X 2 (10.5x) 0.157 0.148 (-5.1%)

OSH, U = 50
× 2001 0.248 0.246
X 25 (80x) 0.239 0.238 (-3%)

OSH, U = 500
× 201 0.248 0.246
X 7 (28.7x) 0.236 0.236 (-4.0%)

OSH, U = 5000
× 21 0.248 0.245
X 2 (10.5x) 0.234 0.233 (-4%)

AdaptHash, U = 50
× 823.7 0.238 0.237
X 26.6 (30.8x) 0.236 0.236 (-0.4%)

AdaptHash, U = 500
× 200 0.238 0.237
X 8.6 (23.0x) 0.236 0.236 (-0.4%)

AdaptHash, U = 5000
× 21 0.238 0.237
X 3 (7x) 0.236 0.236 (-0.4%)

SketchHash, U = 50
× 2000 0.238 0.235
X 19.3 (103.4x) 0.236 0.235 (0%)

SketchHash, U = 500
× 202 0.237 0.235
X 15.3 (13.1x) 0.240 0.238 (+1.2%)

SketchHash, U = 5000
× 22 0.235 0.235
X 6.6 (3.2x) 0.239 0.238 (+1.2%)

Table 8. Online hashing results (32 bits) with different update interval parameters (U ) on the Places205 dataset. All results are averaged
from 3 random trials. For the number of hash table updates, we report the reduction ratio (e.g. 8x) for TU. For and AUC, we report the
relative change compared to baseline.

7


