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1. Convergence Analysis
We briefly analyze that the continuation optimization in

Algorithm 1 will decrease the loss of HashNet (4) in each
stage and in each iteration until converging to HashNet with
sign activation function that generates exactly binary codes.

LetLij = wij (log (1 + exp (α 〈hi,hj〉))− αsij 〈hi,hj〉)
and L =

∑
sij∈S Lij , where hi ∈ {−1,+1}K are binary

hash codes. Note that when optimizing HashNet by contin-
uation in Algorithm 1, network activation in each stage t is
g = tanh(βtz), which is continuous in nature and will only
become binary when convergence βt → ∞. Denote by
Jij = wij (log (1 + exp (α 〈gi, gj〉))− αsij 〈gi, gj〉) and
J =

∑
sij∈S Jij the true loss we optimize in Algorithm 1,

where gi ∈ RK and note that hi = sgn(gi). We will show
that HashNet loss L(h) descends when minimizing J(g).

Theorem 1. The HashNet loss L will not change across
stages t and t+1 with bandwidths switched from βt to βt+1.

Proof. When the algorithm switches from stages t to t + 1
with bandwidths changed from βt to βt+1, only the network
activation is changed from tanh(βtz) to tanh(βt+1z) but
its sign h = sgn(tanh(βtz)) = sgn(tanh(βt+1z)), i.e. the
hash code, remains the same. Thus L is unchanged.

For each pair of binary codes hi, hj and their continuous
counterparts gi, gj , the derivative of J w.r.t. each bit k is

∂J

∂gik
= wijα

(
1

1 + exp (−α 〈gi, gj〉)
− sij

)
gjk, (1)

where k = 1, . . . ,K. The derivative of J w.r.t. gj can be
defined similarly. Updating gi by SGD, the updated g′

i is

g′ik = gik − η
∂J

∂gik

= gik − ηwijα

(
1

1 + exp (−α 〈gi, gj〉)
− sij

)
gjk,

(2)
where η is the learning rate and g′

j is computed similarly.

Lemma 1. Denote by hi = sgn(gi), h′
i = sgn(g′

i), then{〈
h′
i,h

′
j

〉
> 〈hi,hj〉 , sij = 1,〈

h′
i,h

′
j

〉
6 〈hi,hj〉 , sij = 0.

(3)

Proof. Since 〈hi,hj〉 =
∑K

k=1 hikhjk, Lemma 1 can be
proved by verifying that h′ikh

′
jk > hikhjk if sij = 1 and

h′ikh
′
jk 6 hikhjk if sij = 0, ∀k = 1, 2, . . . ,K.

Case 1. sij = 0.
(1) If gik < 0, gjk > 0, then ∂J

∂gik
> 0, ∂J

∂gjk
< 0.

Thus, h′ik 6 hik = −1, h′jk > hjk = 1. And we have
h′ikh

′
jk = −1 = hikhjk.

(2) If gik > 0, gjk < 0, then ∂J
∂gik

< 0, ∂J
∂gjk

> 0.
Thus, h′ik > hik = 1, h′jk 6 hjk = −1. And we have
h′ikh

′
jk = −1 = hikhjk.

(3) If gik < 0, gjk < 0, then ∂J
∂gik

< 0, ∂J
∂gjk

< 0. Thus
h′ik > hik = −1, h′jk > hjk = −1. So h′ik and h′jk may be
either +1 or −1 and we have h′ikh

′
jk 6 1 = hikhjk.

(4) If gik > 0, gjk > 0, then ∂J
∂gik

> 0, ∂J
∂gjk

> 0. Thus
h′ik 6 hik = 1, h′jk 6 hjk = 1. So h′ik and h′jk may be
either +1 or −1 and we have h′ikh

′
jk 6 1 = hikhjk.

Case 2. sij = 1. It can be proved similarly as Case 1.

Theorem 2. Loss L decreases when optimizing loss J(g)
by the stochastic gradient descent (SGD) within each stage.

Proof. The gradient of loss L w.r.t. hash codes 〈hi,hj〉 is

∂L

∂ 〈hi,hj〉
= wijα

(
1

1 + exp (−α 〈hi,hj〉)
− sij

)
. (4)

We observe that{
∂L

∂〈hi,hj〉 6 0, sij = 1,
∂L

∂〈hi,hj〉 > 0, sij = 0.
(5)

By substituting Lemma 1: if sij = 1, then
〈
h′
i,h

′
j

〉
>

〈hi,hj〉, and thus L(h′
i,h

′
j) 6 L(hi,hj); if sij = 0, then〈

h′
i,h

′
j

〉
6 〈hi,hj〉, and thus L(h′

i,h
′
j) 6 L(hi,hj).
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