1. Convergence Analysis

We briefly analyze that the continuation optimization in Algorithm 1 will decrease the loss of HashNet (4) in each stage and in each iteration until converging to HashNet with sign activation function that generates exactly binary codes.

Let \(L_{ij} = w_{ij} \log (1 + \exp (\alpha (h_i, h_j))) - \alpha s_{ij} (h_i, h_j) \) and \(L = \sum_{s_{ij} \in S} L_{ij} \), where \(h_i \in \{-1, +1\}^K \) are binary hash codes. Note that when optimizing HashNet by continuation in Algorithm 1, network activation in each stage \(t \) is \(g = \tanh(\beta_t z) \), which is continuous in nature and will only become binary when convergence \(\beta_t \to \infty \). Denote by \(J_{ij} = w_{ij} \log (1 + \exp (\alpha (g_i, g_j))) - \alpha s_{ij} (g_i, g_j) \) and \(J = \sum_{s_{ij} \in S} J_{ij} \) the true loss we optimize in Algorithm 1, where \(g_i \in \mathbb{R}^K \) and note that \(h_i = \text{sgn}(g_i) \). We will show that HashNet loss \(L(h) \) descends when minimizing \(J(g) \).

Lemma 1. Denote by \(h_i = \text{sgn}(g_i) \), \(h_i' = \text{sgn}(g_i') \), then
\[
\left\{ \begin{array}{ll}
(h'_i, h'_j) \geq (h_i, h_j), & s_{ij} = 1, \\
(h'_i, h'_j) \leq (h_i, h_j), & s_{ij} = 0.
\end{array} \right.
\] (3)

Proof. Since \((h_i, h_j) = \sum_{k=1}^K h_{ik} h_{jk} \), Lemma 1 can be proved by verifying that \(h'_{ik} h'_{jk} \geq h_{ik} h_{jk} \) if \(s_{ij} = 1 \) and \(h'_{ik} h'_{jk} \leq h_{ik} h_{jk} \) if \(s_{ij} = 0 \). Thus \(h'_{ik} \geq h_{ik} \), \(h'_{jk} \leq h_{jk} \).

Case 1. \(s_{ij} = 0 \).

(1) If \(g_{ik} < 0, g_{jk} > 0 \), then \(\frac{\partial J}{\partial g_{jk}} > 0 \). Thus \(h'_{ik} \geq h_{ik} = -1 \), \(h'_{jk} \geq h_{jk} = 1 \). And we have \(h'_{ik} h'_{jk} = -1 = h_{ik} h_{jk} \).

(2) If \(g_{ik} > 0, g_{jk} < 0 \), then \(\frac{\partial J}{\partial g_{jk}} < 0 \). Thus \(h'_{ik} \geq h_{ik} = 1 \), \(h'_{jk} \leq h_{jk} = -1 \). And we have \(h'_{ik} h'_{jk} = -1 = h_{ik} h_{jk} \).

(3) If \(g_{ik} < 0, g_{jk} < 0 \), then \(\frac{\partial J}{\partial g_{ik}} < 0 \). Thus \(h'_{ik} \geq h_{ik} = -1 \), \(h'_{jk} \geq h_{jk} = 1 \). So \(h'_{ik} \) and \(h'_{jk} \) may be either +1 or −1 and we have \(h'_{ik} h'_{jk} \leq 1 = h_{ik} h_{jk} \).

(4) If \(g_{ik} > 0, g_{jk} > 0 \), then \(\frac{\partial J}{\partial g_{ik}} > 0 \). Thus \(h'_{ik} \leq h_{ik} = 1 \), \(h'_{jk} \leq h_{jk} = 1 \). So \(h'_{ik} \) and \(h'_{jk} \) may be either +1 or −1 and we have \(h'_{ik} h'_{jk} \leq 1 = h_{ik} h_{jk} \).

Case 2. \(s_{ij} = 1 \). It can be proved similarly as Case 1.

Theorem 2. Loss \(L \) decreases when optimizing loss \(J(g) \) by the stochastic gradient descent (SGD) within each stage.

Proof. The gradient of loss \(L \) w.r.t. hash codes \((h_i, h_j) \) is
\[
\frac{\partial L}{\partial (h_i, h_j)} = w_{ij} \alpha \left(\frac{1}{1 + \exp (-\alpha (h_i, h_j))} - s_{ij} \right) g_{jk},
\] (4)
We observe that
\[
\left\{ \begin{array}{ll}
\frac{\partial L}{\partial (h_i, h_j)} \leq 0, & s_{ij} = 1, \\
\frac{\partial L}{\partial (h_i, h_j)} \geq 0, & s_{ij} = 0.
\end{array} \right.
\] (5)

By substituting Lemma 1: if \(s_{ij} = 1 \), then \((h'_i, h'_j) \geq (h_i, h_j) \), and thus \(L(h'_i, h'_j) \leq L(h_i, h_j) \); if \(s_{ij} = 0 \), then \((h'_i, h'_j) \leq (h_i, h_j) \), and thus \(L(h'_i, h'_j) \leq L(h_i, h_j) \).