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1. Convergence Analysis

We briefly analyze that the continuation optimization in
Algorithm 1 will decrease the loss of HashNet (4) in each
stage and in each iteration until converging to HashNet with
sign activation function that generates exactly binary codes.

Let L;; = w;j (log (1 + exp (a (hi, hj))) —
and L = 3 s Lij, where h; € {1, +1}¥ are binary
hash codes. Note that when optimizing HashNet by contin-
uation in Algorithm 1, network activation in each stage ¢ is
g = tanh(f;z), which is continuous in nature and will only
become binary when convergence 3; — oco. Denote by
Jij = wi; (log (1 +exp (a(gi,9;))) — asij (gi,g;)) and
J = qu-,j cs Jij the true loss we optimize in Algorithm 1,
where g; € R and note that h; = sgn(g;). We will show
that HashNet loss L(h) descends when minimizing J(g).

Theorem 1. The HashNet loss L will not change across
stages t and t+1 with bandwidths switched from By to By 1.

Proof. When the algorithm switches from stages ¢ to t 4 1
with bandwidths changed from f3; to 8¢ 1, only the network
activation is changed from tanh(f5;z) to tanh(8:412) but
its sign h = sgn(tanh(B;2)) = sgn(tanh(By12)), i.e. the
hash code, remains the same. Thus L is unchanged. O

For each pair of binary codes h;, h; and their continuous
counterparts g;, g;, the derivative of J w.r.t. each bit k is
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where k = 1,..., K. The derivative of J w.r.t. g; can be

defined similarly. Updating g; by SGD, the updated g, is
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where 7 is the learning rate and g; is computed similarly.

asqj (hi, hy))

Lemma 1. Denote by h; = sgn(g;), hl; = sgn(g}), then

{(h;,h;) > (hi b)), s =1,

(Rj 1) < (hishy), 855 =0. ©)

Proof. Since (h;, h;) = Zszl hirkhj,, Lemma 1 can be
proved by verifying that hj, h) > hihjy if si; = 1 and
h;kh;k < highjrifs;; =0,Yk=1,2,... K.

Casel. s;; = 0.

(1) If gir < 0, gjr > 0, then % > 0, aiik < 0.
Thus, hiy, < hix = =1, hly > hji, = 1. And we have
Bk, = =1 = haghyp.

(2) If gir > 0, gjr < 0, then % <0, a?]fk > 0.
Thus, hlj, > hig = 1, h;k < hjr = —1. And we have

Bk = =1 = haghyp.

(3)If gir <0, gjx <O, then 2L <0, &j < 0. Thus
Ry = hie = —1, h 2 hj, = 71 So b}, and hjk may be
either +1 or —1 and we have h;, h < 1= hiphjp.

(4)If gir > 0, gjx > 0, then 22 > 0, 8%7 > 0. Thus
hzkghzkfl,hj \hjkfl Sohkandhkmaybe
either +1 or —1 and we have h;kh;k <1l= hikhjk.

Case 2. s;; = 1. It can be proved similarly as Case 1.

Theorem 2. Loss L decreases when optimizing loss J(g)
by the stochastic gradient descent (SGD) within each stage.

Proof. The gradient of loss L w.r.t. hash codes (h;, h;) is
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We observe that
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By substituting Lemma 1: if s;; = 1, then (h}, > >
(ha hy), and thus L(R!, h') < L(hs, hy); if ;5 = 0, then
(h!, 1) < (hy, hy), and thus LR, b)) < L(hi, hy). O



