Supplemental Material: HashNet: Deep Learning to Hash by Continuation

Zhangjie Cao[†], Mingsheng Long[†], Jianmin Wang[†], and Philip S. Yu^{†‡} [†]KLiss, MOE; NEL-BDS; TNList; School of Software, Tsinghua University, China [‡]University of Illinois at Chicago, IL, USA

caozhangjie14@gmail.com {mingsheng,jimwang}@tsinghua.edu.cn psyu@uic.edu

1. Convergence Analysis

We briefly analyze that the continuation optimization in Algorithm 1 will decrease the loss of HashNet (4) in each stage and in each iteration until converging to HashNet with sign activation function that generates exactly binary codes.

Let $L_{ij} = w_{ij} \left(\log \left(1 + \exp \left(\alpha \left\langle \mathbf{h}_i, \mathbf{h}_j \right\rangle \right) \right) - \alpha s_{ij} \left\langle \mathbf{h}_i, \mathbf{h}_j \right\rangle \right)$ and $L = \sum_{s_{ij} \in \mathcal{S}} L_{ij}$, where $\mathbf{h}_i \in \{-1, +1\}^K$ are binary hash codes. Note that when optimizing HashNet by continuation in Algorithm 1, network activation in each stage t is $g = \tanh(\beta_t z)$, which is *continuous* in nature and will only become binary when convergence $\beta_t \to \infty$. Denote by $J_{ij} = w_{ij} \left(\log \left(1 + \exp \left(\alpha \left\langle \boldsymbol{g}_i, \boldsymbol{g}_j \right\rangle \right) \right) - \alpha s_{ij} \left\langle \boldsymbol{g}_i, \boldsymbol{g}_j \right\rangle \right)$ and $J = \sum_{s_{ij} \in \mathcal{S}} J_{ij}$ the true loss we optimize in Algorithm 1, where $\boldsymbol{g}_i \in \mathbb{R}^K$ and note that $\boldsymbol{h}_i = \operatorname{sgn}(\boldsymbol{g}_i)$. We will show that HashNet loss L(h) descends when minimizing J(g).

Theorem 1. The HashNet loss L will not change across stages t and t+1 with bandwidths switched from β_t to β_{t+1} .

Proof. When the algorithm switches from stages t to t+1with bandwidths changed from β_t to β_{t+1} , only the network activation is changed from $\tanh(\beta_t z)$ to $\tanh(\beta_{t+1} z)$ but its sign $h = \operatorname{sgn}(\tanh(\beta_t z)) = \operatorname{sgn}(\tanh(\beta_{t+1} z))$, i.e. the hash code, remains the same. Thus L is unchanged.

For each pair of binary codes h_i , h_j and their continuous counterparts g_i , g_j , the derivative of J w.r.t. each bit k is

$$\frac{\partial J}{\partial q_{ik}} = w_{ij}\alpha \left(\frac{1}{1 + \exp\left(-\alpha \langle \boldsymbol{q}_i, \boldsymbol{q}_j \rangle\right)} - s_{ij}\right) g_{jk}, \quad (1)$$

where k = 1, ..., K. The derivative of J w.r.t. g_i can be defined similarly. Updating g_i by SGD, the updated g'_i is

$$g'_{ik} = g_{ik} - \eta \frac{\partial J}{\partial g_{ik}}$$

$$= g_{ik} - \eta w_{ij} \alpha \left(\frac{1}{1 + \exp\left(-\alpha \langle \mathbf{g}_i, \mathbf{g}_j \rangle\right)} - s_{ij} \right) g_{jk},$$
(2)

where η is the learning rate and g'_{i} is computed similarly.

Lemma 1. Denote by $h_i = \operatorname{sgn}(g_i)$, $h'_i = \operatorname{sgn}(g'_i)$, then

$$\begin{cases} \langle \mathbf{h}_i', \mathbf{h}_j' \rangle \geqslant \langle \mathbf{h}_i, \mathbf{h}_j \rangle, & s_{ij} = 1, \\ \langle \mathbf{h}_i', \mathbf{h}_j' \rangle \leqslant \langle \mathbf{h}_i, \mathbf{h}_j \rangle, & s_{ij} = 0. \end{cases}$$
(3)

Proof. Since $\langle \boldsymbol{h}_i, \boldsymbol{h}_j \rangle = \sum_{k=1}^K h_{ik} h_{jk}$, Lemma 1 can be proved by verifying that $h'_{ik} h'_{jk} \geqslant h_{ik} h_{jk}$ if $s_{ij} = 1$ and $h'_{ik} h'_{jk} \leqslant h_{ik} h_{jk}$ if $s_{ij} = 0, \forall k = 1, 2, \dots, K$.

Case 1. $s_{ij} = 0$.

- (1) If $g_{ik} < 0$, $g_{jk} > 0$, then $\frac{\partial J}{\partial g_{ik}} > 0$, $\frac{\partial J}{\partial g_{jk}} < 0$. Thus, $h'_{ik} \leq h_{ik} = -1$, $h'_{jk} \geq h_{jk} = 1$. And we have $h'_{ik}h'_{jk} = -1 = h_{ik}h_{jk}.$
- (2) If $g_{ik} > 0$, $g_{jk} < 0$, then $\frac{\partial J}{\partial g_{ik}} < 0$, $\frac{\partial J}{\partial g_{jk}} > 0$. Thus, $h'_{ik} \geqslant h_{ik} = 1$, $h'_{jk} \leqslant h_{jk} = -1$. And we have $h'_{ik}h'_{jk} = -1 = h_{ik}h_{jk}$.
- (3) If $g_{ik} < 0$, $g_{jk} < 0$, then $\frac{\partial J}{\partial g_{ik}} < 0$, $\frac{\partial J}{\partial g_{jk}} < 0$. Thus $h'_{ik} \geqslant h_{ik} = -1$, $h'_{jk} \geqslant h_{jk} = -1$. So h'_{ik} and h'_{jk} may be either +1 or -1 and we have $h'_{ik}h'_{jk} \leqslant 1 = h_{ik}h_{jk}$.

 (4) If $g_{ik} > 0$, $g_{jk} > 0$, then $\frac{\partial J}{\partial g_{ik}} > 0$, $\frac{\partial J}{\partial g_{jk}} > 0$. Thus $h'_{ik} \leqslant h_{ik} = 1$, $h'_{jk} \leqslant h_{jk} = 1$. So h'_{ik} and h'_{jk} may be either +1 or -1 and we have $h'_{ik}h'_{jk} \leqslant 1 = h_{ik}h_{jk}$.

Case 2. $s_{ij} = 1$. It can be proved similarly as Case 1.

Theorem 2. Loss L decreases when optimizing loss J(g)by the stochastic gradient descent (SGD) within each stage.

Proof. The gradient of loss L w.r.t. hash codes $\langle h_i, h_j \rangle$ is

$$\frac{\partial L}{\partial \langle \boldsymbol{h}_i, \boldsymbol{h}_j \rangle} = w_{ij} \alpha \left(\frac{1}{1 + \exp\left(-\alpha \langle \boldsymbol{h}_i, \boldsymbol{h}_j \rangle\right)} - s_{ij} \right). \tag{4}$$

We observe that

$$\begin{cases} \frac{\partial L}{\partial \langle \mathbf{h}_i, \mathbf{h}_j \rangle} \leqslant 0, & s_{ij} = 1, \\ \frac{\partial L}{\partial \langle \mathbf{h}_i, \mathbf{h}_j \rangle} \geqslant 0, & s_{ij} = 0. \end{cases}$$
 (5)

By substituting Lemma 1: if $s_{ij} = 1$, then $\langle h'_i, h'_i \rangle \geqslant$ $\langle \boldsymbol{h}_i, \boldsymbol{h}_j \rangle$, and thus $L(\boldsymbol{h}_i', \boldsymbol{h}_i') \leqslant L(\boldsymbol{h}_i, \boldsymbol{h}_j)$; if $s_{ij} = 0$, then $\langle \boldsymbol{h}_i', \boldsymbol{h}_i' \rangle \leqslant \langle \boldsymbol{h}_i, \boldsymbol{h}_j \rangle$, and thus $L(\boldsymbol{h}_i', \boldsymbol{h}_i') \leqslant L(\boldsymbol{h}_i, \boldsymbol{h}_j)$. \square