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Abstract

This document provides the following additional contri-
butions to our ICCV 2017 submission:

• in Section 1, we provide explicit formulas for the batch
statistics in our DA-layers as well as the layer’s back-
propagation equations;

• in Section 2, we provide results on the SVHN – MNIST
benchmark.

• in Section 3, we provide some examples of feature dis-
tributions learned by AutoDIAL – Inception-BN on the
Office 31 dataset.

1. DA-layers formulas

We rewrite Eq. (1) of the main paper to make sample
indexes explicit:
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where ns and nt are, respectively, the number of source
and target samples in a batch. The partial derivatives of
the statistics w.r.t. the inputs are
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The partial derivatives of the loss L w.r.t. the inputs are
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where ysti and ytsi are “cross-normalized” outputs

ysti =
xsi − µts,α√
ε+ σ2

ts,α

, ytsi =
xti − µst,α√
ε+ σ2

st,α

. (6)

Using these definitions, one can also compute the partial
derivative of L w.r.t. the domain mixing parameter α as
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Note that, as for standard Batch Normalization, the gra-

dients do not depend on the layer’s inputs, allowing for
in-place computation where permitted by the deep learning
framework of choice.

2. Results on the SVHN – MNIST benchmark
In this section we report the results we obtain in the

SVHN [8] to MNIST [5] transfer benchmark. We follow the
experimental protocol in [3], using all SVHN images as the
source domain and all MNIST images as the target domain,
and compare with the following baselines: CORAL [10];
the Deep Adaptation Networks (DAN) [7]; the Domain-
Adversarial Neural Network (DANN) in [3]; the Deep Re-
construction Classification Network (DRCN) in [4]; the Do-
main Separation Networks (DSN) in [1]; the Asymmetric
Tri-training Network (ATN) in [9].

As in all baselines, we adopt the network architecture
in [2], adding DA-layers after each layer with parameters.

Method Accuracy

CORAL [6] 63.1
DAN [7] 71.1
DANN [3] 73.9
DRCN [4] 82.0
DSN [1] 82.7
ATN [9] 86.2

AutoDIAL 90.3

Table 1. Results on the SVHN to MNIST benchmark.
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Figure 1. α parameters learned on the SVHN – MNIST dataset,
plotted as a function of layer depth.

Training is performed from scratch, using the same meta-
parameters as for AlexNet (see Main Paper), with the fol-
lowing exceptions: initial learning rate l0 = 0.01; 25
epochs; learning rate schedule defined by lp = l0/(1+γp)

β ,
where γ = 10, β = 0.75 and p is the learning progress lin-
early increasing from 0 to 1.

As shown in Table 1, we set the new state of the art on
this benchmark. It is worth of note that AutoDIAL also
outperforms the methods, such as ATN and DSN, which
expand the capacity of the original network by adding nu-
merous learnable parameters, while only employing a single
extra learnable parameter in each DA-layer. The α param-
eters learned by AutoDIAL on this dataset are plotted in
Fig. 1. Similarly to the case of AlexNet and Inception-BN
on the Office-31 dataset, the network learns higher values
of α in the bottom of the network and lower values of α in
the top. In this case, however, we observe a steeper tran-
sition from 1 to 0.5, which interestingly corresponds with
the transition from convolutional to fully-connected layers
in the network.

3. Feature distributions

In this section we study the distributions of a set of ran-
domly sampled features from different layers of AutoDIAL
– Inception-BN, learned on the Amazon–DSLR task of the
Office 31 dataset. In Fig. 2 we compare the histograms of
these features, computed on the whole source and target sets



Figure 2. Distributions of randomly sampled source/target features from different layers of AutoDIAL – Inception-BN learned on the
Amazon–DSLR task of the Office 31 dataset (best viewed on screen).

and taken after the DA-layers. The plots clearly show the
aligning effect of our DA-layers, as most histograms are
very closely matching. It is also interesting to note how
the alignment effect seems to be mostly independent of the
particular shape the distributions might take.
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