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Overview
In this supplemental material, we analyze how the proposed blind image deblurring method performs on images with

outliers and demonstrate the effectiveness of the proposed data fidelity term in Section 1. Section 2 provides more analysis of
the proposed algorithm. We quantitatively evaluate the proposed algorithm and compare it against existing blind deblurring
methods on the datasets with outliers and random noise in Section 3. We further evaluate the proposed method on publicly
available datasets [8] as well as [15] and show that it performs well against the state-of-the-art deblurring methods in Section
4. The proposed non-uniform deblurring algorithm is presented in Sections 5. More visual comparisons are shown in Section
6.

1. Effectiveness of Proposed Method
As discussed in Section 4 of the main paper, existing outlier handling methods [2, 16] address the effects of outliers in

non-blind deblurring and their straightforward extensions do not perform well for blind image deblurring (see Figure 1, i.e.,
Figure 8 in the main paper). To process blurred images with outliers in blind image deblurring, most state-of-the-art methods
depend on extra steps of light streak detection [6, 10], salient edge selection [12], and outlier detection [12]. As discussed
in the main paper, the main idea of the state-of-the-art method [12] is the edge selection and outlier detection. These two
ad-hoc operations are not derived from the original optimization problem and increase the complexity of kernel estimation.
[12] is less effective when useful edges are not extracted (Figure 2(b), (d)-(f)). This limitation has also been discussed by
[12] in the supplemental material. In addition, the deconvolution model with an `1 norm-based data term is the bottleneck
as the images estimated by this model significantly affect the following edge selection and outlier detection steps. As the `1
norm-based data term is less robust to saturated pixels [2], the intermediate latent images by [12] usually contain significant
artifacts (Figure 2(g)-(i)). This increases the difficulty for the ad-hoc edge-selection method [12] as it is difficult to find a
good threshold to remove artifacts. Although the outlier detection step is able to detect those artifacts, it is likely that most
edges are removed after applying outlier detection (Figure 2(f)). This usually occurs when blurred images contain saturated
pixels as the `1 norm-based data fidelity term is less robust to saturated pixels.

In contrast, we propose a robust outlier handling method based on a robust data fidelity term, which can minimize the
effects of outliers on the blur kernel estimation (see Figure 2(g)-(o)). Our method is motivated by the properties of outliers
and its effect on data terms. It does not need ad-hoc selection steps and is derived from a unified optimization problem
with a robust data term. As discussed in Section 4.1 of the main paper, from both the mathematical essence of the robust
function R(·) and the perspective of the IRLS optimization, the outliers have less effect on both the intermediate latent
image estimation and the blur kernel estimation within the proposed framework. These properties ensure that the proposed
deblurring algorithm based on the proposed dada fidelity term is able to handle outliers. The comparisons in Figure 2 show
that our method can minimize the effect of outliers on kernel estimation and recover clearer structures with fewer artifacts.
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(a) Blurred image (b) [1]+[2] (c) Extension of [2]

(d) [1]+[16] (e) Extension of [16] (f) Ours

Figure 1. Comparison with Cho et al. [2] and Whyte et al. [16] and their straightforward extensions. The results show that straightforward
extensions of these methods do not generate clear images.



(a) Blurred image (b) Results of [12] (c) Ours

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) ωk
h (n) ωk

v (o) ωx

Figure 2. Comparison with Pan et al. [12]. (d)-(f) Edge selection results during the iterations by [12]. (g)-(i) and (j)-(l) Intermediate latent
images with estimated kernels during the iterations by [12] and the proposed method, respectively. (m)-(o) Weight maps (see Section 3.1
and 3.2 in the main paper) of the proposed method in the kernel estimation and the latent image estimation. The proposed method generates
a clear image with fine details and the weights derived from the IRLS iteration are able to handle outliers.



2. Further Analysis on the Proposed Method
In this section, we provide more analysis on the proposed method in terms of the running time (Section 2.1), the robust

function used in the data fidelity term (Section 2.2), the effectiveness on the noise-free images (Section 2.3) and the limitations
of the proposed method (Section 2.4).

2.1. Running Time

As deblurring images with significant outliers is very challenging, the run time of deblurring methods designed for this
problem is not fast. We compare our method with the outlier handling methods in Table 1. Table 1 shows that our method
compares favorably against competing methods, in addition to better-restored results.

Table 1. Running time (/s) and PSNR comparisons on the same PC. The size of the test image is of 800 × 800 pixels. The results show
that our method compares favorably against competing outlier handling methods, in addition to better-restored results.

Method Time PSNR
Levin et al. [9] (Matlab) 244.55 23.77
Zhong et al. [19] (Matlab) 46.79 22.24
Pan et al. [13] (Matlab) 731.56 29.11
Pan et al. [12] (Matlab) 688.73 17.79
Ours (Matlab) 497.44 31.21

2.2. Further Analysis on the Proposed Data Fidelity Term

Note that although a truncated `2-norm has the similar shape to R(z), the truncated `2-norm based data fidelity term is
different from the proposed data fidelity term. Our data fidelity term is continuously differentiable, and its weight in the IRLS
method is able to detect the regions of outliers (see Section 4.1 in the manuscript and Figure 2). However, the truncated `2-
norm based data fidelity term is not differentiable and does not have these properties. To further demonstrate the effectiveness
of the proposed data fidelity term, we compare it with the truncated `2-norm based data fidelity term on the proposed dataset
with impulse noise. Figure 3 shows that the blind image deblurring method using the truncated `2-norm based data fidelity
term is less effective for blurred images with outliers. In contrast, the proposed algorithm generates results with higher PSNR
values. Figure 4 shows visual comparisons. The deblurred results generated by the truncated `2-norm based data fidelity term
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Figure 3. Quantitative evaluation of the proposed data fidelity term and the truncated `2-norm based data fidelity term on the proposed
dataset with impulse noise. The proposed data fidelity term is continuously differentiable, and its weight in the IRLS method is able to
detect the regions of outliers (see Section 4.1 in the manuscript and Figure 2). However, the truncated `2-norm based data fidelity term is
not differentiable and does not have these properties. Thus, the results generated by this method have lower PSNR values.



(a) Blurred image (b) Truncated `2-norm (c) Ours (d) Blurred image (e) Truncated `2-norm (f) Ours

Figure 4. A visual comparison with the truncated `2-norm based data fidelity term. (b) and (e): Results by the truncated `2-norm based
data fidelity term. (c) and (f): Our results.

contain significant ringing artifacts and blur residues. In contrast, the proposed algorithm generates clearer results with fine
textures.

2.3. Effectiveness on Noise-Free Images

For blurred images without outliers, the intermediate latent images may contain artifacts due to inaccurate kernel estima-
tion, especially in the first few iterations. The values of x ∗ k − y will be large at the positions of artifacts. Thus, the weights
(wx, wk

h, w
k
v ) in (7) and (9) are small. This indicates that the effect of artifacts is minimized in the following steps, thereby

facilitating kernel estimation.
Figure 5 shows an example to demonstrate the effect of our method on an outlier-free image. Even for the noise-free

image, the intermediate latent images in the first few iterations can contain artifacts (Figure 5(d) and (g)), which are one kind
of outliers. However, the outlier detection method by [12] does not detect these artifacts (Figure 5(j)). In contrast, based on
the proposed data fidelity term, the weights for these artifacts in our kernel estimation are small (Figure 5(h)-(i)). Therefore,
as discussed in Section 4 of the main paper, the effect of artifacts is minimized in the following steps, thereby facilitating
kernel estimation.

2.4. Limitations of the Proposed Method

The proposed method is likely to fail when the saturated area is too large. Figure 6 shows an example where the saturated
areas are very large. The result generated by our method is almost the same as the blurred image, which indicates that our
method is less effective for images with very large saturated areas.

3. Quantitative Evaluations on Datasets with Outliers
Dataset with saturated pixels. To evaluate the effectiveness of the proposed method, we create a dataset containing 5
ground truth low-light images (see Figure 7) with saturated pixels and 8 kernels from [8] (see Figure 8). Similar to [12],
each ground truth image is synthetically blurred by 8 different blur kernels and high-intensity pixels are clipped. We also add
1% random noise on each blurred image. For fair comparisons, we use the original implementations of the state-of-the-art
methods [1, 6, 11, 12, 13, 18] to estimate blur kernels. The non-blind deblurring method [2] is used to generate the final
deblurring results. Figure 9 and Table 2 show that the proposed algorithm achieves favorable results compared with the
state-of-the-art methods.

Dataset with impulse noise. To further evaluate the proposed method, we create a dataset containing 30 ground truth natural
images (see Figure 10) and 8 kernels from [8], in which we add the impulse noise (as it is one of the most common non-
Gaussian noise) to each image. The noise density is set to be 0.02. Thus, we have 240 blurred images in total. We evaluate
the proposed algorithm against several state-of-the-art deblurring methods including the outlier handling method [12]. We
follow the protocol used in the dataset with saturated pixels for fair comparisons. The PSNR and error ratio [8] are used as
the quality metric. Figure 11, Table 3 and Figure 12 show that our method performs favorably against the state-of-the-art
methods.

Robustness of the proposed algorithm. We further evaluate the proposed algorithm using images with different noise
densities. Figure 13 shows that the proposed algorithm performs well even when the noise density is high.



(a) Blurred image (b) Results of [12] (c) Ours

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Effectiveness on a noise-free image. (d)-(f) and (g)-(i) Intermediate latent images with estimated kernels during the iterations by
[12] and the proposed method, respectively. (j) Outlier detection mask by [12]. (k)-(l) Weight maps (see Section 3.2 in the main paper) of
the proposed method in the kernel estimation. The proposed method generates a clear image with fine details and the weights derived from
the IRLS iteration are able to handle outliers.



Figure 6. The limitation of our method. Our method is less effective when the saturated areas are very large.

Figure 7. Ground truth images that are used in the synthetic image dataset with saturated pixels.

Figure 8. Ground truth kernels form [8].
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Xu et al. [18]
Pan et al. [11]
Hu et al. [6]
Pan et al. [13]
Pan et al. [12]
Ours

Figure 9. Quantitative evaluation on the dataset with saturated pixels in terms of PSNR. The proposed method generates the results with
higher PSNR values.



Figure 10. Ground truth images that are used in the synthetic dataset impulse noise.
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Cho et al. [1]
Levin et al. [9]
Xu et al. [18]
Zhong et al. [19]
Pan et al. [13]
Pan et al. [12]
Ours

Figure 11. Quantitative evaluation on the dataset with impulse noise in terms of PSNR. The proposed method generates the results with
higher PSNR values.

Table 2. Quantitative comparison using the dataset with saturated pixels in terms of error ratio metric.
[1] [18] [11] [6] [13] [12] Ours

Average Error Ratio 18.04 7.42 13.41 34.37 3.83 3.22 3.09

Table 3. Quantitative comparison on the proposed dataset with impulse noise in terms of PSNR.
[1] [9] [18] [19] [13] [12] Ours

Average PSNR 28.5819 27.1834 30.6736 28.5304 29.3544 32.0176 34.5818
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Figure 12. Quantitative evaluation on the dataset with impulse noise.

4. Quantitative Evaluation on the Natural Image Deblurring Datasets
We evaluate our method on the natural image deblurring datasets [8] and [15]. The natural image deblurring dataset [8]

contains 4 ground truth images and 8 blur kernels. The natural image dataset [15] involves 640 blurred images. Figures 14
and 15 demonstrates that the proposed algorithm performs favorably against the state-of-the-art methods.



0.01 0.02 0.03 0.04 0.05
24

26

28

30

32

34

36

Noise Density (%)

A
ve

ra
ge

 P
SN

R
 V

al
ue

s

Ours
Pan et al. [12]
Pan et al. [13]
Zhong et al. [19]
Xu et al. [18]

Figure 13. Robustness of the proposed algorithm.
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Figure 14. Quantitative evaluation on the benchmark dataset [9].
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Figure 15. Quantitative evaluation on the benchmark dataset [15].



5. Non-Uniform Deblurring Algorithm
As mentioned in the main paper, our non-uniform deblurring process is carried out by alternatively solving

min
x
R(Kx− y) + λ‖∇x‖0.8 (1)

and
min
k
R(Ak− y) + γ‖k‖1. (2)

Estimating latent image: For (1), we follow the solver of (6) in the main paper and use the IRLS method to solve (1). At
each iteration, we need to solve the quadratic problem:

x[t+1] = argmin
x

∑
p

{ωx|(Kx− y)p|2 + λ(ωx
h |(∂hx)p|2 + ωx

v |(∂vx)p|2)}, (3)

where ωx =
R′((Kx[t]−y)p)

(Kx[t]−y)p
, R′(·) is the derivative function of R(·), ωx

h = |(∂hx[t])p|−1.2, ωx
v = |(∂vx[t])p|−1.2, t denotes

the iteration index, and the subscript p denotes the spatial location of a pixel.
To efficiently solve the minimization (3), we first calculate the matrix K. As is assumed by the method [5], the blur kernels

at a small region are similar and can be approximated by the locally uniform blur mode. It divides the image into M patches
and K can be represented by

K =

M∑
m=1

diag(Wm)Km, (4)

where diag(z) is a diagonal matrix with the element of vector z on the main diagonal,Wm is a window function and has the
same size as x, which satisfies

∑
mWm = 1, and Km is the matrix corresponding to the blur kernel km for the m-th patch.

To compute K using FFTs, K can be expressed as

K = Z>p

M∑
m=1

C>m(F−1(diag(F(Zakm))))F(Cmdiag(Wm)). (5)

where Cm(·) is a matrix that chops the m-th patch from a vector, C>m(·) is a matrix that paste the m-th patch to original
vector, Zp is the zero-padding matrix that prepends zeros to a vector such that its size matches the size of the vector resulting
from the summation, and Za is a zero-padding matrix that appends zeros to a vector that its size matches the patch size.

By (5) of K, the solution (3) can be solved by the conjugate gradient method. The algorithm for solving (1) is the same as
Algorithm 1, where we only need to replace (7) with (3).

Estimating blur kernel: For the optimization of the kernel estimation model (2), we use the IRLS method to solve (2). At
each iteration, we use same optimization proposed by [18] to estimate k. The proposed non-uniform deblurring method is
achieved by alternatively minimizing (1) and (2). We use the same settings as the uniform deblurring in Algorithm 1.

6. More Experimental Results
In this section, we show more deblurred results by the proposed algorithm and the state-of-the-art methods, in addition to

the examples of the proposed datasets in Figures 7 and 10.



(a) Blurred image (b) Cho and Lee [1] (c) Krishnan et al. [7]

(d) Levin et al. [9] (e) Xu et al. [18] (f) Zhong et al. [19]

(g) Goldstein and Fattal [4] (h) Pan et al. [11] (i) Hu et al. [6]

(j) Pan et al. [13] (k) Pan et al. [12] (l) Ours

Figure 16. Deblurred results on one synthetic image with numerous saturated areas and random noise. The proposed method generates
clear images with fewer ringing artifacts.



(a) Blurred image (b) Cho and Lee [1] (c) Krishnan et al. [7]

(d) Levin et al. [9] (e) Xu et al. [18] (f) Zhong et al. [19]

(g) Goldstein and Fattal [4] (h) Pan et al. [11] (i) Hu et al. [6]

(j) Pan et al. [13] (k) Pan et al. [12] (l) Ours

Figure 17. Deblurred results on one synthetic image with numerous saturated areas and random noise. The proposed method generates
clear images with fine details.



(a) Blurred image (b) Cho and Lee [1] (c) Krishnan et al. [7]

(d) Levin et al. [9] (e) Xu et al. [18] (f) Zhong et al. [19]

(g) Goldstein and Fattal [4] (h) Pan et al. [11] (i) Hu et al. [6]

(j) Pan et al. [13] (k) Pan et al. [12] (l) Ours

Figure 18. Deblurred results on one synthetic image with numerous saturated areas and random noise. The proposed method generates
clear images with fine details.



(a) Blurred image (b) Cho and Lee [1] (c) Xu and Jia [17] (d) Levin et al. [9]

(e) Krishnan et al. [7] (f) Goldstein and Fattal [4] (g) Xu et al. [18] (h) Zhong et al. [19]

(i) Pan et al. [11] (j) Pan et al. [13] (k) Pan et al. [12] (l) Ours

Figure 19. Deblurred results on one synthetic image with impulse noise. The proposed method generates clear images with fine details.



(a) Blurred image (b) Cho and Lee [1] (c) Xu and Jia [17]

(d) Levin et al. [9] (e) Krishnan et al. [7] (f) Goldstein and Fattal [4]

(g) Xu et al. [18] (h) Zhong et al. [19] (i) Pan et al. [11]

(j) Pan et al. [13] (k) Pan et al. [12] (l) Ours

Figure 20. Deblurred results on one synthetic image with impulse noise. The proposed method generates clear images with fine details.



(a) Blurred image (b) Cho and Lee [1] (c) Xu and Jia [17] (d) Levin et al. [9]

(e) Krishnan et al. [7] (f) Goldstein and Fattal [4] (g) Xu et al. [18] (h) Zhong et al. [19]

(i) Pan et al. [11] (j) Pan et al. [13] (k) Pan et al. [12] (l) Ours

Figure 21. Deblurred results on one synthetic image with impulse noise. The proposed method generates clear images with fine details.



(a) Blurred image (b) Cho and Lee [1] (c) Krishnan et al. [7]

(d) Levin et al. [9] (e) Xu et al. [18] (f) Zhong et al. [19]

(g) Xu and Jia [17] (h) Pan et al. [11] (i) Hu et al. [6]

(j) Pan et al. [13] (k) Pan et al. [12] (l) Ours

Figure 22. Deblurred results on a real captured image with saturated areas and unknown noise. The proposed method generates the image
with much clearer characters.



(a) Blurred image (b) Cho and Lee [1] (c) Krishnan et al. [7] (d) Levin et al. [9]

(e) Goldstein and Fattal [4] (f) Zhong et al. [19] (g) Xu et al. [18] (h) Pan et al. [11]

(i) Hu et al. [6] (j) Pan et al. [13] (k) Pan et al. [12] (l) Ours

Figure 23. A real captured image with saturated pixels and unknown noise. The proposed method generates clear images with much clearer
structures.



(a) Blurred image (b) Fergus et al. [3] (c) Ours

(a) Blurred image (b) Shan et al. [14] (c) Ours

(a) Blurred image (b) Cho and Lee [1] (c) Ours

(a) Blurred image (b) Xu and Jia [17] (c) Ours

Figure 24. Comparison with state-of-the-art deblurring methods with their corresponding reported results. The proposed method generates
comparable or even better results.



(a) Blurred image (b) Xu and Jia [17] (c) Ours

(a) Blurred image (b) Krishnan [7] (c) Ours

(a) Blurred image (b) Xu et al. [18] (c) Ours

Figure 25. Comparison with state-of-the-art deblurring methods. The proposed method generates much clearer images.



(a) Blurred image (b) Xu et al. [18] (c) Ours

(a) Blurred image (b) Zhong et al. [19] (c) Ours

(a) Blurred image (b) Zhong et al. [19] (c) Ours

Figure 26. Comparison with state-of-the-art deblurring methods with their corresponding reported results. The proposed method generates
much clearer images.



(a) Blurred image (b) Pan et al. [11] (c) Ours

(a) Blurred image (b) Pan et al. [13] (c) Ours

(a) Blurred image (b) Hu et al. [6] (c) Ours

Figure 27. Comparison with state-of-the-art deblurring methods with their corresponding reported results. The proposed method generates
comparable or even better results.



(a) Blurred image (b) Hu et al. [6] (c) Ours

(a) Blurred image (b) Pan et al. [12] (c) Ours

(a) Blurred image (b) Pan et al. [12] (c) Ours

(a) Blurred image (b) Pan et al. [12] (c) Ours

(a) Blurred image (b) Pan et al. [12] (c) Ours

Figure 28. Comparison with state-of-the-art deblurring methods for images with saturated areas. The proposed method generates much
clearer images.
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