
Low Compute and Fully Parallel Computer Vision with HashMatch

Sean Ryan Fanello1∗ Julien Valentin1∗ Adarsh Kowdle1 Christoph Rhemann1

Vladimir Tankovich1 Carlo Ciliberto2 Philip Davidson1 Shahram Izadi1

perceptiveIO1 University College London2

1. Pseudocode for Least squares
For completeness, we report here the pseudocode for the

algorithm proposed in Sec. 3.2 and used in the experiments
of this work where we used least-squares as both the loss
function L and the dissimilarity D in Eq. (7). In this setting,
Eq. (7) becomes

min
W,Z,B

‖BZ − Y ‖2 + λ|W |1 + η‖Z‖2 + γ ‖XW −B‖2

s.t. ‖B‖∞ ≤ µ. (1)

We can therefore apply the PALM implementation of Hash-
Match described in Sec. 3.2 to optimize over (Wt, Bt, Zt)
by iteratively performing the descent steps at Eq. (8,9,11),
updating one variable at the time while keeping the other
fixed. The pseudocode for HashMatch considered in this
work is reported in Alg. 1 in MATLAB notation.

∗Authors equally contributed to this work.

Algorithm 1 HASHMATCH

Input: X ∈ Rm×n,Y ∈ Rm×d, λ, η, γ, µ > 0.
Stopping Conditions: max iterations T , step threshold ε

Initialize:
B1 uniform random sample entries from {−µ, µ}
W1, Z1 initialization from a random distribution
Step Sizes:

σ1 = 1
2γ‖X‖2op

, σ2 = 1
2η2µ+2γ , σ3 = 1

2µ2m2+2η

For t = 0 to T

Update Z

Zt+1 = Zt − 2σ3(B>t (BtZt − Y ) + ηZt)

Update W

Wt+1 = Wt − 2σ1γ(X>XWt −X>Bt)
Wt+1 = Wt+1 − σ1λ SIGN(Wt+1)

Wt+1(ABS(Wt+1) ≤ σ1λ) = 0

Update B

B̃ = Bt − 2σ2(BtZt+1Z
>
t+1 − Y Z>t+1)

+ 2σ2γ(XWt+1 −Bt)

B̄ = B̃ − µ SIGN(B̃)

B̄(ABS(B̄) ≤ µ) = 0

Bt+1 = B̃ − B̄

If ‖(Wt, Bt, Zt)− (Wt+1, Bt+1, Zt+1)‖ ≤ ε
BREAK

End

End

1


