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1. Introduction

This Supplement contains additional materials related to the paper PUnDA: Probabilistic Unsupervised Domain Adapta-
tion for Knowledge Transfer Across Visual Categories. In particular, in Sec. 2 we present additional results that qualitatively
demonstrate the advantages of our adaptation framework over competing approaches such as the ILS [2]. We contrast 2D
embeddings of the features adapted by PUnDA to those of the pre-adapted fc6 layer and the ILS. We include detailed derivation
of the Variational Bayes algorithm for PUnDA in Sec. 4. Finally, in Sec. 5, we provide the computational complexity analysis
of our VB algorithm.

2. Visualization experiments

In this Section we provide additional results of experiments described in Sec. 4 of the main paper. Specifically, we show
the 2D point clouds of the learned features of PUnDA, embedded using the t-SNE algorithm [3], and compare them to those
of the ILS features and the standard, non-adapted features. Results will demonstrate that, as supported by the quantitative
results in the main paper, joint optimization of the alignment and classification criteria, accomplished through PUnDA, leads
to qualitatively superior domain matching and class separability, compared to competing approaches.

2.1. Office + Caltech10 Results

We refer here to the setting of the Office + Caltech10 experiments introduced in the main paper in Sec. 4.2. Figs 1,2,3
depict the embedded features extracted from the Office+Caltech10 dataset for the cases of A — C, W — C and D — A
adaptations, respectively. In the figures, blue and red colors indicate the source and target domains, respectively. Colors in the
bottom rows correspond to different class instances.

The top row of the Figures illustrates how the features extracted using the MMD criteria (PUnDA, ILS) reduce the domain
mismatch. Good features for domain adaptation should have a configuration where the red and blue colors are mixed. This
effect can be seen in features extracted from the PUnDA (b) and ILS algorithms (c), which indicates that the domain mismatch
is successfully reduced in the feature space, compared to the pre-aligned features in (a). Note that the domains obtained by
PUnDA are more compact than those of the ILS, with increasingly matched source-target features.

In classification, good domain-adapted features should display large class separability. The bottom row highlights a major
difference between PUnDA features and the original features and the ILS features in terms of the class separability: the
PUnDA features are more clustered with respect to the classes than ILS features, with more prominent gaps among clusters.
This is partly due to the fact that PUnDA exploits the unlabeled data to learn the classifier boundaries for the source domain
adapted discriminatively to the target domain by minimizing the expected classification errors on the target domain, something
that ILS fails to account for. As a consequence, PUnDA framework leads to superior cross-domain classification performance.
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Figure 1. Feature visualization for embedding of A — C' (Office+Caltech10) data samples using t-sne algorithm. The top and bottom rows
show the domains and classes respectively. (a,d) Original features. (b,e) PUnDA features. (c,f) ILS features.
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Figure 2. Feature visualization. Embedding of W — C' (Office+Caltech10) data samples using t-sne algorithm. The top and bottom rows
show the domains and classes respectively. (a,d) Original features. (b,e) PUnDA features. (c,f) ILS features.

3. Multi-PIE Results

We refer here to the setting of the Multi-PIE experiments introduced in the main paper in Sec. 4.3. Figs 4 and 5 depict
the embedded features extracted from the Multi-PIE dataset for the cases of C27 — (C05, and C27 — (37 adaptations,
respectively. In the figures, blue and red colors indicate the source and target domains, respectively. Colors in the bottom rows
correspond to different class instances.

The top row of the Figures illustrates how the features extracted using the MMD criteria (PUnDA, ILS) reduce the
domain mismatch. Again, it can be seen that the domains obtained by PUnDA are more compact than those of the ILS, with
increasingly matched source-target features.

The bottom row highlights a difference between PUnDA features and the original features and the ILS features in terms of
the class separability: For the Multi-PIE dataset both the PUnDA features and ILS features are slightly more clustered with
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Figure 3. Feature visualization for embedding of D — A (Office+Caltech10) data samples using t-sne algorithm. The top and bottom rows
show the domains and classes respective). (a,d) Original features. (b,e) PUnDA features. (c,f) ILS features.
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Figure 4. Feature visualization for embedding of C'27 — C'05 (Multi-PIE) data samples using t-sne algorithm. The top and bottom rows
show the domains and classes respective). (a,d) Original features. (b,e) PUnDA features. (c,f) ILS features.

respect to the classes than the original features.

4. VB Algorithm for PUnDA

In this section we describe, in detail, the Variational Bayes algorithm at the core of PUnDA. We first explicitly define
the model and the objective function and then show how to optimize this function by tackling two key challenges of (i)
non-conjugacy between the regularizer and the Gaussian distribution used in the model, and (ii) the non-conjugacy between
the softmax function and the Gaussian distribution. The optimization approach, formulated as an EM algorithm, utilizes two
bounds on the expectation of the softmax function described below.
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Figure 5. Feature visualization for embedding of C27 — C'37 (Multi-PIE) data samples using t-sne algorithm. The top and bottom rows
show the domains and classes respective). (a,d) Original features. (b,e) PUnDA features. (c,f) ILS features.

The proposed model can be formally defined as
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For our framework to yield a computationally effective inference method, we use a factorized variational distribution with the

following forms:

q(si) ~ N5, B51), i=1,.,N (13)
a(s5) ~ N3 851 ) =1, M (14)
g(mi) ~ Beta(ag,by), k=1,...K (15)
a(br) ~N (g, By a), k=1,..K (16)

q(#%)

~ N By ), k=1 K (17)



q(zx) ~ Bernoulli(py), k=1,..,.K (18)

q(we) ~ N (¥, B k), c¢=1,..,C (19)
q(v) ~ Gamma(cy, dy) (20)
q(vs) ~ Gamma(cs, ds) 20

We need to solve the following optimization problem

A* = argmax E, [log(X,Y, X', Q|©)] + H[q(2)] — AL(S,S8") + N L'(S', W, Z), (22)
A

where A = {{/’Liaﬁsl}v {,LL;, Bs;}a {ak?a bk}a {,ui}a B¢>a {Mﬁl}>6¢’7 {Pk}> {'[,Lg]},ﬁw’ Ct, dta Cs, ds}

The key terms in this objective are defined as follows. [E, [log(X Y, X/, Q|@)} can be expanded as
/ 1 T dM
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H[q(€2)] is subsequently expanded as
dK KC
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where 1) denotes the digamma function defined as

U() = - logI(a), (25)
and I'(z) denotes the Gamma function defined as
I'(z) = /OOO u” e du. (26)
L(S,S") is computed as
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where K(q(s), g(s")) is computed as
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Since ¢(s) and ¢(s’) are Gaussian distributions, we can compute (28) in closed form as

ﬂs + ﬁs’

Kla(s).a(s) = 555"

L'(S', W, Z) is computed as
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J c
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There are two main issues which make deriving the VB update equations in closed-form intractable: (i) Non-conjugacy
between the regularizer £'(S’, W, Z) and the Gaussian distribution, and (ii) Non-conjugacy between the softmax function
and the Gaussian distribution.

To tackle the first issue, it is worth noting that £ (W, S’, Z) is equivalent to the sum of the negative Shanon Entropy of the
C-dimensional probability vectors P(y;|W, Z,s;) = [pjl-, - pjc] Hence, we propose to use Renyi entropy [4] rather than
Shanon entropy for defining the regularizer £'(S’, W, Z). The Renyi entropy of order «v, where o« > 0 and « # 1 is defined

as
1 gy
Holyj] = 7= log (Z(pﬁ)a) 3D

c=1

The intuition behind using the Renyi entropy is that the limiting value of H, [y;] as a — 1 is the Shanon entropy [4]. We set
a = 0.99 in the experiments to approximate the Shanon entropy with the Renyi entropy. By replacing the Shanon entropy
with the Renyi entropy in (30), we have

£wW,s. 2z ZE 1ogZea“’ (Zos)) —%Z]Eq[logZewcT (Zos)). (32)
7 c

To tackle the second non-conjugacy problem, we use a linear lower bound and a quadratic upper bound on the expectation of
the log-sum function introduced in [1]:

log i eve (209 > i wl (Z© s) (33)
C C - B
log _ eve (209) < Z [  (Z©s))? ~€) ~loga(& } Zw (Z©s)+&, (34)
where - -
n(&) = *2% <1+1€—s B ;> (35)

and {&. € [0, +00]} denote the free variational parameters which are optimized to get the tightest possible bound. Hence, we
replace log Y exp(aw, (Z © s)) with its lower bound and log }°, exp(w/, (Z @ s;)) and log 3 exp(w/ (Z ® s})) with
their upper bound in the objectlve function, then we use the EM algorithm to optimize the factorized variational distribution
and the free parameters which computes the variational posterior distribution in the E-step and maximizes the free parameters
in the M-step, which goes as follows.

E step:

In this step the free variational parameters {&.} are fixed, and the variational distributions are updated by maximizing the
objective function using a coordinate ascent algorithm.

Update for ~,:

One can show that the posterior parameters c,, ds can be updated as

d N
Nd 1
co=cit o, do=dit g )Y e (36)

i=1 j=1



where

K
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and (.) indicates the expectation operator. Update for ;:
One can show that the posterior parameters c;, d; can be updated as

d M
Md 1
Ct:CI1+77 dS:d’1+§E Eeiﬂ"
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where

K

2 K
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k=1 k=1
Update for II = [ry, ..., Tx]:

One can show that the posterior parameters ag, by, can be updated as

= (o) b= MEZD L1 .

ap — K

Update for ® = [¢1, ..., dx|:
One can show that the posterior parameters ,ui, Be, can be updated as

N
Z Skz 1/27 /’L

||Mz

Skz a
i=1
where ;¥ is defined as
=0 @, o5
and ®_;, 2~ * and s ¥ are the matrix/vectors with the k-th column/element removed.
Update for &' = [¢], ..., ¢ ]:
One can show that the posterior parameters uf , @b; can be updated as
M M
2 —k
Boy, = (vs) Y (2k) (sh;”) + 1/2, )(sj) (@)
Jj=1 P j=

where x;_k is defined as
=k — ./ ! T/.—k ! —k
T =2 -l (27T esT)

Update for Z = 21, ..., 2k]:
One can show that the posterior parameter pj, can be updated as

-1
pr = (1 + e(logTrk)+(log(1—7rk))+7—s+‘rt) ’

where
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and (log 7x) and (log(1 — 7)) can be computed as

K -1
a+( )+

(log my) = ¢(% + (21)) — ¥( IR 1)
(log(1 —mk)) = w(b(KK_ Do (21)) — w(w +1).

Update for S = [s1, ..., sy]:
One can show that the posterior parameter 4, 35, can be updated as
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where (1f), denotes the k-th entry of the vector (uf )y, and

Bs +6s 2 /Bs +ﬁsj
NQZ Bs:Bs, MNZ Bs:iBs;

Update for S’ = [s], ..., sy |:
One can show that the posterior parameter ,u;?,, By, can be updated as
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Update for W = [w, ..., w¢]:

(47)

(48)

(49)

(50)

(5D

(52)

(53)

(54)



One can show that the posterior parameter y, 3,,, can be updated as

2N o

N
Bu. =23 A& )trace(F;) +
i=1

where F; = ((Z ® 5;)(Z ® s;) T isa K x K matrix which its elements are defined as

Fi(m,n) = (z,)(s2,), if m=n
Fi(m,n) = (zm)(2n)($mi) (5ni), if m#n

and where F} = ((Z © s})(Z © s}) T isa K x K matrix which its elements are defined as

2 .
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where diag(3,,,) is a K x K diagonal matrix with entries taken from the elements 3, .

M step:

M
Z 1
/ + p—
1—« j=1 A(£C)tTaC€(Fj) 2

(55)
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In this step, the variational free parameters {¢.} are computed by maximizing the objective function while keeping the

parameters of the posterior distribution Q(£2) fixed.

Update for £ = [£1, ..., &c]:
it is easy to show that £, can be computed as

M

N
)\I
:M%ZE+1izﬂm@ﬁ
i=1 j=1

5. Computational Complexity of our VB algorithm

Table 1. Computational Complexity of the PUnDA VB algorithm.

Step Complexity

Updatey, O(NKd)
Updatey,  O(MKd)
Update IT ~ O(K)

Update ® O( NK3d) )
Update '  O(MK3d)
Update Z ~ O(K?*(N + M)d)
Update S O(NKd)

Update S’  O(MKd)

Update W O( (N + M) )
Update ¢ O(MK?)

(59)

In this section, we analyze the computational complexity of each iteration of the proposed VB algorithm. Each iteration in
our VB algorithm, mainly includes matrix multiplications. The computational complexity of each parameter’s updating is



summarized in Table 1. As can be seen from Table 1, the total complexity for VB algorithm is O (T x (N+ MK 2d) and T
is the total number of iterations. It is clear that the computational complexity of the proposed VB algorithm, for training, in
one iteration is O((N + M)K?2d), i.e., linear in the size of the source+target data N + M, the data dimensionality d, and
quadratic in the dimensionality of the shared space K, K < d. For classifying a test data point the computational complexity
is O(CK?), for C class instances.

References

[1] G. Bouchard. Efficient bounds for the softmax function and applications to approximate inference in hybrid models. In NIPS 2007
workshop for approximate Bayesian inference in continuous/hybrid systems, 2007. 6

[2] S. Herath, M. Harandi, and F. Porikli. Learning an invariant hilbert space for domain adaptation. /IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 1

[3] L.v.d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(Nov):2579-2605, 2008. 1

[4] R.Renner and S. Wolf. Smooth rényi entropy and applications. In Information Theory, 2004. ISIT 2004. Proceedings. International
Symposium on, page 233. IEEE, 2004. 6



