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1. Detailed Network Architecture

The detailed structures of the global pathway GθgE and
GθgD are provided in Table 1 and Table 2. Each convolution
layer of GθgE is followed by one residual block [2]. Particu-
larly, the layer conv4 is followed by four blocks. The output
of the layer fc2 (vid) is obtained by selecting the maximum
element from the two split halves of fc1.

The Decoder of the global pathway GθgD contains two
parts. The first part is a simple deconvolution stack for up-
sampling the concatenation of the feature vector vid and the
random noise vector z. The second part is the main decon-
volution stack for reconstruction. Each layer takes the out-
put of its previous layer as the regular input, which is omit-
ted in the table for readability. Any extra inputs are speci-
fied in the Input column. Particularly, the layers feat8 and
deconv0 have their complete inputs specified. Those ex-
tra inputs instantiate the skipping layers and the bridge be-
tween the two pathways. The fused feature tensor from the
local pathway is denoted as local in Table 2. Tensor local
is the fusion of the outputs of four GθlD s’ layer conv4 (of
Table 3). To mix the information of the various inputs, all
extra inputs pass through one or two residual blocks before
being concatenated for deconvolution. The profile image
IP is resized to the corresponding resolution and provides
a shortcut access to the original texture for GθgD .

Table 3 shows the structures of the local pathway GθlE
and GθlD . The local pathway contains three down-sampling
and up-sampling processes respectively. The w and h de-
note the width and the height of the cropped patch. For the
patches of the two eyes, we set w and h as 40; for the patch
of the nose, we set w as 40 and h as 32; for the patch of the
mouth, we set w and h as 48 and 32 respectively.

We use rectified linear units (ReLU) [4] as the non-
linearity activation and adopt batch normalization [3] ex-
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Table 1. Structure of the Encoder of the global pathway Gθg
E

Layer Filter Size Output Size
conv0 7 × 7/1 128 × 128 × 64
conv1 5 × 5/2 64 × 64 × 64
conv2 3 × 3/2 32 × 32 × 128
conv3 3 × 3/2 16 × 16 × 256
conv4 3 × 3/2 8 × 8 × 512

fc1 - 512
fc2 - 256

Table 2. Structure of the Decoder of the global pathway Gθg
D

. The
convs in Input column refer to those in Table 1.

Layer Input Filter Size Output Size
feat8 fc2, z - 8 × 8 × 64

feat32 - 3 × 3/4 32 × 32 × 32
feat64 - 3 × 3/2 64 × 64 × 16
feat32 - 3 × 3/2 128 × 128 × 8

deconv0 feat8, conv4 3 × 3/2 16 × 16 × 512
deconv1 conv3 3 × 3/2 32 × 32 × 256

deconv2 feat32, conv2, IP 3 × 3/2 64 × 64 × 128

deconv3 feat64, conv1, IP 3 × 3/2 128 × 128 × 64

conv5 feat128, conv0, local , IP 5 × 5/1 128 × 128 × 64
conv6 - 3 × 3/1 128 × 128 × 32
conv7 - 3 × 3/1 128 × 128 × 3

Table 3. Structure of the local pathway Gθl
E

& Gθl
D

. The convs
in Input column refer to those in the same table.

Layer Input Filter Size Output Size
conv0 - 3 × 3/1 w × h× 64
conv1 - 3 × 3/2 w/2 × h/2 × 128
conv2 - 3 × 3/2 w/4 × h/4 × 256
conv3 - 3 × 3/2 w/8 × h/8 × 512

deconv0 conv3 3 × 3/2 w/4 × h/4 × 256
deconv1 conv2 3 × 3/2 w/2 × h/2 × 128
deconv2 conv1 3 × 3/2 w × h× 64
conv4 conv0 3 × 3/1 w × h× 64
conv5 - 3 × 3/1 w × h× 3

cept for the last layer. In GθgE and GθlE , the leaky ReLU is
adopted.

Discussion: Our model is simple while achieving bet-
ter performance in terms of the photorealism of synthesized
images. Yim et al. [5] and Zhu et al. [7] use locally con-
nected convolutional layers for feature extraction and fully
connected layer for synthesis. We use weight-sharing con-
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Figure 1. Our synthesized images present moderately better exposure in some cases. Each tuple consists of three images, with the input IP

on the left, the synthesized in the middle, the ground truth frontal face Igt on the right. Each IP and its corresponding Igt are taken under
a flash light from the same direction.

Figure 2. Synthesis results under various illuminations. The first row is the synthesized image, the second row is the input. Please to refer
to the supplementary material for more results.

volution in most cases. Our model reduces parameter num-
bers to a large extent and avoids expensive computation for
generating every pixel during synthesis. Yim et al. [5] and
Amir et al. [1] add a second reconstruction branch or a re-
finement network. Our early supervised decoder achieves
end-to-end generation of high-resolution image.

2. Additional Synthesis Results
Additional synthesized images Ipred are shown in Fig. 1

and Fig. 2. Under extreme illumination condition, the ex-
posure of Ipred is consistent with or moderately better than
that of its input IP or its ground truth frontal face Igt.
Fig. 2 demonstrates TP-GAN’s robustness to illumination
changes. Despite extreme illumination variations, the skin
tone, global structure and local details are consistent across
illuminations. Our method can automatically adjust IP ’s
exposure and white balance.

Additionally, we use a state-of-the-art face alignment
method [6] to provide four landmarks for TP-GAN under
extreme poses. The result is only slightly worse than that
reported in Table 2 of the paper. Specifically, we achieve
Rank-1 recognition rates of 87.63(±60◦), 76.69(±75◦),
62.43(±90◦).

3. Activation Maps Visualization
In this part, we visualize the intermediate feature maps

to gain some insights into the processing mechanism of the
two-pathway network. Fig. 3 illustrates the fusion of global
and local information before the final output. Cg contains
the up-sampled outputs of the global pathway and Cl refers
to the features maps fused from the four local pathways.
Their information is concatenated and further integrated by
the following convolutional layers.

Figure 3. Synthesis process illustrated from the perspective of ac-
tivation maps. The up-sampled feature map Cg is combined with
the local pathway feature map Cl to produce feature maps with
detailed texture.

Figure 4. Automatic detection of certain semantic regions. Some
skip layers’ activation maps are sensitive to certain semantic re-
gions. One for detecting non-face region is shown on the left,
another for detecting hair region is shown on the right. Note the
delicate and complex region boundaries around the eyeglasses and
the fringe.

We also discovered that TP-GAN can automatically de-
tect certain semantic regions. Fig. 4 shows that certain skip
layers have high activation for regions such as non-face re-
gion and hair region. The detection is learned by the net-
work without supervision. Intuitively, dividing the input im-
age into different semantic regions simplifies the following
composition or synthesis of the frontal face.
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