
Supplementary Material:
Centered Weight Normalization in Accelerating Training of Deep Neural

Networks

Lei Huang†, Xianglong Liu†, Yang Liu†, Bo Lang†, Dacheng Tao ‡
†State Key Laboratory of Software Development Environment, Beihang University, P.R.China

‡UBTECH Sydney AI Centre, School of IT, FEIT, The University of Sydney, Australia
{huanglei, xlliu, blonster, langbo}@nlsde.buaa.edu.cn, dacheng.tao@sydney.edu.au

1. Proof of proposition
Proposition 1. Let z = wTh, where wT1 = 0 and ‖w‖ = 1. Assume h has Gaussian distribution with the mean:
Eh[h] = μ1, and covariance matrix: cov(h) = σ2I, where μ ∈ R and σ2 ∈ R. We have Ez[z] = 0, var(z) = σ2.

Proof. It’s easy to calculate:

Ez[z] = wT
Eh[h] = wTμ1 = 0 (1)

The variance of z is given by

var(z) = Ez[z − Ez[z]]
2

= Eh[w
T (h− Eh[h])]

2

= Eh[w
T (h− Eh[h])] · Eh[w

T (h− Eh[h])]
T

= wT
Eh[(h− Eh[h])] · Eh[(h− Eh[h])]

Tw

= wT cov(h)w

= wTσ2Iw

= σ2wTw = σ2 (2)

Proposition 2. Regarding to the proxy parameter v, centered weight normalization makes that the gradient ∂L
∂v has following

properties: (1) zero-mean, i.e. ∂L
∂v · 1 = 0; (2) orthogonal to the parameters w, i.e. ∂L

∂v ·w = 0

Proof. As introduced in the paper, the gradient ∂L
∂v is calculated as follows:

∂L
∂v

=
1

‖v̂‖ [
∂L
∂w

− (
∂L
∂w

w)wT − 1

d
(
∂L
∂w

1)1T ] (3)

where v̂ = v− 1
d1(1

Tv) is the centered auxiliary parameter. Besides, the centered weight normalization method guarantees
that: (1) wT1 = 0; (2) ‖w‖ = 1. Based on 3, we have

∂L
∂v

· 1 =
1

‖v̂‖ [
∂L
∂w

− (
∂L
∂w

w)wT − 1

d
(
∂L
∂w

1)1T ] · 1

=
1

‖v̂‖ [
∂L
∂w

1− (
∂L
∂w

w)wT1− 1

d
(
∂L
∂w

1)d]

=
1

‖v̂‖ [−(
∂L
∂w

w)(wT1)] = 0 (4)

1



Similarly, we have:

∂L
∂v

·w =
1

‖v̂‖ [
∂L
∂w

− (
∂L
∂w

w)wT − 1

d
(
∂L
∂w

1)1T ] ·w

=
1

‖v̂‖ [
∂L
∂w

·w − (
∂L
∂w

w)(wT ·w)− 1

d
(
∂L
∂w

1)(1T ·w)]

=
1

‖v̂‖ [
∂L
∂w

·w − (
∂L
∂w

w)] = 0 (5)

2. Experimental results on GoogLeNet over CIFAR-10 dataset
The setup of this experiment is described as in the experiment of GoogLeNet on CIFAR in the paper. The results are shown

in Figure 1, from which we can find that CWN also achieves marginal speedup compared to WN and ‘plain’. Moreover, CWN
also obtains the lowest test error of 5.64%, compared to ‘plain’ of 6.00% and WN of 6.01%. We conjecture that centering
the weight effectively regularizes the neural networks, therefore can achieve improvement in terms of the test performance,
while it also improves the conditioning of the optimization problem and obtains net gain in terms of training performance.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

epochs

t
r
a
i
n
i
n
g
 
e
r
r
o
r

plain
WN
CWN

(a) training error

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

epochs

t
e
s
t
 
e
r
r
o
r

plain
WN
CWN

(b) test error

Figure 1. Performances comparison on GoogLeNet architecture over CIFAR-10 dataset.

3. Details of neural network architectures in the experiments
Figures 2, 3 and 4 show the details of the used VGG-A [2], GoogLeNet [3] and 56 layers residual network [1] in the

paper respectively. More details please see the available code at: https://github.com/huangleiBuaa/CenteredWN.

References
[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 2
[2] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014. 2
[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with

convolutions. CoRR, abs/1409.4842, 2014. 2



3x3 conv

Relu

Block

Block(64,128)
MaxPool(2,2,2,2)

Block(128,256)
Block(256,256)

Block(256,512)
Block(512,512)

Block(512,512)

Block(3,64)

MaxPool(2,2,2,2)

MaxPool(2,2,2,2)

MaxPool(2,2,2,2)

Log softMax

NLL loss

Fc(512,10)

Block(512,512)
MaxPool(2,2,2,2)

Fc(512, 512)
BN

Relu

Figure 2. The VGG-A architecture in the experiments. For ‘Block(d,n)’, d and n are the sizes of feature maps with respect to the input and
output. ‘3 × 3 conv’ indicates using 3 × 3 convolutional filter. ‘Fc(d, n)’ indicates that the fully connected linear mapping has the input
dimension of d and output dimension of n. The MaxPool(2,2,2,2) is in 2× 2 regions by step size of 2× 2.

Inception 4a

Inception 4c
Inception 4d
Inception 4e

Inception 5a
Inception 5b

Inception 3b

AveragePool(7,7,1,1)

Log softMax

NLL loss

Fc-2048

Inception 4b

Inception 3a

conv(3,64,3,3)
conv(64,192,3,3)

Inception 3c

conv(576,576,3,3), /2

conv(1024,1024,3,3), /2

Inception

depthConcat

1x1 conv

3x3 conv 3x3 conv

pooling1x1 conv 1x1 conv

1x1 conv

3x3 conv

Figure 3. The GoogLeNet architecture. In the left side, we show the overall architecture. Note that ‘conv(3,64,3,3)’ indicates using 3× 3
filter with that the dimensions of input and output feature maps are 3 and 64 respectively. All convolutional layer is followed by batch
normalization and Relu nonlinearity. The right side shows the general Inception module.



3x3 conv(3,16)

Block_S1(16,16)

AveragePool
(8,8,1,1)

Log softMax

NLL loss

Fc(64,100)

X 8
3x3 conv, /2

BN
Relu

Block_S2

3x3 conv

BN
Relu AveragePool

(2,2,2,2)

Block_S1(16,16)

Block_S2(16,32)

X 8Block_S1(32,32)

Block_S2(32,64)

X 8Block_S1(64,64)

3x3 conv

BN
Relu

Block_S1

3x3 conv

BN
Relu

BN

Relu

Figure 4. The 56-layers residual neural network. ’×n’ means there are n stacked blocks.


