
Learning Policies for Adaptive Tracking with Deep Feature Cascades
Supplementary Material

Chen Huang Simon Lucey Deva Ramanan
Robotics Institute, Carnegie Mellon University

chenh2@andrew.cmu.edu {slucey,deva}@cs.cmu.edu

1. Algorithmic Details
Network architecture: We use the exact convolutional ar-
chitecture of SiamFC [1]. The convolutional layers C1−C5
and their parameter details are given in Table 1. Note max-
pooling is employed for the convolutional layers C1 and
C2. We use the nonlinear ReLU function [4] after every
convolutional layer except for C5. Batch normalization [3]
is inserted after every linear layer.
Deep Q-learning: During deep Q-learning [6], the optimal
action-value function Q(Sl, Al) obeys the Bellman equa-
tion: it is optimal to select the action A′ that maximizes the
expected reward

Q(Sl, Al) = R+ γmax
A′

Q(S′, A′), (1)

where Q(S′, A′) is the future reward and γ the discount fac-
tor. Since the action-value function is approximated by a Q-
Net with weights θ, the Q-Net can be trained by minimizing
the loss function V (θl) at each iteration l,

V (θl) = E
[(

R+ γmax
A′

Q(S′, A′; θl−1)−Q(Sl, Al; θl)
)2

]
.

(2)
The gradient of this loss function with respect to the net-

work weights θl is as follows:

∇θlV (θl) = E
[(

R+ γmax
A′

Q(S′, A′; θl−1)−Q(Sl, Al; θl)
)

·∇θlQ(Sl, Al; θl)
]
. (3)

2. Discussions and Results
The main idea of our EArly-Stopping Tracker (EAST) is

to track easy frames using only early layers of a deep feature
cascade, e.g. pixel values, while hard frames are processed
with invariant but expensive deep layers when needed.

An attached video demo.mp4 exemplifies such tracking
policies in video sequences. To further validate the advan-
tages of EAST in both accuracy and speed, we compare

Table 1. Network architecture and convolutional layer specifics.

Layer Support Stride Template Search Chans.activation activation
Input 127×127 255×255 3
conv1 11×11 2 59×59 123×123 96

C1 pool1 3×3 2 29×29 61×61 96
conv2 5×5 1 25×25 57×57 256

C2 pool2 3×3 2 12×12 28×28 256
C3 conv3 3×3 1 10×10 26×26 192
C4 conv4 3×3 1 8×8 24×24 192
C5 conv5 3×3 1 6×6 22×22 128

Table 2. The Area Under the Curve (AUC) score for One-Pass
Evaluation (OPE), Temporal Robustness Evaluation (TRE) and
Spatial Robustness Evaluation (SRE), and speed (fps, * indicates
GPU speed, otherwise CPU speed) on the OTB-50 dataset. The
best results are shown in bold.

Method LCT SiamFC SINT EAST
[5] [1] [7]

AUC-OPE 0.612 0.612 0.625 0.638
AUC-TRE 0.594 0.621 0.643 0.662
AUC-SRE 0.518 0.554 0.579 0.591

Speed 27 86* 4* 23/159*

Table 3. The accuracy RA, robustness RR and average R ranks
under baseline and region noise experiments in VOT-14. Ro is the
overall (averaged) ranking for both experiments, which is used to
rank the 38 trackers in the main paper. Our CPU/GPU speeds are
reported in fps, while the speeds for the top 3 trackers are in EFO
units, which roughly correspond to fps (e.g. the speed of the NCC
baseline is 140 fps and 160 EFO).

baseline region noise
Tracker RA RR R RA RR R Ro Speed
EAST 4.95 5.42 5.19 5.11 4.73 4.92 5.06 22/155
DSST 5.41 11.93 8.67 5.40 12.33 8.86 8.77 7.66
SAMF 5.30 13.55 9.43 5.24 12.30 8.77 9.10 1.69
KCF 5.05 14.60 9.82 5.17 12.49 8.83 9.33 24.23

with the top 3 trackers on OTB-50 [8] in terms of speed,
and AUC score for One-Pass Evaluation (OPE), Temporal
Robustness Evaluation (TRE) and Spatial Robustness Eval-
uation (SRE). Table 2 shows that EAST achieves the highest
scores under all evaluation metrics, while maintaining fast
tracking speed.

Table 3 shows the detailed ranks of accuracy RA and ro-

1



bustness RR under baseline and region noise experiments
in VOT-14 challenge. The two experiments evaluate track-
ers with the initial target location from ground truth and that
perturbed with random noises. The table also lists the over-
all rank Ro and running speed to compare EAST with the
best 3 trackers out of 38 submitted ones. It is evident that
EAST is one of the fastest trackers, while outperforming
other top performers in the overall rank.

2.1. Template Update

It is worth noting that, in our feature cascade we ex-
plore the pixel and HOG layers before expensive deep lay-
ers. When processing the cheap pixel and HOG layers, we
make use of fast correlation filters [2]. A correlation filter
w with the same size of image patch x is learned by solving
the Ridge Regression loss function

min
w

∑
i

(
wTxi − yi

)2
+ λ‖w‖2, (4)

where yi is the target response value, and λ is the regular-
ization parameter.

Solving this loss function is fast due to the efficient use
of all shifted patches xi by exploiting the discrete Fourier
transform. Besides fast speed, the correlation filter has an-
other benefit of updating the template w over time. How-
ever, this adaptive merit is not preserved for deep layers.
Recall that for the deep convolutional layers C1 − C5, we
follow SiamFC [1] to compute the similarity of a template
image z to all translated regions in search image x by

Fl(z, x) = ϕl(z) ∗ ϕl(x) + vI, (5)

where ϕl is the convolutional feature embedding at layer l,
and v ∈ R is an offset value.

Here ϕl(z) can be treated as the convolutional template
to compute the target responses, but is fixed to ϕl(zt=1)
from the first frame and is never updated during tracking.
Then a question naturally arises: can we improve the per-
formance by updating the template for deep layers?

To this end, we conduct the following experiment on
OTB-50: we simply update ϕl(zt) as ϕl(zt−1) from the
previous frame, and record the accuracy if we separately
update the convolutional layer l from C1−C5. Fig.1 shows
the AUC score when we update the template for each deep
layer. Marginal gains are obtained on lower layers C1−C2,
suggesting that they are less invariant and so would need to
be updated more often. On the other hand, updating the top
layer C5 leads to no difference, which is actually in line
with the observations by SiamFC [1] that always uses this
invariant top layer for tracking. In the future, we can con-
sider how to learn to update template online rather than just
use the previous frame. Another promising direction is to
further speedup the deep convolutional process by adopting
the Fourier transform techniques.

C1 C2 C3 C4 C5
0.635

0.638

0.641

AUC

Layer

EAST

Figure 1. The Area Under the Curve (AUC) score for One-Pass
Evaluation (OPE) of template update for deep layers C1− C5.

References
[1] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. S. Torr. Fully-convolutional siamese networks for object
tracking. In ECCV, 2016.

[2] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-
speed tracking with kernelized correlation filters. TPAMI,
37(3):583–596, 2015.

[3] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS,
2012.

[5] C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term cor-
relation tracking. In CVPR, 2015.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
and et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[7] R. Tao, E. Gavves, and A. W. M. Smeulders. Siamese instance
search for tracking. In CVPR, 2016.

[8] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A
benchmark. In CVPR, 2013.


