
MirrorFlow:

Exploiting Symmetries in Joint Optical Flow and Occlusion Estimation

– Supplementary Material –

Junhwa Hur Stefan Roth

Department of Computer Science, TU Darmstadt

We here provide additional details on the data term, an

analysis of the optimizer, an accuracy analysis in occluded

regions, and details on the processing time.

A. Details on the Data Term

In Eqs. (2b) and (2c) of the main paper, the function

ρD(p,Hsp) measures the photometric error between a pixel

p and its corresponding pixel Hspp in the other frame. For

example, given a homography motionHf
sp

, the data cost for

pixel p in It is given as

ρfD(p,H
f
sp
) = min

{

ρl
(
φ(p,Hf

sp
)
)
, τD

}

(7a)

with

φ(p,Hf
sp
) = (7b)

αD

∑

y∈{−3,...,3}2

f

(

T
(
It(p+ y) − It(p)

)

︸ ︷︷ ︸

ternary value at p in It

−T
(
It+1(Hf

sp
(p+ y))− It+1(Hf

sp
p)

)

︸ ︷︷ ︸

ternary value at H
f
spp in It+1

)

+(1− αD)|∇It+1(Hf
sp
p)−∇It(p)|

︸ ︷︷ ︸

gradient constancy penalty

, (7c)

which is the weighted sum of the ternary transform and gra-

dient constancy penalty.

Deviations are penalized by a Lorentzian penalty

ρl(x) = αl log((1 + x2)/2σ2
l ), truncated at τD. The idea

behind function φ(p,Hf
sp
) is to calculate the Hamming dis-

tance of two 7 × 7 ternary patches, one around pixel p in

It and one around the corresponding pixel Hf
sp
p in It+1.

Unlike the conventional ternary transform [34], we use a

continuous variant. Specifically, we relax the definition of

the Hamming distance and adopt the sigmoid function

T (x) =
2

1 + exp(−σTx)
− 1 =

1− exp(−σTx)

1 + exp(−σTx)
(8)

instead of a true ternary value, and use the Geman-McClure

function [54] to score the differences in the ternary signa-

ture between the patches:

f(x) =
x2

(σf + x2)
. (9)

As shown in Figs. 6a and 6b, these continuous functions

approximate the conventional discrete setting, but they as-

sess subtle brightness variations more naturally when their

input is near zero. In other words, they are still robust, but

less brittle than the original Hamming-based definition.

Furthermore, when calculating the ternary value at point

Hf
sp
p in the other frame, we calculate it not on the con-

ventional ternary patch that is centered at the transformed

point, but on a transformed patch. Eq. (7b) precisely ex-

presses how to calculate the ternary value on the warped

patch (i.e., referring the intensity at Hf
sp
(p+ y) instead of

Hf
sp
p+y). Similar to a classical iterative-warping scheme,

this strategy yields a more comprehensive data cost that is

invariant to local shape deformation caused by the motion.

We observe that the two practices above increase the flow

accuracy. Table 4 compares the flow accuracy of three dif-

ferent ways of calculating the ternary value: (i) our standard

implementation including both the continuous ternary vari-

ant and the patch transformation (standard), (ii) the stan-

dard implementation with the conventional discrete setting

of the ternary transform (discrete) but with patch transfor-

mation, (iii) the standard implementation without the patch

-5 0 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 6. (a) Sigmoid function. (b) Geman-McClure function.

1



Non-occluded pixels All pixels

Method Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

standard 6.52 % 11.72 % 7.41 % 9.26 % 13.94 % 9.98 %

discrete 7.11 % 12.26 % 7.99 % 9.88 % 14.57 % 10.60 %

w/o transformation 7.29 % 12.35 % 8.16 % 10.41 % 14.80 % 11.08 %

Table 4. Evaluation of different methods for computing the ternary

census on the KITTI training set. See text for details.

transformation (w/o transformation) but with the continu-

ous variant.

As presumed, using the continuous ternary variant and

the transformed ternary patch both yield better accuracy by

reducing the number of flow errors by about 5.85 % and

9.93 % respectively. This experiment has been conducted

on the KITTI Optical Flow 2015 training set.

B. Analysis of the Optimizer

As discussed in Sec. 3.3.1 of the main paper, we first col-

lect a set of proposals when assigning homography motions

for each superpixel, and sequentially run expansion moves

on each subgraph of superpixels to allow for an efficient

optimization. We assemble a set of subgraphs in a way that

each subgraph consists of neighboring 30 superpixels with

70 % overlap between each other. We empirically found

that this is an advantageous setting in our problem.

Choosing the number of superpixels in each subgraph af-

fects both flow accuracy and energy at convergence. When

the number of superpixels is high, proposals can be propa-

gated into broader regions, but the algorithm has a smaller

chance of finding locally optimal homography motions,

which results in slower convergence. On the other hand,

when the number of superpixels is low, locally optimal mo-

tions can lower the energy level more quickly, but the opti-

mization can get stuck in local optima as it propagates labels

only in small regions, which eventually leads to higher flow

error rates.

Figure 7 and Fig. 8 demonstrate the energy and the flow

error rate (on KITTI 2015 training), respectively, versus the

processing time, depending on the number of superpixels

in each subgraph. Each dot on a graph represents an itera-

tion step. These two figures illustrate the trade-off described

above. We found that having 30 superpixels for each sub-

graph yields the lowest flow error rates.

Choosing the size of overlapping regions between sub-

graphs also incurs a trade-off: When the size is getting big-

ger, the proposals can be propagated more effectively be-

tween subgraphs, which helps finding lower energy solu-

tions in fewer iterations. However, it requires more pro-

cessing time per iteration because the size of the subgraphs

is increased. When the size of overlaps gets smaller, on the

other hand, less processing time per iteration is needed, but

the optimizer propagates proposals through subgraphs less

effectively, leading to more iterations being required.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
5.55

5.6

5.65

5.7

5.75
×10

6

10

20

30

40

50energy

processing time (s)

Figure 7. Overall energy depending on the number of superpixels

in each subgraph.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.095

0.1

0.105

0.11

0.115

0.12

10

20

30

40

50

eocc

processing time (s)

Figure 8. The estimated flow error rates depending on the number

of superpixels in each subgraph.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
5.55

5.6

5.65

5.7

5.75

5.8
×10

6

10%

20%

30%

40%

50%

60%

70%

80%energy

processing time (s)

Figure 9. Overall energy depending on the overlap setting.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.09

0.1

0.11

0.12

0.13

0.14

0.15
10%

20%

30%

40%

50%

60%

70%

80%

eocc

processing time (s)

Figure 10. The estimated flow error rates depending on the overlap

setting.



Figure 9 and Fig. 10 demonstrate the energy and the

flow error rate (on KITTI 2015 training), respectively, ver-

sus processing time, depending on the overlap size between

subgraphs. As in Fig. 9, if the overlap size is more than

50 %, the energy is converging to a lower value, but with a

similar speed. Figure 10 demonstrates that having 70 % of

overlap between subgraphs yields the lowest flow error rates

in the same processing time. However, please note that the

flow accuracy differences between the settings are not very

significant (< 5 %).

C. Performance in Occluded Regions

We analyze the flow estimation accuracy of top-

performing algorithms including ours especially in oc-

cluded regions on the KITTI Optical Flow 2015 benchmark

[12]. Unlike the MPI Sintel Flow Dataset [8], the KITTI

benchmark does not explicitly provide the statistics for oc-

cluded areas. Thus, we indirectly deduce them.

To that end, let us define the variables

nall, nnoc, nocc, eall, enoc, and eocc as follows:

• nall : no. of all pixels considered in evaluation

• nnoc : no. of non-occluded pixels

• nocc : no. of occluded pixels

• eall : no. of all pixels with an incorrect flow estimate

• enoc : no. of non-occluded pixels with an incorrect flow

estimate

• eocc : no. of occluded pixels with an incorrect flow es-

timate.

Then, the following equations naturally hold:

nall = nnoc + nocc (10a)

eall = enoc + eocc. (10b)

We are interested in estimating the flow error rate in oc-

cluded areas, eocc/nocc. From Eqs. (10a) and (10b) we have

eocc

nocc

=
eall − enoc

nall − nnoc

=

eall

nall
− enoc

nall

1− nnoc

nall

=

eall

nall
− enoc

nnoc

nnoc

nall

1− nnoc

nall

. (11)

Given that we do not know the ratio of non-occluded pixels,

we substitute nnoc/nall with α in Eq. (11) and obtain

eocc

nocc

=
1

1− α

eall

nall

−
α

1− α

enoc

nnoc

, (12)

where the values eall/nall and enoc/nnoc are the flow error

rates on all pixels and non-occluded pixels, respectively,

which can be found in Table 1 of the main paper. There-

fore, we can indirectly infer the flow error rate in occluded

areas based on the statistics from Table 1 and in terms of

α = nnoc/nall, which denotes the (unknown) ratio of the

number of non-occluded pixels to that of all pixels that are

considered in the evaluation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

15

20

25

30

35

Ours (MirrorFlow)

FlowNet2

SDF

MR-Flow

DCFlow

SOF

eocc

nocc

α
Figure 11. The estimated flow error rates of top-performing algo-

rithms in occluded regions with respect to α = nnoc/nall.

Method Fl-all in occluded pixels (estimates)

Ours (MirrorFlow) 28.19 %

SDF [2] 29.80 %

FlowNet2 [19] 32.36 %

MR-Flow [46] 36.23 %

DCFlow [48] 44.47 %

SOF [33] 54.33 %

Table 5. Estimated flow errors for occluded pixels (when α =

0.8635). Our method demonstrates the lowest error among all

published two-frame methods on the KITTI benchmark.

In Fig. 11 we now plot the estimated flow error rates of

top-performing algorithms in occluded regions by varying

the unknown ratio α. We observe that our MirrorFlow ap-

proach consistently shows the lowest error rates among the

top-performing algorithms regardless of values of the ratio

α. Considering that the ratio α for the KITTI 2015 training

set is α = 0.8635, we can confidently infer that our method

demonstrates the lowest optical flow error among the top-

performing algorithms on the KITTI benchmark. Table 5

gives the estimated results assuming the same α as on the

training set.

D. Processing Time

For processing a 1226× 370 image, the algorithm takes

around 40 minutes on a single core until the accuracy

no longer increases (tested on Intel Xeon CPU E5-2650

2.20GHz). Yet, the algorithm can be easily parallelized

because the local subgraphs that do not overlap with each

other can be processed at the same time [40]. Using 4 cores,

the runtime decreases down to 11 minutes.

The main bottleneck is calculating the ternary transform

in the data term. We calculate the ternary census on trans-

formed patches, which needs to be done for every differ-

ent homography motion. When just using a plain data term

(penalizing intensity + gradient differences), the runtime is

only 4 minutes. CNN-based learned descriptors also have



the potential to lead to a speedup as a future work.

References

[54] M. J. Black and A. Rangarajan. On the unification of line

processes, outlier rejection, and robust statistics with applica-

tions in early vision. Int. J. Comput. Vision, 19(1):57–91, July

1996. 1


