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Abstract

In this supplementary material, we provide more imple-

mentation details including the architectures and training

settings of baseline models and PEARL. We also present

the experimental results and analysis of PEARL on Camvid

dataset, as well as more qualitative evaluations of PEARL.

1. Implementation Details

Since the class distribution is extremely unbalanced in

video scene parsing, we increase the weight of rare classes

during training, similar to [3, 6, 15]. In particular, we adopt

the re-weighting strategy in [15]. The weight for the class

y is set as ωy = 2⌈log 10(η/fy)⌉ where fy is the frequency of

class y and η is a dataset-dependent scalar which is defined

using the 85%/15% frequent/rare classes rule.

All of our experiments are carried out on NVIDIA Titan

X and Tesla M40 GPUs using Caffe library.

1.1. Network Architectures

To demonstrate that PEARL can be applied with ad-

vanced deep architectures, we implement PEARL and base-

line models using two state-of-the-art deep architectures:

i.e. VGG16 and Res101 and compare their performance.

For fair comparison, both the frame parsing network and the

predictive learning network in PEARL share the same archi-

tecture as baseline models except for the input/output lay-

ers in the predictive learning network (which takes multiple

frames as inputs and outputs RGB frames instead of pars-

ing maps). In the following, we first introduce the architec-

ture details of baseline models (i.e., the following VGG16-

baseline and Res101-baseline) and then the differences be-

tween PEARL and these baselines.

• VGG16-baseline The VGG16-baseline is built upon

DeepLab [2] with two modifications. First, to further en-

hance model’s ability for video scene parsing, we add
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Figure 1: Architecture of the global contexture module which is

applied to encode the image global context information as sug-

gested in ParseNet [12]. The output feature map of fc7/conv5 3

layer in VGG16/Res101 architectures in our experiments is passed

through such global contextual module to produce a global context

augmented feature map by global average pooling, up-sampling

and concatenation with fc7/conv3 3 output feature map. A 1×1

convolutional layer is then applied to the concatenated feature map

to produce the output features with 1,024 channels.

three deconvolutional layers (each followed by ReLU)

to up-sample the fc7 output features of DeepLab. The

three deconvolutional layers consist of 4 × 4 convolu-

tional kernels with striding of size 2 and padding of size

1. The number of kernels are 256, 128 and 64 respec-

tively. Besides, following ParseNet [12], we use the

global contexture module for fc7 features to enhance the

model’s capability of capturing global context informa-

tion. As shown in Figure 1, the global contexture mod-

ule transforms the input feature map to a 1024-channel

feature map. In experiments, we find such a module im-

proves the parsing performance of the baseline model as

it enlarges the model’s receptive field size and utilizes the

global information to distinguish local confusing pixels.

• Res101-baseline The architecture of our Res101-

baseline is illustrated in Figure 2. It is modified from

the original Res101 [5] by adapting it to a fully convolu-

tional network, following [14]. Specifically, we replace

the average pooling layer and the 1,000-way classifica-

tion layer with a fully convolutional layer (denoted as

conv5 3cls in Figure 2) to produce dense parsing maps.
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Figure 2: Architecture of Res101-baseline used in our experiments. Built on original Res101 [5], a global contexture module (ref. to

Figure 1) is employed to produce the feature map augmented with global context information, which is then fed into a convolutional layer

(conv5 3cls) to produce dense parsing map. The subscript “cls” means the corresponding layer is a convolutional layer which has the same

number of filters as the categorical classes, e.g. the conv5 3cls has 19 filters for Cityscapes dataset. Following FCN [14], skip connections

from conv1, pool1, conv3 3 are constructed to utilize high frequency information in bottom layers. The upn is an up-sampling layer,

of which the output feature map is n times the spatial size of that of conv5 3cls. The symbol ⊕ represents the operation of “summation”.

Also, we modify conv5 1, conv5 2 and conv5 3 to

be dilated convolutional layers by setting their dilation

size to be 2 to enlarge the size of receptive fields. As a

result, the output feature map of conv5 3 has a stride

of 16. Following FCN [14], we utilize high-frequency

features learned in bottom layers by adding skip connec-

tions from conv1, pool1, conv3 3 to corresponding

up-sampling to produce parsing maps with the same size

as input frames. Similar to VGG16-baseline, we use the

global contexture module (ref. to Figure 1) for conv5 3

features.

In PEARL, the output features of the global contextural

module in the predictive learning network are concatenated

with those in the frame parsing network. Besides, there are

following two differences between the predictive learning

network and the baseline model:

• Bottom Convolutional Layer Since the predictive

learning network takes multiple video frames as input,

we adapt the first convolutional layer to a group con-

volutional layer [7] where the group number is equal

to the number of input frames (4 in our experiments).

In this way, no extra parameters is added and we can

have fair comparison with baseline models.

• Output Layer Since in phase I (unsupervised pre-

dictive learning) the predictive learning network pre-

dicts RGB frames instead of parsing maps, we replace

the output layer in baseline model with one having 3

filters. In phase II, the output layers remain the same

as baseline models.

Finally, GoogLeNet employed as the discriminator in

phase I is built upon the vanilla GoogLeNet [16] by replac-

ing its last fully connected layer with one having one hidden

unit.

1.2. The Architecture of Transform Layer

In our experiments, a “bottleneck” residual block pro-

posed in [5] is used as the transform layer whose architec-

ture is illustrated in Figure 3.

1.3. Training Settings

The training settings of PEARL are listed in Table 1. For

fair comparison, the training settings of baseline models are

the same as those of phase II in PEARL.

2. Experimental Results and Analysis on

Camvid

We further investigate the effectiveness of PEARL on

Camvid. Its result and the best results ever reported on

this dataset are listed in Table 2. Following [6, 15], loss

re-weighting is used on this dataset. One can observe that



Table 1: Training settings of two phases in PEARL when adopting VGG16 and Res101 architectures. “LR” stands for “learning rate”. In

all experiments, the weight decay and momentum are set to be 0.0001 and 0.9 respectively. Following Deeplab [1], the “poly” learning

rate policy is used in all training phases where the value of power equals to 0.9.

Training phase Batch size Crop size Overall epochs LR-initial LR-policy

Adopting VGG16 Architecture

Phase I 8 800 60 1e-6 Poly

Phase II 4 800 30 1e-7 Poly

Adopting Res101 Architecture

Phase I 8 800 60 1e-3 Poly

Phase II 4 960 30 1e-4 Poly

1×1 conv, 512

3×3 conv, 512

1×1 conv, 1024

relu

relu

relu

Summation

Figure 3: Architecture of the residual block [5] used as the trans-

form layer in PEARL. In the residual block, the shortcut connec-

tion performs identity mapping, the output of which is added to

the output of the stacked convolutional layers.

PEARL performs the best among all competing methods —

improving the PA/CA of the baseline model (Res101-

basline) by 1.7%/2.4% respectively, once again demon-

strating its strong capability of improving video scene pars-

ing performance. Notably, compared to the optical flow

based methods [9] and [13] which utilize CRF to model

temporal information, PEARL shows large advantages in

performance, verifying its superiority in learning temporal

representations for video scene parsing.

Table 2: Comparison with the state-of-the-art on CamVid. Res101

architecture is used in PEARL.

Methods PA(%) CA(%)

Res101-baseline (ours) 92.7 80.8

Ladicky et al.(ECCV-10) [8] 83.8 62.5

SuperParsing(ECCV-10) [17] 83.9 62.5

DAG-RNN (CVPR-16) [15] 91.6 78.1

MPF-RNN (AAAI-17) [6] 92.8 82.3

Liu et al. (ECCV-15) [13] 82.5 62.5

RTDF (ECCV-16) [9] 89.9 80.5

PEARL (ours) 94.4 83.2

3. Qualitative Evaluation of PEARL

3.1. More Frame Prediction Results from Phase I

Please refer to Figure 4;

3.2. More Video Scene Parsing Results of PEARL

Please refer to Figure 5. Notably, in the challenging pre-

dictive parsing task (predicting the parsing map of not ob-

served future frame), PEARL is able to predict temporally

smooth and motion aware parsing maps (e.g. the pedes-

trian/car in Seq.2/Seq.5) by using only the preceding RGB

frames. This demonstrates PEARL’s strong capability of

learning about complex video scene dynamics. Benefited

from the temporal representations and image local represen-

tations learned in PEARL, PEARL is able to produce more

accurate and temporally consistent parsing maps than base-

line models (as shown in the bottom row in each sequence).
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Figure 4: Eight sequences of videos in Cityscapes val set with corresponding frame prediction results produced by the predictive learning

network in the phase of unsupervised predictive learning. For each sequence, the upper row contains eight contiguous ground truth frames

and the bottom row contains corresponding frame predictions. It is observed that the predictive learning network is able to model the

structures of objects and stuff as well as the motion information of moving objects in videos. Note that the inputs for predicting each

frame are its preceding RGB frames, which are not fully presented for brevity. Best viewed in color and zoomed-in pdf.
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Figure 5: Examples of parsing results of PEARL on Cityscape val set. Top row: a five-frame sequence. The frame which has ground-truth

annotations and its preceding four frames are with green and red boundaries respectively. Second row: frame parsing results produced

by the VGG16-baseline model which takes a single frame as input. Since it cannot model temporal context, the baseline model produces

parsing results with undesired inconsistency across frames as in yellow boxes. Third row: predictive parsing results output by PEARL

in phase II (predictive learning for video scene parsing). The inconsistent parsing regions in the second row are classified consistently

across frames. Note for producing the predictive parsing result for each frame, the inputs are its preceding RGB frames which are not

fully presented for brevity. Fourth row: the final parsing maps produced by PEARL with better accuracy and temporal consistency due to

combining the advantages of conventional frame parsing model (the second row) and predictive parsing (the third row). Bottom row: the

ground truth label map (with green boundary) for the frame T .


