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We present additional discussion on the interpretation of our
algorithm (Sections 1 and 2), along with complete results that
did not fit in the main paper due to limited space (Section 3).
To make this supplement self-contained, we have reproduced
some content from the main paper.

1. PAC-Bayesian interpretation
Our algorithm is constructed from a geometric intuition of
manifold denoising. As an alternative, we present a second
interpretation based on the assumption that our references
are constructed explicitly as GP predictive distributions,
i.e., from a PAC-Bayesian perspective. We follow the PAC-
Bayesian analysis by Pentina et al. [10], derived for linear
support vector machine (SVM) cases by casting the linear
SVM parameter vector into a Gaussian random vector. In
Section 3 of the main paper, we extended it to a sample-based,
finite-dimensional projection of infinite dimensional GPs.

For a given bounded loss function C(·, ·) ∈ [0, 1], the
expected error rateRC and the empirical error rate R̂C of a
deterministic predictor g are defined as [9, 12]:

RC(g)=

∫
C(y,g(x))pX×R(x,y)d(x,y), (1)

R̂C(g)=
1

l

l∑
j=1

C(yj ,g(xj)), (2)

where we assume that g is trained on l data points plus labels.
The PAC-Bayesian analysis provides a probabilistic state-

ment on the upper bound of the expected error rateRC , based
on the empirical error rate R̂C and the difference between the
prior GP hi and the posterior GP f of the function g [9, 12]:
For any GPs hi and f over g, with probability at least 1−δ,

RC(g)≤R̂C(g)+

√√√√ 1

2l

[
KL(f |hi)+ln

(
2
√
l

δ

)]
. (3)

In our experiments, this bound was dominated by the KL-
divergence when g was constructed as the mean function of
a GP predictive distribution f .1 In this case, our denoising

1Originally, McAllester’s PAC-Bayesian bound is applicable to bounded
loss l [9, 12]. In our experiments, we adopted the approach of using the
standard squared loss l′ for training while for the evaluation of the bound,
l′ is replaced by a bounded loss l.

algorithm that uses the single (closest) reference hi inH min-
imizes this generalization bound. In general, multiple refer-
ences can be relevant to f , and therefore we denoise f by min-
imizing the divergences from a set of (close) {hi}, weighted
by the confidences (1−KL(f |hi)) associated with each hi.

2. Out-of-sample extension
Our experiments focused on refining the evaluation f of the
predictor of interest on a fixed datasetU . However, based on
the GP assumption, recovering the explicit functional form
of f is possible. Three scenarios exist:

1. When f is constructed explicitly as a GP predictor (with
covariance function k and noise parameter δX ), the mean
function f can be obtained as a combination of kernel
expansions:

f(x)=

u∑
i=1

αik
f (xi,x), (4)

where {αi} is obtained as the minimizer of the energy
functional EGP with the labeled training data points
augmented with (U,f∗) (Equation 8).

2. When the underlying model of f is not provided, but
the reference set H is given as GPs, kf and δfX can
be constructed based on the corresponding covariance
functions {ki} and noise parameters {δiX } ofH , e.g., kf
can be constructed as a convex combination of {ki}:

kf =
∑
hi∈H

w(hi)ki, (5)

w(hi)=
w(KL(f |hi),σ2

f )∑
hj∈Hw(KL(f |hj),σ2

f )
, (6)

w(x,c)=exp

(
−x

2

c

)
. (7)

3. When the explicit representations of f and H are all
unknown, (the hyper-parameter of) the covariance
function kf and the noise δfX can be estimated based
on additional labeled data points, or by performing
cross-validation on S.
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3. Experiments
As our approach allows combination of predictors of
unknown parametric form, existing approaches which require
known parametric forms are not applicable. To enable
experimental comparison with multi-task or transfer learning,
we thus devise a scenario in which existing algorithms are
provided with explicit parametric forms while our algorithm
is not. To facilitate the objective assessment of our algorithm
in this case, we include the training process of f (based on
S) in the evaluation of the algorithm.

Our setup. Our algorithm starts with an initial target pre-
dictor f and the set of reference predictorsH , and produces
a denoised target predictor f∗. For each problem, the initial
estimate f is obtained as a GP regressor with standard Gaus-
sian covariance kernel k(x1, x2) = exp(−‖x1−x2‖/σ2

X )
with scale parameter σX , trained based on a labeled data set
S= {(xu+1,yu+1),...,(xu+l,yu+l)}. The mean function f
is obtained as a minimizer of the energy functional

EGP(f)=

( ∑
(x,y)∈S

(f(x)−y)2
)

+δX ‖f‖2k, (8)

where ‖f‖k is the reproducing kernel Hilbert space (RKHS)
norm of f corresponding to the covariance kernel k [12], and
δX represents the noise model. Also, we present the predictor
combination results, where we use simple linear regressors
instead of Gaussian process regressors as the baseline. This
shows very similar improvement of our algorithm over
existing approaches (Figure 6). As our denoising algorithm
uses the unlabeled dataset U , the entire training process,
including hyper-parameter tuning (using the labeled dataset
S), becomes semi-supervised.

Baseline setup. We adapt Evgeniou and Pontil’s graph
Laplacian-based algorithm [5] and Pentina et al.’s curriculum
learning algorithm (CL) [10], plus baseline independent GP
predictions (Ind). Note that in our predictor combination
problem setting, the first approach [5] is equivalent to transfer
learning [1, 7, 15], while Pentina et al.’s algorithm corre-
sponds to choosing the best reference in H that minimizes
the generalization error bound [10]. We implemented two
different versions of Evgeniou and Pontil’s algorithm: the
first version (GL1) uses the graph Laplacian (L) with the
uniform weight matrix W=11>,2 while the second version
(GL2) estimates the relevance of the reference predictors
{hi} to the predictor f to be refined based on Euclidean
distance between the corresponding parameter vectors:

Wif =w(‖wi−wf‖,σ2
w), (9)

using the hyper-parameter σw and for GP (mean) predictors
(hi(x)=Φ(x)>wi, f(x)=Φ(x)>wf ).

2 L= I−D−1W with D being a diagonal matrix of the row sums of
W: Dii=

∑
j=1Wij .

All three baseline algorithms (CL, GL1 and GL2) can be
extended to the semi-supervised learning setting we use by
adopting a domain graph LaplacianLX as a regularizer:

R(f)=λ3f
>LX f , (10)

where f = {f(x1), ... ,f(xu)} and λ3 is a hyper-parameter.
The resulting algorithms are equivalent to Luo et al. [8] and
Wang et al. [17] in the predictor combination setting. For
each dataset, we only report the performance of the best
semi-supervised version (in terms of average test error) as
“SSL”, as all semi-supervised versions produce very similar
results to their underlying supervised version. The best semi-
supervised extensions are constructed from CL (MOCAP,
SARCOS), GL1 (School) and GL2 (CAESAR), respectively.

We compute results on four regression datasets: MOCAP,
CAESAR, SARCOS, and School. We report performance for
all algorithms with varying numbers of labeled training data
points. We repeat each experiment 10 times with different
training and test set splits, and average the results. We also
demonstrate non-parametric predictor combination for facial
landmark detection (Landmarks dataset), where traditional
parametric combination algorithms are futile to apply.

4. MOCAP dataset
Human body poses are captured with an optical marker-based
motion capture system [2]. Each of the 50,000 data points de-
scribes the 3D location of 62 skeletal body joint locations (i.e.,
62×3=186 output dimensions). The task is to estimate these
body joint locations from the 3D locations of five end effectors
(left/right hand, left/right foot, and head), i.e., a 5×3=15
dimensional mid-level representation as inputs. We removed
redundant variables from the original 186-dimensional space,
leaving an 87-dimensional output data representation. We
randomly sample eight of these as target predictors, and for
each use the remaining 86 predictors as references.

For all combination algorithms, we adopt the explicit GP
model assumption for the reference predictors H , i.e., we
assume that all reference predictors are explicitly constructed
as GP predictive distributions. Due to the large size of the
MOCAP dataset, training the full GP reference models is
infeasible, so we adopt Snelson and Ghahramani’s sparse GP
approximation [14] using 1000 inducing data points. This set-
ting facilitates more direct (model-based) comparisons with
the baselines GL1, GL2 and CL. In this setting, our algorithm
further benefits from the available predictive variances, which
improve the estimation of the KL-divergences (Equation 16
of the main paper): using GP predictive variances reduced
the average error rate by 11.34% from the model-free case
of using the unit covariance δ(·,·). However, this reduction
is achieved at the expense of making an explicit model
assumption, which may restrict the application domain of
our algorithm (similar to existing algorithms).

Results. All eight target predictors show improvement
(Figure 1). GL1 did not show noticeable improvement over
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Ind, indicating that not all variables are relevant. GL2, CL, and
SSL show noticeable improvements, but the improvements
achieved by our algorithm are much more significant. Figure 6
shows additional experimental results, where linear regressors
are used as predictors. Even though linear regressors led to
higher average baseline error rates, our test-time combination
algorithm significantly improved upon the baselines.

5. CAESAR dataset
This dataset contains 4,258 3D scans of human bodies along
with 6 ground-truth measurements: arm length, age, sitting
height, weight, shoulder breadth, and foot length [11, 13].
Each body scan is represented as a 20-dimensional feature vec-
tor by fitting a statistical body model [11]. Our goal is to refine
the initial target predictor f of each body measurement by us-
ing the remaining 5 measurements as reference predictorsH .
This constitutes 6 different predictor combination problems.

For our algorithm, each of the 5 observed measurements is
used directly as a reference predictor. The corresponding GPs
are constructed by using the unit covariance δ(·,·) (Section 3.1
of the main paper). This corresponds to the simplest and
least restrictive application case, where no model assumption
onH is imposed. However, this setting is not applicable to
baselines GL1, GL2 and CL as they require explicit represen-
tations of the reference predictors H . Therefore, for them,
the reference predictorsH={hi} are explicitly constructed
as GP regressors trained on the observed reference variables.

We also present a comparison with Bonilla et al.’s
non-parametric Gaussian process-based multi-task learning
(MTL) algorithm (MTGP) [4] in Figure 3. We include this
comparison as a curiosity to interested readers, because our
problem of refining the predictors from a fixed set of refer-
ences is not translatable to the classical MTL problem. As an
MTL method, this algorithm requires training all predictors
simultaneously, i.e., requires access to the training process of
individual predictors. This is not possible in our application
scenario where the reference predictor may be provided by
a precompiled software library, or even be a human predictor.

As such, the results of the MTGP comparison are not
comparable to the results of our adaptations of MTL to our
test time combination setting (GL1, GL2 and CL, Figure 2).
Instead, the comparison is performed in the standard MTL
setting, for which we use the code shared by the authors.
This algorithm requires tuning the rank hyper-parameter,
which we performed by picking the best test error rate. The
other hyper-parameters including the kernel parameters are
automatically tuned by their algorithm.

Results. In realistic applications, not all predictors are
relevant. For example, age is not strongly correlated with
body length measurements. However, two predictors (arm
and foot length) benefit significantly from the combinations
obtained by our algorithm (Figure 2). Predictor combinations
for the other variables are on par with baseline algorithm
Ind. The other baseline algorithms GL1, GL2, CL show no
noticeable improvement over Ind for any combination.

Table 1. Pairwise 1–KL-divergence values for the SARCOS dataset.
The target variables 2, 3, 4 and 7 have small KL-divergences leading
to mutual improvement by combination.

1 2 3 4 5 6 7

1 0.00 0.00 0.01 0.26 0.03 0.00 0.17

2 0.00 0.00 0.69 0.33 0.09 0.01 0.41

3 0.01 0.69 0.00 0.47 0.31 0.03 0.54

4 0.26 0.33 0.47 0.00 0.05 0.00 0.93

5 0.03 0.09 0.31 0.05 0.00 0.05 0.09

6 0.00 0.01 0.03 0.00 0.05 0.00 0.01

7 0.17 0.41 0.54 0.93 0.09 0.01 0.00

6. SARCOS dataset

This kinematics dataset contains 44,484 data points collected
from a robot arm. The input consists of 7 joint positions,
7 velocities and 7 accelerations, and the output consists
of 7 torques [16]. The experimental setting is the same as
CAESAR: our goal is to refine the predictor of each output at-
tribute given the remaining 6 attributes as references. For our
algorithm, the reference predictors are obtained in the same
way as CAESAR. For GL1, GL2 and CL, GP regressors are
constructed: the reference predictors are constructed based
on sparse GP approximation with 1000 inducing data points.

Results. Four out of seven predictors significantly benefit
from our predictor combinations (Figure 4). This is in accor-
dance with the measured (inverse) KL-divergences shown
in Table 1: target variables 2, 3, 4 and 7 have particularly
small KL-divergences (large 1−KL) with each other, which
indicates their mutual relevance. The other algorithms show
no significant improvement compared to Ind.

7. Landmarks dataset

The task is to detect 6 facial landmarks (the corners of both
eyes and the mouth) from 550 face images selected from
the BioID Face Database [6]. Three sliding-window-based
non-linear SVM detectors are trained (eye inner and outer
corners, and mouth corners, exploiting facial symmetry),
with detections made at the highest responses. We evaluate
the performance of detectors with varying number of training
images ({10,30,50,100}, with the remaining images used
for testing). For each detector, 16 training sub-images
(patches) are extracted per image: 4 positive patches sampled
randomly from a 3×3 window centered at the annotated
ground-truth position, plus 12 negative patches. The size of
the sub-images are determined per landmark for Ind based on
cross-validation. We apply our algorithm to detected (x,y)-
coordinate values, representing 12 attributes. Traditional
multi-task learning (MTL) cannot be applied in this setting,
as it assumes a shared parametric form for the predictors.
Hence, we apply MTL at the level of the SVM detectors.
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Table 2. Mean squared error (standard deviation in parentheses)
on the School dataset. All combination approaches improve on
independent prediction (Ind), although our approach fails to
outperform the baselines as the number of unlabeled data points
(maximum 251) is too small to reliably estimate KL-divergences.
SSL is the semi-supervised version of GL1.

Ind GL1 GL2 CL SSL Ours

11.86 10.80 11.07 11.18 10.81 11.24
(2.03) (1.82) (1.95) (1.86) (1.78) (1.86)

Results. Figure 5 summarizes the results. For any number
of training images, we can see that traditional MTL does
not help. Enforcing similarity of ‘eye-corner’ detector and
‘mouth’ detector actually degrades the performance over
individual detectors, as these are not anatomically connected.
Our algorithm better exploits predictor dependencies through
the detected spatial coordinates.

8. School dataset

This dataset consists of examination records of 15,362
students in 139 schools from the Inner London Education
Authority [3]. The goal is to predict the exam scores of the
students based on 27 input features, such as the year of the
exam and gender. Our goal is to estimate the exam scores
of each school based on the predictors of the remaining
138 schools as references. This constitutes 139 different
combinations of target and reference predictors. We perform
experiments on each set trained based on 20 labeled data
points, and report the average error rate. Similarly to MOCAP,
for all combination algorithms, the reference predictors are
explicitly constructed as (full) GP predictors.

Results. All four algorithms significantly improved
upon Ind (Table 2). However, our method shows the least
improvement. For this dataset, all tasks are strongly related.
All target and reference variables correspond to a single
attribute—exam scores—but are sampled from different
schools. Thus, only the data sampling distributions are
different. This is in contrast to the three other datasets, where
each output variable has a different characteristic.

For this dataset, all combination algorithms improve upon
independent predictions (Ind): Using all parametric refer-
ences uniformly (GL1) led to the best results, followed by GL2,
CL, and our algorithm. Our algorithm suffered from the lack
of data points: the maximum numberu of available data points
U for each task is 251, with around half of the tasks having less
than 100 data points. This demonstrates a limitation of our ap-
proach in that data-driven estimation of KL-divergences can
be unreliable versus explicit parametric form modeling. How-
ever, even in this case, our result still improves over indepen-
dent predictions without providing explicit parametric forms.
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Figure 1. Mean squared error in parameter units from regression on the MOCAP dataset (lower is better; error bars are standard deviations).
Each plot corresponds to the residual error of learning a target predictor f i given the remaining reference predictors. The horizontal axis
shows the number l of labels used. We compare to: (Ind) baseline independent predictions; (GL1 and GL2) adaptations of Evgeniou and
Pontil [5]; (CL) curriculum learning [10]; (SSL) semi-supervised extension of CL.
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Figure 2. Error rates (lower is better; error bars are standard deviations) for the CAESAR dataset. Each plot corresponds to the residual error
of learning a target predictor f i given the remaining reference predictors. The horizontal axis shows the number l of labels used. The prediction
results for Arm length and Foot length are shown in the main paper. For the remaining target attributes, no combination algorithm shows
a large improvement from Ind. SSL is the semi-supervised extension of GL2.
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Figure 3. Error rates for the CAESAR dataset. For MTGP, the plots show to the residual errors of target attributes which are all learned simul-
taneously. For our method, each plot corresponds to the residual error of learning a target predictor f i given the remaining reference predictors.
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