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In this document, we provide additional experiments and
details. Specifically, we give an overview of the math-
ematical symbols in Sec. 1, and in Sec. 2 we provide a
thorough quantitative evaluation regarding the geometric
reconstruction quality on ground truth data (both real and
synthetic). We further show qualitative results of the re-
constructed models on several own and publicly-available
datasets, with a focus on both reconstruction geometry and
appearance; see Sec. 3. Finally, in Sec. 4, we detail addi-
tional experiments on spatially-varying lighting under both
qualitative and quantitative standpoints.
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1. List of Mathematical Symbols

’ Symbol | Description
p continuous 3D point in R?
x continuous 2D image point in R?
v position of voxel in R3
Ve position of voxel center of v in R3
vo position of v transformed onto iso-surface in R3
n(v) surface normal at v in R3
D(v) signed distance value at v
C(v),I(v) color (RGB) and intensity at v
W (v) integration weight at v
a(v) albedo at v
D(v) refined signed distance value at v
Do iso-surface of the refined SDF
B(v) estimated reflected shading at v
T'(v) chromaticity at v
tshell thin shell size
N number of voxels inside the thin shell region
K, tsy number of subvolumes and subvolume size in R3
S set of subvolumes sy,
V4 vector of all lighting coefficients [,
Hpy, 'm-th spherical harmonics basis
b number of spherical harmonics bands
M number of input frames
Ci,Ii, Z; color, intensity and depth image of frame ¢
T: transformation from frame i to the base frame
tKkE keyframe selection window size
thest, Vbest number of best views for v and corresponding set
d;(v) projective distance to voxel center in frame %
w; (V) sample integration weight of frame &
Oy set of color observations of v
cy observed color of v in frame ¢
wy observation weight of v in frame %
fz, fy,ce,cy | camera intrinsics (focal length, optical center)
K1, K2, P1 radial and tangential lens distortion parameters
X stacked vector of optimization variables




i . ¢ L
Figure 1. Surface accuracy comparison with a ground truth laser
scan of the Socrates dataset: the approach of Zollhofer et al. [3]
(left) exhibits a higher mean absolute deviation from the ground
truth compared to our method (right).

2. Quantitative Geometry Evaluation

In the following, we show a quantitative surface accuracy
evaluation of our geometry refinement on the Socrates and
Frog datasets.

2.1. Socrates

In order to measure the surface accuracy of our method
quantitatively, we first compare our method with a ground
truth laser scan of the Socrates Multi-View Stereo dataset
from [3]. The mean absolute deviation (MAD) between our
reconstruction and the laser scan is 1.09mm (with a stan-
dard deviation of 2.55mm), while the publicly-available re-
fined 3D model of Zollhofer et al. [3] has a significantly
higher mean absolute deviation of 1.80mm (with a standard
deviation of 3.35mm). This corresponds to an accuracy im-
provement of 39.44% of our method. Figure 1 visualizes
the color-coded mean absolute deviation on the surface.

2.2. Frog

Besides a quantitative comparison with a laser scan, we
also evaluate the surface accuracy of a 3D model recon-
structed from synthetic RGB-D data. We therefore gener-
ated the synthetic Frog dataset by rendering a ground truth
mesh with a high level of detail into synthetic color and
depth images. We smooth the depth maps using a bilateral
filter and add Gaussian noise to both the depth values and
to the camera poses.

Instead of comparing the reconstructed 3D models di-
rectly with the original mesh, we instead fuse the generated
noise-free RGB-D frames into a Signed Distance Field and
extract a 3D mesh with Marching Cubes [!]. This extracted
mesh is then used as ground truth reference and represents
the best possible reconstruction given the raycasted input
data in combination with an SDF volume representation.

The mean absolute deviation between our reconstruction
and the ground truth mesh is 0.222mm (with a standard
deviation of 0.269mm). With the reconstruction generated

Figure 2. Surface accuracy comparison on synthetic data with a
ground truth mesh of the Frog dataset: our method (bottom) gen-
erates more accurate results compared to Zollhofer et al. [3] (top).

using our implementation of [3], we obtain a substantially
higher mean absolute deviation of 0.278mm (with a stan-
dard deviation of 0.299mm). Compared to [3], our method
improves the reconstruction accuracy by 20.14% and is able
to reveal geometric details lost with [3]. Figure 2 visualizes
the color-coded mean absolute deviation on the surface.

3. Examples of 3D Reconstructions

In addition to providing a thorough quantitative ground
truth evaluation, we show qualitative results of 3D models
reconstructed from several RGB-D datasets. In particular,
we present 3D reconstructions of the publicly-available Re-
lief and Lucy datasets from Zollhofer et al. [3] as well as 3D
models of the Gate, Lion, Hieroglyphics, Tomb Statuary and
Bricks datasets that we acquired with a Structure Sensor.

Apart from showing the fine detailed geometry, we also
demonstrate the improved appearance of the reconstruc-
tions, which we implicitly obtain by jointly optimizing for
surface, albedo, and image formation model parameters
within our approach.

3.1. Relief

In Figure 3, we show a comparison of the appearance
generated using our method with simple volumetric fusion
(e.g., Voxel Hashing [2]) and the shading-based surface re-
finement approach by Zollhofer et al. [3]. The results in (a)
and (b) are visualizations from the meshes that are publicly-
available on the project website of [3]. The close-ups suc-
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Figure 3. Refined appearance of Relief dataset: our method (c) re-
constructs significantly sharper textures compared to (a) and (b).
Close-ups of ornaments (yellow, blue) and figures (green, red) ex-
hibit more visual details.

cessfully visualize that our method results in significantly
sharper textures.

3.2. Lucy

In Figure 4, we present a visual comparison of the re-
constructed surface geometry of the Lucy dataset. Note how
volumetric fusion (a) and Zollhofer et al. [3] (b) cannot re-
veal fine-scale details due to the use of averaged per-voxel
colors for the refinement, while our method gives the best
results and provides geometric consistency (c).

Regarding appearance, we can observe in Figure 5 that
our method (c) provides a more detailed texture compared
to fusion (a) and Zollhofer et al. [3] (b).

3.3. Additional Datasets

While the Relief and Lucy datasets provided by [3] con-
sist of rather small objects with only few input RGB-D
frames and short camera trajectories, we acquired more ad-
vanced RGB-D datasets using a Structure Sensor.

Figure 6 shows the reconstruction of the Gate dataset,
while the 3D model of the Lion dataset is visualized in Fig-
ure 7. The 3D reconstructions of Hieroglyphics, Tomb Stat-
uary and Bricks are presented in Figure 8, Figure 9 and Fig-
ure 10 respectively. For all of these datasets, our method
generates high-quality 3D reconstructions with fine-scale
surface details and and compelling visual appearance with
sharp texture details. In contrast, the models obtained from
volumetric fusion lack fine details in both geometry and ap-
pearance.

( 1 Vo
Figure 4. Refined geometry of Lucy dataset: volumetric fu-
sion (a) with its strong regularization gives only coarse models.
Zollhofer et al. [3] (b) generate more details; however, limited by
using averaged per-voxel colors for the refinement. Our approach

that jointly optimizes for all involved parameters (c) reconstructs
fine-detailed high-quality geometry.

4. Evaluation of Spatially-Varying Lighting

In this section, we present further qualitative results for
lighting estimation via spatially-varying spherical harmon-
ics (SVSH) compared to global spherical harmonics (global
SH) on various datasets. We use the same underlying geom-
etry for both variants of lighting estimation for each dataset.

Error Metric As a metric, we use the absolute difference
between estimated shading and observed input luminance
of a voxel v; i.e.,

By = [B(v) — I(v)], (D

to determine the quality of the illumination for given geom-
etry and albedo. Ideally, this difference should be as small
as possible.

Relief For the Relief dataset, the differences between
lighting estimation with global SH and SVSH (with a sub-
volume size of 0.05m) are shown in Figure 11. It becomes
obvious that even for seemingly simple scenes, a single
global set of Spherical Harmonics coefficients cannot accu-
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Figure 5. Refined appearance of Lucy dataset: in addition to pre-
cise geometry our method (c) also produces high-quality colors
compared to (a) and (b).

rately reflect real-world environments with complex light-
ing.

Lucy Similar to the Relief, SVSH (with a subvolume size
of 0.05m) can better approximate the complex illumination
in the Lucy dataset than global SH. Figure 12 visualizes the
differences in the estimated shadings.
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Figure 6. Reconstruction of the Gate dataset.
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Figure 7. Reconstruction of the Lion dataset.
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Figure 8. Reconstruction of the Hieroglyphics dataset.



Input Color Geometry (ours) Appearance (ours)

Fusion Ours

Fusion Ours Fusion Ours

(c) Shading (SVSH) (d) Difference (global SH) (e) Difference (SVSH)

Figure 11. Estimated illumination of Relief dataset: the differences between input luminance (a) and estimated shading (b) and (c) are less
for SVSH (e) than for global SH (d), meaning a better approximation of the illumination.
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Figure 12. Estimated illumination of Lucy dataset: illumination with SVSH (c) explains the illumination better than global SH only (b),
resulting in less differences (e) compared to (d) between input luminance (a) and shading.

(a) Luminance (b) Shading (global SH)




