Non-Markovian Globally Consistent Multi-Object Tracking

Supplementary Material

Andrii Maksai!, Xinchao Wang?, Frangois Fleuret®, and Pascal Fua!

!Computer Vision Laboratory, EPFL, Lausanne, Switzerland, {firstname.lastname}@epfl.ch
2Beckman Institute, UIUC, Illinois, USA {firstname}@illinois.edu
SIDIAP Reseach Institute, Martigny, Switzerland, {firstname.lastname}@idiap.ch

In Section 1, we provide the full definitions of the scoring functions n and m, described in Section 3.3 of the paper. In
Section 2, we provide additional details of the optimizations used to improve the output of other method and to learn the
patterns, described in Sections 4.1 and 4.2 of the paper. In Section 3, we provide full results of all methods on all datasets
with various metrics, extending on the results from Section 6.4 of the paper. We also provide textual description of datasets
and baselines. We describe component evaluation in Section 4, and, in Section 5, we provide evaluation of the computational
requirements of our approach, in addition to he results given in Section 6.4 of the paper.

1. Full definitions of n and m functions

These functions are used to score the edges of a trajectory to compute how likely is it that a particular trajectory follows a
particular pattern. As stated in Section 3.3 of the paper:

t;T M(t,pa))
C(T,P,A) = ‘F—r—, (1
() > N(t7pA(t1))
teT
N(t7p) = n([7t17p) + n(t|t\707p) + Z n(tjvtj+17p)7 (2)
1<5<lt]-1
M(tvp) = m([7t17p) + m(t\t\507p) +Z m(tj7tj+1ap)7 (3)
1<j<|t|—1

where T is a set of edges of all trajectories, A is the assignment between a trajectory and a pattern, and P is a set of patterns.
As shown in (2) and (3), to score a trajectory we score all its edges plus the edges from I, the node denoting the beginnings
of the trajectories, and the ones to O, the node denoting the ends of trajectories. As mentioned in the paper, we want N (¢, p)
to reflect the full length of the trajectory and the pattern, and M (¢, p) to reflect the total length of the aligned trajectory and
the pattern. In what follows, we provide definitions of n and m in all cases.

o
o
K

/Ps & m(A,B.p) +m(B,C.p) +m(C,D,p) _
"P n(A, B,p) +n(B,C,p) +n(C,D,p)
oA 0+ LT+ AL g

[AB| +|BC|+[CD| + |cp|

Figure 1. Example of computing the cost function C for three consecutive edges (A, B), (B,C), (C, D). Dotted line around the pattern
centerline ¢, shows the area within the distance w,, to the pattern. The denominator contains the total length of the edges plus the total
length of the pattern, while the numerator contains the parts aligned with each other (in green and blue). The edge (A, B) is not counted
as aligned, because A is further from the pattern than its width wy.

In Table 1, we show how to compute n and m for edges that link two detections and follow some pattern. For n we take the
pattern length to be positive or negative depending on whether the projection of the edge to the pattern is positive or negative.
For m, we penalize edges far from the pattern and edges going in the direction opposite to the pattern, in two different ways,
which gives rise to the three cases shown in the table. In Table 2, we show how to compute n when one of the nodes is I or
O, denoting the start or the end of a trajectory. A special case arises when a node is in the first or the last frame of an input
batch, and a trajectory going through it does not need to follow the pattern completely. This results in a total of two cases
we show in the table. In Table 3, we show the two cases when we assign the transition to no pattern (), one case when we
assign a normal edge joining two detections, and the other when we assign edge from I or to O, indicating the beginning or
the edge of the trajectory.

Case

Explanation

Normal edge aligned
with the pattern: B and
C are within distance w),
to the pattern centerline,
Pp is earlier on the
curve ¢, that Pg.

For the edge (B,C'), we find
the nearest neighbor of the
two endpoints on the pattern,
namely Pp and Pc. Formally,
we have Pp = arg gélpn ||B —

z||. Then we project Ppg
and P¢ orthogonally back onto
(B,C). This guarantees that
m(B,C,p) < n(B,C,p)
with equality when (B, C) and
(Pg, Pc) are two parallel seg-
ments of equal length, and also
penalizes deviations from the
pattern in direction.

SCp

Normal edge aligned
with the pattern: B and
C are further away than
wy, from the pattern
centerline, Pg is earlier
on the curve ¢, that P¢.

n(B, C,p) is calculated in the
same way as done in the pre-
vious case. To penalize devi-
ations from the pattern in dis-
tance, we take m(B,C,p) =0

SCp

Normal edge not aligned
with the pattern: Pp is
later on the curve ¢, that
Pe.

To keep our rule about N being
the sum of lengths of pattern
and trajectory, we need to sub-
tract the length of arc from Pp
to Pc, as it is pointing in the
direction opposite to the pat-
tern. To penalize this behav-
ior, we take m(B,C,p) to be
—|Pp Pc|, multiplied by 1 + €.
In practice, we use € = 1.

S

Table 1. Table describing full definitions of n and m in normal cases, when edges between two detections align with a pattern. They all

follow naturally from the rule about N being the sum of length of trajectory and the pattern, and M being the sum of aligned lengths.

Case

Explanation

Figure

Edge from the source to
a normal node / from a
normal node to the sink

To keep our rule about N be-
ing the sum of lengths of pat-
tern and trajectory, we need to
add the length from the begin-
ning of the pattern to the point
closest to the node on the cen-
terline / from the point clos-
est to the node on the center-
line to the end of the pattern.
Since we didn’t observe any
parts of trajectory aligned with
these parts, we take m = 0.

{ n(I,B,p) =P/P3 n(C,0,p) =PcPo
m(I,B,p)=0 m(C,0,p) =0

Edge from the source to
a normal node in the first
frame of the batch / from
a normal node in the last
frame of the batch to the
sink

We assume that our trajecto-
ries follow the path completely.
However, this might be not
true, which we observe from
the middle, that is, the ones that
begin in the first frame of the
batch or end in the last frame.
In that case we don’t need to
add the part of the pattern be-
fore / after the current point
closest to the node, which is
why we take n = m = 0.

t = maxT

* n(I.B.p)=0 n(C,0,p) =0
m(I,B,p) =0 m(C,0,p) =0

Table 2. Table describing full definitions of n and m in corner cases when one of the edges go through I or O, indicating the beginning or
the end of a trajectory. They all follow naturally from the rule about IV being the sum of length of trajectory and the pattern, and M being
the sum of aligned lengths.

Case Explanation Figure
Normal edge aligned to | To keep our rule about N be-
no pattern ing the sum of lengths, we take
n to be just the length of the
trajectory, since we assume the
length of empty pattern to be
zero. We penalize such assign-
ment by a fixed constant ep,
taking m to be n multiplied by
such constant. In practice, we
keep ¢y = 0.3 when training
from ground truth, or ¢y = —3
otherwise. n(B,C,p) = |BC|

m(B,C,p) = |BC| x (1 + ¢)

Edge from the source / | To keep our rule about N, we
to the sink, aligned to no | take both n = m = 0.
pattern

n(I,B,p) =n(B,0,p) =0
m(I,B,p) =m(B,0,p) =0

Table 3. Table describing full definitions of n and m in corner cases when there is no pattern. They all follow naturally from the rule about
N being the sum of length of trajectory and the pattern, and M being the sum of aligned lengths.

2. Details of the optimization scheme

Here we provide details on our optimization schemes that improve the tracking output of other method and learn patterns,
outlined in Sections 4.1 and 4.2 of the paper, respectively.

2.1. Tracking

As noted in the paper, we introduce the binary variables o ;» denoting the number of people transitioning between the
detections ¢ and j, following pattern p. We put the following constraints on them:

VieDuO Y o = 1,)
(i,7)€€,peP*
ViEDpEP Y o = Y .
(1,7)€€ (5,k)e€

Then, during binary search, we fix a particular value of «;, and check whether the problem constrained by (4) and the following
has a feasible point:
> (mli,4,p) — an(i, j,p))of; > 0)
(i,5)€T,peP*
If a feasible point exists, we pick a value of a to be the lower bound of the best ¢, for which the problem is feasible,
otherwise we pick it as an upper bound. We start with the upper bound of 1 and lower bound of 0, and pick « as an average

between the upper and the lower bound (dichotomy). We repeat this process 10 times, allowing us to find the correct value
of o with the margin of 2710,

2.2. Patterns

As noted in the paper, we introduce the binary variables a;, denoting that a ground truth trajectory ¢ follows the pattern p,
and binary variables b,, denoting whether at least one trajectory follows the pattern p.

ap, € {0,1} ,VteT*peP,
b, € {0,1},vpeP,
ay = 1,VteT*, (6)

pEP
agp < b, VteT*peP.

We then do the same binary search as described above to find the highest «, for which there exists a feasible point to a set
of constraints (6) and the following:

> (m(t,p) — an(t,p))ay, > 0,

teT* peP

Yoy <ay, (7

pEP

> bpM(p) < ac .

peP

We do five iterations of binary search, and we obtain the right value of @ with precision of 27°. To create a set of all
possible patterns P we combine the set of all possible trajectories in the current batch (taking only those that start after the
beginning of the batch and end before the end of the batch to make sure they represent full patterns of movement) with a set
of possible lengths. For all datasets except Station, our set of possible lengths is {0.5, 1, 3, 5, 7, 9, 11, 13, 15, 17}, while
for the Station dataset we use {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} of the tracking area, since we don’t know the exact sizes of the
tracking area, but only estimated homography between the ground and image plane.

3. Full results

Here we provide the full results of all the methods on all the datasets, after the textual description of datasets and baselines.
Tables 4, 5 are the full versions of Table 2 of the paper. Table 6 reports details on Duke dataset in details, as reported on
the MOTChallenge website. In Tables 4, 5, we compare the original output of the method with the improvements brought
by our approach in both supervised and unsupervised manner, denoted ”-i” and ”-0”, respectively. In Table 7, we compare
the methods when using the ground truth set of detections as input. As in the paper, we report the results for the matching
distances of 3m (0.1 of the tracking area for the Station and Rene datasets), and for IDF; metric we also show results for
Im to indicate that the ranking of the methods does not change, but the improvement brought by our methods is less visible
due to reconstruction errors when we estimate the 3D position of the person from the bounding box. This fact is especially
highlighted by the Table 7, where difference in the metric computed for distances of 3m. and 1m. is especially large.

Specifically, We report the IDF;, identity level precision and recall IDPR and IDRC defined in [13], as well as MOTA,
precision and recall PR and RC, and the number of mostly tracked MT, partially tracked PT and mostly lost trajectories ML
defined in [2].

Our evaluation of Duke dataset is available on MOTChallenge website under the name PT_BIPCC, and comparison on
MOT16 under the name PT.

Readers may note that often we observe an increase in the number of mostly lost trajectories and drop in recall. One of
our optimization parameters controls whether or not to remove trajectories assigned to no pattern during post-processing (see
Sec. 3.1 and 6.3). Removals reduce the number of false positives, but may discard tracks for some partially tracked people,
which don’t follow any pattern. This increases the ML and lowers the recall, as observed by the reviewer. This happens in
large part because both contrast and visibility are low, resulting in poor detection quality, for example on ETH dataset.

3.1. Datasets

Duke. A dataset [13] with 8 cameras recording movements of people on various places of Duke university campus at
60fps, containing more than an hour of recordings.

Town. A sequence from the 2DMOT2015 benchmark [9]: a lively street where people walk in different directions.

ETH and Hotel. Sequences from the BIWI Walking Pedestrians dataset [12] that were originally used to model social
behavior. In these datasets, using image and appearance information for tracking is difficult, due to recordings with an almost
vertical viewing angle and low visibility in the ETH.

Station. A one hour-long recording of Grand Central station in New York with several thousands of annotated pedestrian
tracks [23]. It was originally used for trajectory prediction in crowds.

MOT16. Sequences from the MOT Challenge 2016 [10]. We used MOT16-01 to evaluate the supervised approach
because it features training and testing data recorded at the same place. By contrast, MOT16-08 does not and we used it
to evaluate the unsupervised approach. Unfortunately, the other sequences are unsuitable for our current implementation
because they involve either a moving camera, meaning there is no fixed scene to learn the patterns from, or only very few
trajectories traversing the scene for training purposes.

Rene. A five-minute long sequence of traffic at a street junction [6]. Since only 30 seconds of it are annotated, we ran
only the unsupervised approach on the whole sequence and used the annotated frames for evaluation purposes.

3.2. Baselines

MDP [20] formulates MOT as learning Markov Decision Process (MDP) policy and relies on reinforcement learning to
do so. At the time of writing, this was the highest-ranking approach on the 2DMOT2015 [9] benchmark with a publicly
available implementation.

SORT [3] is a real-time Kalman filter-based MOT approach. At the time of writing, this was the second highest-ranking
approach on 2DMOT2015 benchmark with a publicly available implementation.

RNN [11] uses recurrent neural networks to predict the motion of people and perform MOT in real time. It does not require
any appearance information, but only the bounding boxes coordinates. In our experiments, it outperformed all other methods
that do not use appearance information.

KSP [1] is a simple approach to MOT that formulates the MOT problem as finding K Shortest Paths in spatio-temporal
graph, without using appearance information.

2DMOT2015 Top Scoring Methods [4, 14, 18,7, 21, 8, 19, 22] to which we will refer by the name that appears in the
official scoreboard [9].

Method Dataset IDF, IDPR IDRC MOTA PR RC MT PT ML
EAMTT Town 0.72 (0.59) 0.76 0.68 0.73 0.92 0.82 158 68 20
EAMTT-i Town 0.80 (0.63) 0.84 0.76 0.73 0.91 0.82 165 59 22
EAMTT-0 Town 0.82 (0.65) 0.83 0.80 0.74 0.89 0.86 182 44 20
JointMC Town 0.75 (0.63) 0.90 0.65 0.64 0.95 0.68 128 54 64
JointMC-i Town 0.77 (0.64) 0.91 0.66 0.64 0.95 0.68 129 52 65
JointMC-o Town 0.76 (0.62) 0.88 0.67 0.65 0.93 0.71 138 50 58
MHT_DAM Town 0.56 (0.45) 0.82 0.42 0.40 0.90 0.46 55 98 93
MHT_DAM-i Town 0.56 (0.45) 0.83 0.42 0.40 0.90 0.46 59 90 97
MHT_DAM-o Town 0.57 (0.45) 0.81 0.44 0.42 0.89 0.48 63 94 89
NOMT Town 0.71 (0.62) 0.83 0.63 0.65 0.94 0.71 122 76 48
NOMT-i Town 0.76 (0.65) 0.87 0.68 0.66 0.93 0.72 135 61 50
NOMT-o Town 0.75 (0.63) 0.83 0.68 0.66 0.91 0.75 144 59 43
SCEA Town 0.56 (0.43) 0.83 0.42 0.40 0.90 0.46 56 95 95
SCEA-i Town 0.58 (0.45) 0.87 0.44 0.44 0.95 0.47 62 89 95
SCEA-o Town 0.58 (0.43) 0.80 0.45 0.43 0.89 0.50 65 94 87
TDAM Town 0.60 (0.48) 0.71 0.52 0.39 0.78 0.56 70 112 64
TDAM-i Town 0.60 (0.48) 0.73 0.51 0.41 0.80 0.56 69 110 67
TDAM-o Town 0.59 (0.45) 0.67 0.54 0.37 0.74 0.60 82 108 56
TSML_CDE Town 0.68 (0.58) 0.75 0.63 0.72 0.95 0.79 143 79 24
TSML_CDE-i Town 0.76 (0.62) 0.84 0.70 0.73 0.95 0.79 150 68 28
TSML_CDE-o Town 0.78 (0.62) 0.82 0.74 0.74 0.92 0.83 161 68 17
CNNTCM Town 0.58 (0.46) 0.79 0.46 0.45 0.90 0.53 63 110 73
CNNTCM-i Town 0.61 (0.46) 0.80 0.49 0.48 0.90 0.55 73 96 71
CNNTCM-o Town 0.62 (0.46) 0.77 0.52 0.48 0.87 0.59 85 95 66
KSP Town 0.41 (0.26) 0.47 0.36 0.64 0.93 0.73 107 105 34
KSP-i Town 0.69 (0.42) 0.78 0.61 0.65 0.93 0.73 118 91 37
KSP-o Town 0.69 (0.42) 0.76 0.63 0.64 0.91 0.75 122 88 36
MDP Town 0.59 (0.45) 0.65 0.55 0.50 0.81 0.68 103 97 46
MDP-i Town 0.66 (0.49) 0.72 0.61 0.54 0.83 0.71 116 82 48
MDP-o Town 0.63 (0.45) 0.66 0.61 0.50 0.79 0.73 113 94 39
RNN Town 0.48 (0.30) 0.52 0.45 0.60 0.88 0.77 122 103 21
RNN-i Town 0.59 (0.36) 0.65 0.55 0.61 0.90 0.76 125 98 23
RNN-o Town 0.53 (0.34) 0.57 0.50 0.59 0.89 0.77 125 99 22
SORT Town 0.62 (0.46) 0.81 0.50 0.57 0.98 0.61 49 152 45
SORT-i Town 0.72 (0.47) 0.85 0.62 0.64 0.95 0.69 96 109 41
SORT-o Town 0.65 (0.46) 0.83 0.60 0.60 0.90 0.65 174 58 14

Table 4. Full results for all methods on the Town dataset, when using our detections as input and using the results of state-of-the-art trackers
as input. Number in brackets in IDF; column indicates result for the distance of 1 m.

DM [16, 17] decomposes the tracking graph into subgraphs and relies on strong matching models. It won the ECCV 2016
Multiple Object Tracking challenge.

BIPCC[13] solves binary integer problem of optimally grouping observations into clusters of detections of similar appear-
ances, and delivers results with moderate recall, but very high precision with few identity switches.

Method | Dataset IDF, IDPR | IDRC | MOTA | PR RC MT PT | ML
KSP ETH 045 (0.15) | 045 0.45 0.47 072 | 0.71 182 148 22
KSP-i ETH 0.62(0.18) | 0.71 0.54 0.48 0.75 | 057 134 144 74
KSP-o ETH 0.57(0.18) | 0.59 0.67 0.49 0.67 | 0.76 217 121 14
MDP ETH 0.55 (0.20) | 0.63 0.48 0.40 0.79 | 0.60 113 194 45
MDP-i ETH 0.58 (0.21) | 0.76 0.46 0.41 0.83 | 0.50 105 143 | 104
MDP-o | ETH 0.58 (0.21) | 0.64 0.62 0.41 0.72 | 0.69 157 146 49
RNN ETH 051 (021) | 0.54 0.49 0.48 080 | 0.73 170 162 20
RNN- ETH 0.54(021) | 0.76 0.39 0.48 0.85 | 044 68 184 | 100
RNN-o | ETH 0.54 (021) | 0.40 0.47 0.47 064 | 0.76 205 127 20
SORT ETH 0.67(0.29) | 0.82 0.57 0.50 0.87 | 061 130 175 47
SORTi | ETH 0.66 (0.26) | 0.84 0.55 0.49 0.86 | 0.56 136 129 87
SORT-0o | ETH 0.67(029) | 0.79 0.68 0.49 0.80 | 0.70 167 148 37
KSP Hotel 044 (0.14) | 033 0.65 0.32 048 | 094 270 40 6

KSP-i Hotel 0.53(0.17) | 0.38 0.75 0.33 047 | 0.94 273 35 8

KSP-o Hotel 0.53(0.17) | 0.38 0.77 0.30 046 | 0.94 276 32 8

MDP Hotel 040(0.12) | 0.34 0.46 0.33 047 | 0.64 133 92 91
MDP-i Hotel 0.50 (0.13) | 043 0.37 0.38 0.60 | 0.52 83 110 | 123
MDP-o | Hotel 0.37(0.10) | 0.8 0.47 0.30 040 | 0.67 143 105 68
RNN Hotel 0.40(0.14) | 0.30 0.58 0.39 046 | 0.90 252 45 19
RNN- Hotel 0.40(0.14) | 030 0.59 0.39 046 | 0.90 258 38 20
RNN-o | Hotel 0.39(0.13) | 0.29 0.56 0.38 046 | 0.90 256 41 19
SORT Hotel 0.54 (0.20) | 045 0.68 0.37 055 | 082 207 87 22
SORTi | Hotel 0.60 (0.20) | 0.46 0.78 0.47 052 | 0.90 240 60 16
SORT-0 | Hotel 0.58 (0.20) | 0.46 0.78 0.35 053 | 0.88 238 64 14
KSP Station 0.32 0.27 0.40 0.23 061 | 090 | 10166 | 1985 | 211
KSP-i Station 0.42 0.35 0.52 0.19 060 | 091 | 10296 | 1879 | 187
KSP-o Station 0.40 0.32 0.53 227 055 | 092 | 10597 | 1576 | 189
MDP Station 0.48 0.39 0.63 051 056 | 090 | 9362 | 2293 | 437
MDP-i Station 0.47 0.36 0.65 0.52 051 | 092 | 10047 | 1771 | 544
MDP-o | Station 0.47 0.37 0.66 0.50 052 | 092 | 10010 | 1930 | 422
RNN Station 0.30 0.24 0.37 0.40 058 | 090 | 9826 | 2333 | 203
RNN- Station 0.30 0.24 0.38 0.41 059 | 090 | 9900 | 2260 | 202
RNN-o | Station 0.30 0.25 0.39 0.40 057 | 090 | 9898 | 2265 | 199
SORT Station 0.50 0.50 0.50 032 071 | 0.72 | 5557 | 6181 | 624
SORTi | Station 0.50 0.47 0.54 031 069 | 078 | 6996 | 4882 | 484
SORT-0 | Station 0.52 0.48 0.57 031 067 | 0.79 | 7154 | 4703 | 505
KSP Rene 0.48 0.48 0.49 031 089 | 038 11 3 13
KSP-i Rene 0.55 0.69 0.49 0.36 065 | 047 15 8 4

MDP Rene 0.66 0.55 0.63 0.52 0.58 | 0.51 13 7 7

MDP-i Rene 0.69 0.57 0.67 0.54 058 | 0.53 17 6 4

RNN Rene 0.54 0.54 0.52 0.40 077 | 043 12 3 12
RNN- Rene 0.55 0.54 0.53 0.40 0.77 | 043 14 7 6

SORT Rene 0.59 0.63 0.27 0.48 024 | 06l 4 7 16
SORTi | Rene 0.66 0.77 031 0.49 024 | 077 14 9 q

Table 5. Full results for all methods on all the datasets except Town and Duke, when using our detections as input and using the results of
state-of-the-art trackers as input. Number in brackets in IDF; column indicates result for the distance of 1 m.

Method Sequence IDF, IDPR IDRC MOTA MOTP MT ML IDs Frags
BIPCC Easy-1 57.3 91.2 41.8 43.0 79.0 24 46 39 75
BIPCC-i Easy-1 57.8 91.9 422 42.9 79.0 24 46 41 75
BIPCC Easy-2 68.2 69.3 67.1 44.8 78.2 133 38 60 184
BIPCC-i Easy-2 69.2 70.4 68.0 44.7 78.2 133 39 52 172
BIPCC Easy-3 60.3 78.9 48.8 57.8 71.5 52 22 16 36
BIPCC-i Easy-3 59.8 78.2 48.4 57.8 77.5 52 22 19 36
BIPCC Easy-4 73.5 88.7 62.8 63.2 80.2 36 18 7 20
BIPCC-i Easy-4 76.0 91.7 64.9 63.2 80.2 36 18 9 20
BIPCC Easy-5 73.2 83.0 65.4 72.8 80.4 107 17 54 139
BIPCC-i Easy-5 73.3 83.0 65.6 72.6 80.4 107 17 46 132
BIPCC Easy-6 77.2 87.5 69.1 73.4 80.2 142 27 55 127
BIPCC-i Easy-6 80.9 91.7 724 73.4 80.2 142 27 58 127
BIPCC Easy-7 80.5 93.6 70.6 714 74.7 69 13 23 86
BIPCC-i Easy-7 80.5 93.6 70.6 71.4 74.7 69 13 23 86
BIPCC Easy-8 724 922 59.6 60.7 76.7 102 53 46 134
BIPCC-i Easy-8 72.7 92.2 60.0 60.9 76.6 103 52 42 135
BIPCC Hard-1 52.7 92.5 36.8 37.8 78.1 6 34 55 103
BIPCC-i Hard-1 52.5 91.9 36.7 374 78.1 6 35 61 106
BIPCC Hard-2 60.6 65.7 56.1 473 76.5 68 12 194 298
BIPCC-i Hard-2 61.0 66.0 56.7 46.6 76.5 66 12 194 291
BIPCC Hard-3 62.7 96.1 46.5 46.7 77.9 24 4 6 12
BIPCC-i Hard-3 62.7 96.1 46.5 46.7 77.9 24 4 6 12
BIPCC Hard-4 84.3 86.0 82.7 85.3 81.5 21 0 1 9
BIPCC-i Hard-4 92.3 93.6 91.0 85.5 81.4 21 0 2 9
BIPCC Hard-5 81.9 90.1 75.1 78.3 80.7 57 2 13 37
BIPCC-i Hard-5 81.9 90.1 75.1 78.3 80.7 57 2 13 37
BIPCC Hard-6 64.1 81.7 52.7 594 76.7 85 23 225 369
BIPCC-i Hard-6 64.7 82.4 53.3 59.4 76.7 85 23 230 369
BIPCC Hard-7 59.6 81.2 47.1 50.8 73.3 43 23 148 218
BIPCC-i Hard-7 59.8 81.4 47.2 50.6 73.3 42 23 145 203
BIPCC Hard-8 824 94.9 72.8 73.0 75.9 34 5 10 27
BIPCC-i Hard-8 82.4 94.9 72.8 73.0 75.9 34 5 10 27

Table 6. Full results of comparison on Duke dataset, compared to results of BIPCC.

Method Dataset IDF, IDPR IDRC MOTA PR RC MT PT ML
KSP Town 0.56 (0.47) 0.55 0.57 0.87 0.93 0.97 226 8 12
MDP Town 0.87 (0.84) 0.92 0.82 0.87 0.99 0.89 184 38 24
RNN Town 0.65 (0.57) 0.65 0.65 0.85 0.95 0.95 222 19 5
SORT Town 0.88 (0.85) 0.93 0.84 0.90 1.00 0.90 203 34 9
OUR Town 0.97 (0.92) 0.97 0.97 0.98 1.00 1.00 245 1 0
KSP ETH 0.59 (0.12) 0.58 0.60 0.70 0.87 0.89 287 56 9
MDP ETH 0.89 (0.18) 0.91 0.87 0.85 0.95 0.91 300 42 10
RNN ETH 0.65 (0.16) 0.64 0.65 0.73 0.89 0.90 289 62 1
SORT ETH 0.93 (0.20) 0.98 0.88 0.85 0.97 0.87 307 31 14
OUR ETH 0.92 (0.19) 0.92 0.92 0.94 0.98 0.98 347 5 0
KSP Hotel 0.60 (0.21) 0.61 0.58 0.74 0.90 0.86 217 69 30
MDP Hotel 0.85(0.33) 0.87 0.83 0.84 0.95 0.90 249 37 30
RNN Hotel 0.70 (0.28) 0.69 0.71 0.78 0.91 0.94 284 29 3
SORT Hotel 0.88 (0.36) 0.97 0.81 0.82 0.99 0.83 191 107 18
OUR Hotel 0.94 (0.38) 0.94 0.94 0.97 1.00 1.00 314 1 1
KSP Station 0.45 0.44 0.45 0.80 0.93 0.95 10957 832 573
MDP Station 0.75 0.70 0.80 0.68 0.81 0.93 464 67 51
RNN Station 0.40 0.39 0.40 0.68 0.90 0.94 10870 1244 248
SORT Station 0.72 0.85 0.63 0.70 1.00 0.74 4968 6481 913
OUR Station 0.70 0.62 0.62 0.77 0.99 0.99 579 3 0

Table 7. Full results for all combinations of methods and datasets, when using our set of ground truth detections. Number in brackets in
IDF; column indicates result for the distance of 1 m.

4. Component Evaluation

Method Learned patterns (OUR) Straight line patterns Markovian smoothness term
Approach || Town | ETH | Hotel | Station | Town | ETH | Hotel | Station | Town | ETH | Hotel | Station
KSP 028 | 0.17 | 0.11 0.10 0.19 | 0.12 | 0.07 0.05 0.13 | 0.07 | 0.04 0.03
MDP 0.07 | 0.03 | 0.10 -0.01 0.06 | 0.02 | 0.02 -0.02 0.06 | 0.02 | 0.02 -0.02
RNN 0.11 | 0.03 | 0.00 0.00 0.10 | 0.02 | 0.00 0.00 0.05 | 0.01 | -0.01 -0.01
SORT 0.10 | 0.00 | 0.06 0.00 0.06 | 0.00 | 0.03 0.00 0.04 | 0.00 | -0.01 -0.03
Table 8. IDF; improvement for each method and dataset for our method with learned patterns (left), for our method with patterns replaced

by a pencil of lines, which still forces trajectories to start and end at the borders of the tracking area (middle), and for a method where
transition cost is based on the local smoothness term, second order difference between coordinates of 3 consecutive detections in a trajectory
(right).

a b c

Figure 2. (a) Exampl(es)of learned patterns on Town dataset. Not(e zhat there are only two prevalent directions(iil which people move.
Patterns shown in white. (b) Pencil of lines representing straight line patterns traversing the scene in all directions. Patterns shown in
white. (c) Example of an error made when we are using straight line patterns. Two real trajectories (in green) are incorrectly merged via
false detections, producing a trajectory (in red) that closely follows one of the patterns (in white). However, in reality this pattern does
not exist, but we used it because we didn’t have a learning component. Note, that produced trajectory still starts at the boundary of the
image and traverses the scene completely. Even without the learning procedure, our patterns force this. If we replace this non-Markovian
constraint by a local smoothness term, errors are numerous, with many trajectories split in the middle.

Component evaluation To evaluate the importance of learning generic patterns such as ours as opposed to simpler ones,
or an even simpler smoothness constraint, we introduce two more baselines. In the first, we take patterns to be straight
lines crossing the scene in every possible direction. This is still non-Markovian as it forces trajectories to cross the scene
completely, starting at one border and going to another. In the second, we find a set of trajectories through our tracking graph
that minimizes the second order difference between triplets of consecutive locations, forcing trajectories to be locally smooth.
This is Markovian in nature and does not require trajectories to cross the scene. In the first case, average improvement for
all methods drops to (0.11, 0.02, 0.03, 0.02) from (0.16, 0.05, 0.04, and 0.04) as reported in Table 2 of the paper. In the
second case, we observe a steeper drop to (0.07, 0.02, 0.01, 0.00). The difference in results is largest on Station dataset
where non-linear non-Markovian patterns prevent trajectories from being terminated in stationary crowds, and on the Hotel
dataset where it is difficult to differentiate between trajectories that traverse the scene and that end in the middle of the scene,
entering the hotel. The detailed breakdown is given in Table 8.

Note that while using straight line patterns frees us from the learning step, it does not deliver much of a benefit in terms
of optimization speed. As shown in the example of Figure 2, there are only four learned patterns, but if we define straight
line patterns traversing the scene, their number is not known beforehand. This results in a trade-off, where picking too few
patterns gives bad tracking results, while having too many of them slows the optimization scheme because of the number of
possible patterns trajectories can follow.

Evaluation on Ground Truth Detections. For all baselines that accept a list of detections as input, and for which the
code is available, we reran the same experiment using the ground truth detections instead of those computed by the POM
algorithm [5] as before. This is a way to evaluate the performance of the linking procedure independently of that of the
detections, and can be viewed as an evaluation of this component of our system. It reflects the theoretical maximum that can

be reached by all the approaches we compare, including our own. From Table 9 we observe that our approach performs very
well in such setting.

Approach: | MDP | RNN | SORT | KSP | OUR Approach: | MDP | RNN | SORT | KSP | OUR

Dataset: Dataset:

Town 0.87 0.65 0.88 0.55 | 0.93 Town 0.87 0.85 0.90 0.87 | 0.98

ETH 0.89 | 0.65 0.93 0.59 | 0.92 ETH 0.85 0.73 0.85 0.70 | 0.94

Hotel 0.85 0.70 0.88 0.60 | 0.94 Hotel 0.84 | 0.78 0.82 0.74 | 097

Station 0.68 0.40 0.72 0.45 | 0.70 Station 0.75 0.68 0.70 0.80 | 0.77
Table 9. IDF; (left) and MOTA (right) evaluation results using ground detections. Best score for each dataset in bold.

Additional qualitative evaluation was performed on the DataFromSky data [15] is a one-minute long sequence of
traffic recorded from a drone on an intersection. The data is provided with annotated ground truth trajectories, total of
34 vehicles. Due to the shake of the drone because of the wind, reliable detections from background subtraction are not
available. However, we performed two experiments with this data. First, we learned the patterns to see if such scarce data is
enough to reliably extract the motion patterns. Results are shown in Figure 3. Second, given ground truth detections we did
a comparison similar to the one described in the previous paragraph. Our approach, given the learned patterns, obtained 92%
IDF; and 94% MOTA scores, again showing that patterns provide valuable information for data association.

Figure 3. Frame from the DataFromSky dataset, with learned patterns in white.

5. Run Time Evaluation

Dataset Town | ETH | Hotel | Station | Station
Frames 150 227 268 75 75
Trajectories | 85 67 47 100 193
Patterns 7 5 4 26 26

Detections 2487 | 894 | 1019 1960 3724
Variables 70k 17k 18k 191k 450k
Time, s 26 4 4 160 >3600

Table 10. Optimization problem size and run time of our approach for processing a typical one min batch from each dataset.

Here we present the evaluation of running time of our approach depending on the parameters of the optimization. As
mentioned in the Section 6.4 of the paper and shown in Fig. 4, the optimization time depends mostly on the number of
possible transitions between people, which is controlled by D;. The time for learning the patterns grows approximately
quadratically. The number of variables in our optimization problem grows linearly with the length of the batch and number
of patterns, and superlinearly with the number of people per frame (as the number of possible connections between people).

Time vs size of the batch Time vs number of patterns Time vs density of the graph: D,

of optimization variables # of optimization variables # of optimization variables
nm 0+ 0 0 S < 0 + ¥ ¢ S ¥ ¥ S $ ¢ S Y Y T T TS ST T T ST TS
o o o o o o o o o o o o O O o O O O O O o o o o
+ +
oW W w W ow oW W W W W W oW W ow W oW oW oW oW owow oW oW oW ow oW owow
50 r
wn 40
9]
£ 30
=20}
10+
050 100 150 200 250 300 350 400 450 2 3 4 5 6 7 8 9 10 11 7
Lenath of the sequence # of patterns
(a) (b)
Time vs density of the graph: D, Time vs density of the graph: D,
of optimization variables # of optimization variables Time vs # of patterns during learning
< < < < < < < < < < < < < < < < < < <
o o o o o o o o o o o o o o o o o o o
+ + + + + + + + + + + + + + + + + + +
w w w w w w w w w w w w w w w w w w w
pe__¥ § 5§ 8 8 ¥ 5 F 3 ¥ ¥ ¥ 0§ 3 % 3§ 3 %3
13.5 25 v 10
g 12.5 : . . . g 20 E S
€120 ’ \ . . : £ 15 2
= = 0 i i i
115 O o o O © O O O o o
10 S © © © © © © o© o o
11.0 = & m § A © ~ ®© & 9
105 L L L L L L L L 5 L L L L L L L n
2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40 # of possible pattems .~
= # of ground truth trajectories x # of possible widths
Dy, m D,, frames
(d) (©) ®

Figure 4. The running time and the number of variables of the optimization for tracking are approximately:
e linear with respect to the number of frames in the batch (a),
e linear with respect to the number of patterns (b),

e superlinear with respect to the maximum distance at which we join the detections in the neighbouring frames D, as it directly
affects the density of the tracking graph (c),

e almost independent from the maximum distance in space D2 and it time D, at which we join the endings and beginning of the input
trajectories D2, as it has almost no effect on the density of the tracking graph (d), (e);

The running time and the number of variables of the optimization for learning patterns grows quadratically with the number of input
trajectories, as each of them is both a trajectory that needs to be assigned to a pattern, and a possible centerline of a pattern (f).

As shown by Tab. 10, for not too crowded datasets without large number of patterns our approach is able to process a minute
of input frames under a minute. Pattern fitting scales quadratically with the number of given ground-truth trajectories and
runs in less than 10 minutes for all datasets except Station. All results above were computed on datasets ETH, Hotel, Town,
Station, since they shared same experimental protocol. As mentioned in Section 6.3 of the paper, for Duke dataset we ran
evaluation for the whole length of sequence in the batch mode. For the sake of completeness, we also measured the running
time. We processed around 300k * 8 frames in a total of 7853s, ranging from 654s to 1820s per sequence. This was achieved
thanks to two reasons. Firstly, since the input tracks are already good, optimal value of hyperparameter D, was found to be 0,
which enables our approach to merge or split trajectories, but not to intertwine them by splitting and then merging differently
(See Sec. 3.2 of the paper for details). This further reduced the density of the graph. To speed up the approach, we added
edges between trajectories not every frame, but every 0.5s, since identity switches are unlikely to happen more often.

References

[1] J. Berclaz, F. Fleuret, E. Tiiretken, and P. Fua. Multiple Object Tracking Using K-Shortest Paths Optimization. 33(11):1806-1819,
2011.

[2] K. Bernardin and R. Stiefelhagen. Evaluating Multiple Object Tracking Performance: the Clear Mot Metrics. EURASIP Journal on
Image and Video Processing, 2008, 2008.

[3] A.Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple Online and Realtime Tracking. 2016.
[4] W. Choi. Near-Online Multi-Target Tracking with Aggregated Local Flow Descriptor. 2015.

[5] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multi-Camera People Tracking with a Probabilistic Occupancy Map. 30(2):267-282,
February 2008.

[6] J.-P. Jodoin, G.-A. Bilodeau, and N. Saunier. Urban Tracker: Multiple Object Tracking in Urban Mixed Traffic. 2014.

(7]

(8]
(9]

(10]
(1]
(12]
[13]
(14]
[15]
[16]
(7]
(18]
[19]
(20]
(21]
(22]

(23]

M. Keuper, S. Tang, Y. Zhongjie, B. Andres, T. Brox, and B. Schiele. A Multi-Cut Formulation for Joint Segmentation and Tracking
of Multiple Objects. arXiv preprint arXiv:1607.06317, 2016.

C. Kim, F. Li, A. Ciptadi, and J. Rehg. Multiple Hypothesis Tracking Revisited. 2015.

L. Leal-taixe, A. Milan, I. Reid, S. Roth, and K. Schindler. Motchallenge 2015: Towards a Benchmark for Multi-Target Tracking.
2015.

A. Milan, L. Leal-taixe, I. Reid, S. Roth, and K. Schindler. Mot16: A Benchmark for Multi-Object Tracking. arXiv preprint
arXiv:1603.00831, 2016.

A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler. Online Multi-Target Tracking using Recurrent Neural Networks.
2017.

S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You’ll Never Walk Alone: Modeling Social Behavior for Multi-Target Tracking.
2009.

E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi. Performance Measures and a Data Set for Multi-Target, Multi-Camera
Tracking. arXiv preprint arXiv:1609.01775, 2016.

R. Sanchez-matilla, F. Poiesi, and A. Cavallaro. Online Multi-Target Tracking with Strong and Weak Detections. 2016.

R. systems s.r.o. Data from Sky User Guide, March 2017.

S. Tang, B. Andres, M. Andriluka, and B. Schiele. Subgraph Decomposition for Multi-Target Tracking. pages 5033-5041, 2015.

S. Tang, B. Andres, M. Andriluka, and B. Schiele. Multi-Person Tracking by Multicut and Deep Matching. 2016.

B. Wang, G. Wang, K. L. Chan, and L. Wang. Tracklet Association by Online Target-Specific Metric Learning and Coherent
Dynamics Estimation. 2016.

B. Wang, L. Wang, B. Shuai, Z. Zuo, T. Liu, K. L. Chan, and G. Wang. Joint Learning of Convolutional Neural Networks and
Temporally Constrained Metrics for Tracklet Association. 2016.

Y. Xiang, A. Alahi, and S. Savarese. Learning to Track: Online Multi-Object Tracking by Decision Making. 2015.

M. Yang and Y. Jia. Temporal Dynamic Appearance Modeling for Online Multi-Person Tracking. 2016.

J. H. Yoon, C.-R. Lee, M.-H. Yang, and K.-J. Yoon. Online Multi-Object Tracking via Structural Constraint Event Aggregation.
2016.

B. Zhou, X. Wang, and X. Tang. Understanding Collective Crowd Behaviors: Learning a Mixture Model of Dynamic Pedestrian-
Agents. 2012.

