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A. Method: additional details

A.1. Scale ambiguity in SFM

In Sec. 3.2 in the paper, we explain that the scale am-

biguity of structure from motion (SFM) causes each recon-

struction of a sequence Si to be known only up to a global

sequence specific scaling factor λi. Since λi is not required

to learn Φvp, but it is important for depth prediction (as dis-

cussed in Sec. 3.3 from the paper), we estimate it as well.

To do so, we note that, given a pair of frames (t, t′)
from sequence Si, one can estimate the sequence scale as

λi
t,t′ =

‖T i
t′
−Ri

t′t
T i
t ‖

‖T̂ i
t′
−Ri

t′t
T̂ i
t ‖
. This expression allows us to conve-

niently estimate λi on the fly as a moving average during

the SGD iterations used to learn Φvp, as samples λi
t,t′ can

be computed essentially for free during this process.

A.2. The VpDRNet architecture: further details

This section contains additional details about the layers

that compose the different components of the VpDR-Net

architecture.

The core architecture. The architecture of the VpDR-Net

(introduced in Sec. 3.2 from the paper) is a variant of the

ResNet-50 architecture [3] with some modifications to im-

prove its performance as a viewpoint and depth predictor

that we detail below.

In order to decrease the degree of geometrical invariance

of the network, we first replace all 1× 1 downsampling fil-

ters with full 2 × 2 convolutions. We then attach bilinear

upsampling layers that first resize features from 3 different

layers of the architecture (res2d, res3d, res4d) into fixed-

size tensors and then sum them in order to create a mul-

tiscale intermediate image representation which resembles

hypercolumns (HC) [2]. An extension of Fig. 2 from the

paper that contains the diagram of this HC module can be

found in Figure A.

Architecture of the viewpoint factorization network Φvp.

HC is followed by 3 modified 3× 3 downsampling residual

layers that produce the final viewpoint prediction. While

the standard downsampling residual layers do not contain

the residual skip connection due to different sizes of the in-

put and output tensors, here we retain the skip connection

by performing 3 × 3 average pooling over the input tensor

and summing the result with the result of the second 3 × 3
downsampling convolution branch. We further remove the

ReLU after the final residual summation layer. Figure C

contains an overview of the viewpoint estimation module

together with a detailed illustration of the modified down-

sampling residual blocks.

Architecture of the depth prediction Φdepth. The depth

prediction network (introduced in Sec. 3.3 from the paper)

shares the early HC layers with the viewpoint factorization

network Φvp. The remainder of the pipeline is based on the

state-of-the-art depth estimation method of [5]. More pre-

cisely, after attaching 2 standard residual blocks to the HC

layers, the network also contains two 2x2 up-projection lay-

ers from [5] leading to a 64-dimensional representation of

the same size as the input image. This is followed by 1x1

convolutional filters that predict the depth and confidence

maps D̂t and σ̂dj
respectively. Figure B contains an illus-

tration of Φdepth.

Architecture of the point cloud completion network Φpcl.

Differently from the two previous networks, the point cloud

completion network Φpcl (introduced in Sec. 3.4 from the

paper) is not convolutional but uses a residual multi-layer

perceptron (MLP), i.e. a sequence of residual fully con-

nected layers.

In more details, the network starts by appending to each

3D point p̂i ∈ P̂G
f ⊂ R

3 an appearance descriptor ai and

processes this input with an MLP with an intermediate pool-

ing operator:

(Ŝ, δ̂) = Φpcl(P̂
G
f ) = MLP2



 pool
1≤i≤|P̂G

f
|

MLP1(p̂i, ai)



 .

The intermediate pooling operator, which is permutation in-
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Figure A. The core architecture of VpDR-Net. This figure extends the Viewpoint & Depth estimation block from Figure 2 in the paper

and describes the architecture of the hypercolumn (HC) module.

Figure B. The architecture of Φdepth.

variant, removes the dependency on the number and order

of input points P̂G
f . In practice, the pooling operator uses

both max and sum pooling, stacking the results of the two.

For the appearance descriptors, recall that each point p̂i
is the back-projection of a certain pixel (ui, vi) in image

f . To obtain the appearance descriptor ai we reuse the HC

features from the core architecture and sample a column of

feature channels at location (ui, vi) using differentiable bi-

linear sampling. Note that, following [10], the fully con-

nected residual blocks contain leaky-ReLUs with the leak

factor set to 0.2. A diagram depicting Φpcl can be found in

Figure D.

B. Experimental evaluation

In this section we provide additional details about the

learning procedures of the baseline networks and about the

experimental evaluation.

Figure C. The architecture of Φvp. Top: the layers of Φvp, bottom:

A detail of the 3x3 downsampling residual block.

B.1. Learning details of BerHuNet and VPNet

In this section we provide learning details for the BerHu-

Net and VPNet baselines. The learning rates and batch sizes

were in all cases adjusted empirically such that the conver-
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B.3. Absolute pose evaluation protocol

As noted in the paper, the absolute pose error metrics

eR and eC can be computed only after aligning the implicit

global coordinate frames of the benchmarked network and

of the ground truth annotations. This procedure is explained

in detail below.

Given a set of ground truth camera poses g∗i = (R∗
i , T

∗
i )

and the corresponding predictions ĝi = (R̂i, T̂i), we want to

estimate a global similarity transform TG = (RG, TG, sG),
parametrized by a scale sG ∈ R, translation TG ∈ R

3 and

rotation RG ∈ SO(3), such that the coordinate frames of

g∗i and ĝi become aligned.

In more detail, the desired global similarity transform

satisfies the following equation:

R̂i(RGX + TG) + sGT̂i = R∗
iX + T ∗

i ; ∀X (1)

i.e. given an arbitrary world-coordinate point X ∈ R
3, its

projection into the coordinate frame of g∗i (the right part of

eq. (1)) should be equal to the projection of X into the co-

ordinate frame of ĝi after transforming X with RG, TG and

scaling the corresponding camera translation vector T̂i with

sG (the left side of eq. (1)). Note that for LDOS data TG
corresponds to a rigid motion and sG = 1. Given TG, the

adjusted camera matrices ĝADJUST
i for which ĝADJUST

i ≈
g∗i are then computed with

ĝADJUST
i = ( R̂iRG , R̂iTG + sGT̂i )

In order to estimate TG, X is substituted in eq. (1) with

X = C∗
i = −R∗

i
TT ∗

i , i.e. X is set to be the center of

the ground truth camera g∗i which is a valid point of the

world coordinate frame. After performing some additional

manipulations, we end up with the following constraint:

1

sG
RGC

∗
i +

1

sG
TG = Ĉi ; ∀i (2)

where Ĉi = −R̂T
i T̂i is the center of the predicted camera

ĝi. Given the corresponding camera pairs {(g∗i , ĝi)}
N
i=1

the

constraint in eq. (2) is converted to a least squares mini-

mization problem:

arg min
RG,TG,sG

N
∑

i=1

||
1

sG
RGCi +

1

sG
TG − Ĉi||

2 (3)

and solved using the UMEYAMA algorithm [12].

For Pascal3D we estimate TG from the held-out training

set and later use it for evaluation on the test set. For LDOS,

due to the absence of a held-out annotated training set, we

estimate TG on the test set.

B.4. Point cloud prediction

The normalized point cloud distance of [8] is com-

puted as Dpcl(C, Ĉ) = 1

|C|

∑

c∈C minĉ∈Ĉ ‖ĉ − c‖ +

Test set LDOS FrC

Metric ↑ mVIoU ↓ mDpcl ↑ mVIoU ↓ mDpcl

Aubry [1] 0.06 1.30 0.21 0.41

VpDR-Net-P̂f 0.10 0.37 0.11 0.56

VpDR-Net-Chamfer 0.09 0.18 0.20 0.24

VpDR-Net-Ŝ 0.12 0.27 0.18 0.50

VpDR-Net (ours) 0.13 0.20 0.24 0.28

VpDR-Net-Fuse (ours) 0.13 0.19 0.26 0.26

Table A. Point cloud prediction ablative study. Comparison

between VpDR-Net and the method of Aubry et al. [1] and an

additional ablative study.

1

|Ĉ|

∑

ĉ∈Ĉ minc∈C ‖ĉ− c‖. For the VIoU measure, a voxel

grid is setup around each ground truth point-cloud C by uni-

formly subdividing C’s bounding volume into 303 voxels.

The point clouds are compared within the local coordi-

nate frames of each frame’s camera (whose focal length is

assumed to be known). Furthermore, since the SFM re-

constructions are known only up to a global scaling fac-

tor, we adjust each point cloud prediction Ĉ from the FrC

dataset by multiplying it with a scaling factor ζ that aligns

the means of Ĉ and C. Note that ζ can be computed analyt-

ically with:

ζ =
µT
CµĈ

µT

Ĉ
µĈ

,

where µC = 1

|C|

∑

cm∈C cm is the centroid of the point

cloud C.

Ablative study. In table 2 in the paper, we have presented

a comparison of VpDR-Net to the baseline approach from

[1]. Here we provide an additional ablative study that eval-

uates the contribution of the components of Φpcl. More ex-

actly, table A extends table 2 from the paper with the fol-

lowing flavours of VpDR-Net: (1) VpDR-Net-P̂f which

only predicts the partial point cloud Pf , (2) VpDR-Net-

Chamfer which removes the density predictions δ̂ and re-

places lpcl(Ŝ) with a Chamfer distance loss and (3) VpDR-

Net-Ŝ that predicts the raw unfiltered and untruncated point

cloud Ŝ.

The drops in performance by predicting solely the raw

and partial point clouds P̂f and Ŝ emphasize the impor-

tance of the point cloud completion and density prediction

components respectively. The Chamfer distance loss brings

marginal improvements in Dpcl but a significant decrease

of VIoU due to the inability of the network to represent and

discard outliers.

Related methods. Note that apart from [1], there exist

newer works that tackle the problem of single-view 3D re-

construction [4, 6], However these were not considered due

to their requirement of renderable mesh models which are

not available in our supervision setting.
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C. Qualitative results

Figures E to H contain additional viewpoint estimation

results on Pascal3D. Differently from fig. 4 in the paper

that was showing the most confident results, here we show

randomly selected results of both VpDR-Net and the VP-

Net which was trained on the corresponding aligned dataset

(FrC or LDOS). Please refer to the captions for further de-

tails.

Additionally, in fig. I we provide qualitative comparisons

of depth predictions between VpDR-Net and BerHu-Net on

randomly selected images from the test set of LDOS. For an

improved visualization, only the 80 % most confident pixel

depth predictions are shown in each image, based on the

confidence estimated by each model.
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Figure E. Viewpoint prediction on Pascal3D for VpDR-Net (ours) on the car class. We show 40 randomly selected predictions from

the test set sorted in descending order according to the predicted confidence scores. The images are sorted along the rows from left to right

and from top to bottom, i.e. the most confident viewpoint is in the top left corner while the least confident image resides in the bottom right

corner.

Figure F. Viewpoint prediction on Pascal3D for VPNet (baseline) trained on aligned FrC on the car class. We show 40 randomly

selected predictions from the test set sorted in descending order according to the predicted confidence scores. The images are sorted along

the rows from left to right and from top to bottom, i.e. the most confident viewpoint is in the top left corner while the least confident image

resides in the bottom right corner.
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Figure G. Viewpoint prediction on Pascal3D for VpDR-Net (ours) on the chair class. We show 40 randomly selected predictions from

the test set sorted in descending order according to the predicted confidence scores. The images are sorted along the rows from left to right

and from top to bottom, i.e. the most confident viewpoint is in the top left corner while the least confident image resides in the bottom right

corner.

Figure H. Viewpoint prediction on Pascal3D for VPNet (baseline) trained on aligned LDOS on the chair class. We show 40 randomly

selected predictions from the test set sorted in descending order according to the predicted confidence scores. The images are sorted along

the rows from left to right and from top to bottom, i.e. the most confident viewpoint is in the top left corner while the least confident image

resides in the bottom right corner.
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Figure I. Depth prediction on random images from LDOS comparing the predicted depth values as well as the predicted depth confidence

of VpDR-Net (ours) and BerHu-Net.
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