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Summary
This is a part of the supplementary material. The con-

tents of this supplementary material include user study in-
formation, implementation details including parameter se-
tups, additional results for the cinemagraph generation and
the human preference prediction, and supplementary ta-
bles, which have not been shown in the main paper due
to the space limit. The supplementary material for result-
ing videos (comparison with other methods [10, 6, 5, 12],
user editing effects, qualitative results) can be found in the
project web page.

1. User Study Information
During the user study, each cinemagraph is replayed

again and again until a user provides a rating for it. The
user spends about 4 seconds per cinemagraph on average
(we did not limit the time for individual samples but limit
the total time by about 20 min.). Before starting the user
study, each user was instructed by us, and carried out short
pilot tests. The users used the interface provided by us as
shown in Fig. 1. On user demographics, the age range is
23-35 years old. About 85% were engineering students and
researchers, with the others being non-technical people.

The preference rating could be regarded as an open-
ended question. Since the relationships between specific
features and user’s cinemagraph preference have not been
studied, we do not limit any specific preference criteria to
avoid bias but capture natural behaviors.

Statistics of User Ratings Fig. 2-(a) shows rating distri-
butions for a random sample of users. The graph shows a
very diverse set of rating distributions; the skew and shapes
are all quite different. Some of users have a fairly uniform
distribution for their ratings, while others clearly favor a
certain value (even though few users strongly biased, their
ratings are still distributed and express preferences to some
extent).

Fig. 2-(b) shows a measure of the diversity of user rating
∗The first and second authors contributed equally to this work.

Figure 1: Interface for our user study. The subject is asked to rate
a randomly shown cinemagraph (from 1 star to 5 stars).

Ratings

1 2 3 4 5

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

(a)

Standard deviation of ratings

0.6 0.8 1 1.2 1.4 1.6

P
ro

b
a
b
ili

ty

0

0.2

0.4

0.6

0.8

1

Normalized histgram

Cummulative distribution

(b)

Figure 2: Statistics of user ratings. (a) Rating distributions for
sampled users (color encoded by clustering users having similar
distribution). Different users have diverse tendencies for providing
ratings. (b) Distribution of standard deviations of ratings for each
candidate cinemagraph across users. Normalized histogram of the
standard deviation and its cumulative distribution are overlaid.

scores per cinemagraph. For each candidate cinemagraph,
we measure the standard deviation σ of user ratings. The
histogram in Fig. 2-(b) is constructed by binning the stan-
dard deviations for all cinemagraphs.

If the histogram has a pick at σ = 0, it means all the
users gave the same rates for all the cinemagraph, i.e., per-
fect consensus by common sense. The way of analyzing
data may not be same with any traditional statistical test,
the presented statistic plot actually implies subjectivenss of
rating behavior for cinemagraph. Looking at the overlaid,
cumulative distribution curve, it is interesting to see that
72.66% of cinemagraphs in the dataset have σ > 1, while
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the percentage of cinemagraphs having σ < 0.5 is actually
close to 0%. This represents the diversity of rating tenden-
cies that are user-dependent for a cinemagraph.

2. Implementation Details
In this section, we provide the detail information that al-

lows to reproduce our implementation.
Parameter Setup All the parameters used in our experi-
ments are listed in the following table:

Related terms Parameters
π(x) in Sec. 3.1 thr. = 0.15T
Elabel in Sec. 3.2 α1 = 1

Espa. α2 = 15
Etemp. and Espa. w = 0.2

γt(x) in Etemp. λt(x)=

{
125, if (∨i∈Hnat.πi(x))=1,
125/2, otherwise.

γs(x, z) in Espa. λs = 10/
√
K

Elabel α∞=1000
Elabel Pshort=20
Estatic λsta.=100
Estatic αsta.=0.03

N(·) (Gaussian kernel) in Estatic σx=0.9 and σt=1.2

Candidate Cinemagraph Generation The procedure for
MRF optimization is as follows:

1. For each looping period label p>1, we solve Eq. (1) only
for the per-pixel start times sx|p given the fixed p, saying
L|p, by solving a multi-label graph cut with the start frame
initialization sx|p that minimizes Etemp. per pixel indepen-
dently.

2. Given a candidate object label ID, we solve for per-pixel
periods px≥1 that define the best video-loop (px, sx|px)
where sx|px is obtained from the stage (1), again by solv-
ing a multi-label graph cut. In this stage, the set of labels
are {p>1, s′x}, where s′x denotes all possible frames for
the static case, p=1.

3. Due to the restriction of the paired label, sx|p, in the
stage (1), the solution can be restricted. In this stage, we
fix px from the stage (2) and solve a multi-label graph cut
only for sx.

Conceptually, we should alternate the stages (2) and (3).
However, in practice, we need to perform the optimization
only once, and even then it produces a better solution than
the two-stage approach suggested by Liao et al. The other
difference over Liao et al. is that since we generate sev-
eral candidate cinemagraphs (each representing a different
semantic object), we must solve the multi-label graph cut
several times.

In MRF optimization, we parallelize the graph cut op-
timizations using OpenMP and only use a few iterations
through all candidate α-expansion labels. We find that two
iterations are sufficient for the stage (2) and a single itera-
tion is sufficient for all the other stages. To reduce computa-
tional cost, we quantize the loop start time and period labels

to be multiples of 4 frames. We also set a minimum period
length of 32 frames.

User Editing To edit the cinemagraph, the user selects a
candidate class ID and a representative frame having re-
gions in which bad boundaries occur.1 Then, the bound-
ary shape of binary map πID is edited on overlaid selected
frame.

Once the editing is done, the edited πID is fed into MRF
optimization and re-run the stages (2, 3) in the Algorithm 1
with the parameter αsta. in Estatic(·) being doubled, so that
the edited regions are strongly encouraged to be dynamic.
Note that despite increasing αsta., a non-loopable region will
remain static. Rerunning the stages (2, 3) requires initial-
ization and pre-computed {sx|p}, but we can re-use these
pre-computed quantities from the stage (1).

Context Feature For the context feature, we use three
types of features: hand designed, motion, and semantic fea-
tures. We extract 55-dimensional hand designed features,
which consist of face, sharpness, trajectory, objectness and
loopability (its details are listed in Sec. 4 of this supple-
mentary material). We use C3D [11] as the motion feature,
which is a deep motion feature obtained from 3D convo-
lutional neural network. We apply C3D with the stride of
16 frames and 8 frame overlap, and average pooling is ap-
plied, so that we have a 4096 dimensional representative
motion feature for each cinemagraph. For the semantic fea-
ture, we use two semantic label occurrence measures for
static and dynamic regions as ~hstatic =

∑
x∈static

~h(x) and
~hdyn. =

∑
x∈dynamic

~h(x) respectively. The final context
feature for a cinemagraph is formed by concatenating all
the mentioned feature vectors, where each feature is inde-
pendently normalized by the infinity norm, i.e., the largest
absolute value, before concatenation.

Model 2) A Joint and End-to-End Model We apply an
alternating optimization strategy iteratively over (U,YΩ)
and ({M},θ); we first fix ({M},θ) during optimizing
(U,YΩ) and followed by ({M},θ) while fixing (U,YΩ)
until convergence. When fixing ({M},θ), optimizing
(U,YΩ) is the non-linear least square problem. We opti-
mize it using the Gauss-Newton method, where ∂f(u,v;θ)

∂u
is added when updating U. In the process of minimiz-
ing Lrecon., missing values YΩ are regarded as optimization
variables while YΩ is kept constant.

When we solve for ({M},θ), we separately solve three
regressions for {M} and f(·;θ). The mappings for {M}
use Gaussian radial basis function (RBF) network [2] to
provide a non-linear mapping, M(x) = WK(x) where
K(x) = [κ1(x), · · · , κd(x)] (d � min(m,n)), where
Y∈Rm×n, and κi(x) = exp( 1

2σ2
i
‖x − µi‖2F ).2 For the

1Since it is used as a guide, it does not have to be exact.
2When we use a linear mapping forM, it reduces to a linear model that
forms matrix factorization.
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regressions for {M} between U and Y, we update respec-
tive {µ} by k-means and {σ} by cross validation with a
subset that is split from the training set used for RBF train-
ing. Then, {W} is solved for by a least square fit. With this
RBF mapping, the regularization term is defined as

RM(Mh→l,Ml→h) = λR
(
‖Wh→l‖2F + ‖Wl→h‖2F

)
.

The rating regressor f(·) uses a linear function as
y = f(u,v;θ) = θ>[u;v]. Again, the parameter θ
is updated by least square fit with its regularization term
Rf (θ) = λθ‖θ‖2F . The regularization parameters are set as
λR = λθ = 0.1. The number of RBF basis functions is
set as d = 25. These parameters are chosen by running
the algorithm on the separated validation set (more details
are described in Sec. 3.2 of this supplementary material),
which was not used for test in all experiments. We use
a validation dataset for parameter tuning with the parame-
ter sets λR = λθ = {1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 0.1, 1}
and d = {5, 10, 15, 20, 25, 30, 35, 40, 45}.

In our method, we initialize YΩ from the convex ma-
trix completion (MC) [3] with speeding up by [9], U from
Laplacian eigenmap [1] on Y obtained from MC with 25
dim as mentioned above. Then, with this initialization, the
mappings {M} and the rating regressor f(·) are fit.

3. Additional Results

In this section, we present additional qualitative results
for semantic cinemagraph generation, followed by exten-
sive evaluation on the computational model for human pref-
erence prediction.

3.1. Evaluation on Semantic Cinemagraph Gener-
ation

Computational Time Profile In our experiments, the input
videos are at most 5 seconds long, with maximum rate of 30
frames/second. The resolution is at most 960× 540 pixels;
higher resolutions are down-sampled. The processing time
for a 3-sec 960× 540 video takes a few minutes, depending
on the number of candidates. Here is the breakdown in tim-
ing: initialization ≈10 secs (the stage (1) in Algorithm 1,
MRF solving ≈50 secs per candidate (the stages (2, 3) in
Algorithm 1), and rendering ≈10 secs.

Additional Qualitative Comparison Figure 3 shows a
comparison with Tomkin et al. [10]. The method of
Tomkin et al. allows user to select the region and loop to
be animated, but has no synchronization feature. The ex-
ample of Tomkin et al. have not only the desynchronized
animation on eye blink and visual artifacts on that region,
which shows what happens if semantic-based looping is not
applied. The differences are clearer in our supplementary
video, which we encourage the reader to view.

(a) [10] (b) Proposed

Figure 3: Comparisons of our cinemagraph generation with Tomp-
kin et al. [10]. In the result (a) of Tompkin et al., although a wink-
ing effect on the eyes is intentionally introduced by user editing,
it generates unsynchronized one (red arrow) with visual artifact,
while our result in (b) shows synchronized eye blinking of person
(yellow arrow).

Cinemagraph Visualization Figure 4 shows representa-
tive examples of cinemagraphs rendered using different pe-
riods and start frames ({p, s} respectively). Each row is of
the same scene, and each column represents a candidate cin-
emagraph (i.e., a different object to animate). The heat map
indicates how dynamic the region is, with gray being static.
The preference prediction results in Fig. 4 will be explained
in the subsequent section.

3.2. Evaluation on Human Preference Prediction

In this section, we evaluate the preference prediction
model described in Sec. 4 of the main paper in the follow-
ing ways: performance and visualization of grouping ef-
fect. Throughout our experiments, we randomly sampled
10% rating data as the validation set, and tune parameters
of methods using this set. We use the rest of the data for 9-
fold cross validation, so that the amount of test set is same
with the validation set.
Performance In Fig. 8 of the main paper, we consider
other regression methods to understand the effects of several
factors, and especially choose randomized forests (RF) [4]
as the main competitor.3 Fig. 8 of the main paper shows
the performance comparison: Rand: random guess (a
lower bound of the performance), CR: constant prediction
model with rate 3, G-RF: a single global RF model for
all users, I-RF: RFs individually learned for each user,
S-RF+{MC, Ours}: a single RF model for all users with
subjective user feature obtained from either MC or Ours
(for both user features, we use 25 dimensions), Ours: the
proposed method with either linear or RBF mapping func-
3We tested other regression methods, such as linear, support vector, Gaus-
sian process, multi-layer perceptron, for the rate prediction given context
and user features. In our scenario with limited amount of training data,
RF performed best; hence we only report RF based results for simplicity.
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Figure 4: Visualization of {p, s} and predicted ratings for unseen cinemagraphs by our prediction model. Each row presents three different
candidate cinemagraphs generated from a single video input, and subsequent two columns are a pair of {p (left), s (right)}, whose value is
presented by a color map ranging from blue to through yellow to red as values increase, with gray indicating static pixels. Note that the
presented cinemagraphs are unseen data during training. Preferences are not observed for every combination of users and cinemagraphs,
which is indicated by the symbol ‘?’ as unknown ground truth. Red highlights indicate the selected best cinemagraph for each user
according to the predicted preference rates, and blue highlights indicate the true preference according to the surveyed preference rate.

tions. G-RF and I-RF require context feature only, while
S-RFs require both context and user features. For RF based
methods, we use 10 number of ensembles.

It is worthwhile to see the learnability of human prefer-

ence by comparing simple regression, i.e., G-RF and I-RF.
As mentioned in Sec. 7.1 of the main paper, we cannot find
any common sense from the statistics of user ratings, rather
it reveals the fact that users’ preferences are too subjective;
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it can be deduced from low mAP of G-RF. Note that mod-
eling of G-RF can be regarded as an attempt to learn a com-
mon sense of human preference. In order to show the im-
portance of the user feature, we compare S-RF, which uses
both user and context features, with G-RF and I-RF. The
improvement of S-RF over G-RF and I-RF clearly shows
the importance of the user feature. On the other hand, the
importance of context feature is shown by comparing S-RF
and MC which do not use context feature. Notice that S-RF
can be used only when user feature is given by other meth-
ods that can learn user feature in an unsupervised manner
such as MC or Ours. Thus, S-RF is an ideal compari-
son in the setup without given user feature. Nonetheless,
Ours (RBF) achieves the best performance over S-RF by
virtue of joint approach to learn user representation and re-
gression. Lastly, comparing to Ours (Lin.) shows that
the non-linear dimension reduction is crucial for implicit
user relational modeling in a collaborative learning regime.
Running time of Ours (RBF) takes about 72 seconds in
unoptimized MATLAB implementation with a matrix of
459× 59.

Qualitative Examples of the Predicted Rating We
present rate prediction examples in Fig. 4, and highlight the
selected best cinemagraph for each user by colors. Note that
the presented cinemagraphs are unseen data during train-
ing. Since preferences are not observed (surveyed) for every
combination of users and cinemagraphs, unknown ground
truth is indicated by the symbol ‘?’. It is well reflected by
the proposed method that each user has their own subjective
for best preferred cinemagraph, and overall the predictions
have good matches with the selected best cinemagraphs by
ground-truth.

Grouping Effect Given the user representation obtained
by Ours (RBF), we visualize its 2-dimension embedding
by t-SNE [7] in Fig. 5. The plot clearly shows clustered
positions of users, which may imply that the intrinsic di-
mensionality of user space holds the low-dimensionality as-
sumption. To see tendencies among neighbor users in the
embedding space, we display true ratings of sampled users
in Fig. 6. The users and groups are sampled by considering
the proximity in the 2D embedding, and the cinemagraphs
are sampled from a set in which entries are rated by all the
presented users directly (none of them are inferred). The
user IDs correspond to the node IDs in Fig. 5. It shows that
each group has similar preference tendency, which implies
that the users located at similar embedding space have sim-
ilar preference characteristics.

4. Supplementary Tables

Hand-Designed Feature List Figure 7 is the hand-
designed feature list used in the human preference learn-
ing part. The low-level hand designed feature has total 55-

Figure 5: t-SNE visualization for 59 latent user features.
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Figure 6: Group behavior of user preference among intra- and
inter-groups. The presented ratings are the numbers directly pro-
vided by each user. The users are sampled according to the prox-
imity of embeddings in Fig. 5, and the presented cinemagraphs
are sampled as those are rated by all the listed users, i.e., intersec-
tion set. Green color overlay indicates dynamic looping regions,
otherwise static.

dimension. The presented order of this list is identical to the
order of feature vector entries.

Semantic Class Mapping Table These semantic classes
are based on PASCAL-Context [8]. This class mapping ta-
ble in Fig. 8 is used to combine some categories and classify
natural/non-natural categories in the semantic-based cin-
emagraph generation method. The dot . in the mapping
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Type  Dimension  Feature 

Face  15 

facesizeMin  
facesizeMax  
facesizeMean  
facesizeMedian  
facesizeStd  
facexsMin  
facexsMax  
facexsMean  
facexsMedian  
facexsStd  
faceysMin  
faceysMax  
faceysMean  
faceysMedian  
faceysStd  

Texture  5 

sharpnessMin  
sharpnessMax  
sharpnessMean  
sharpnessMedian  
sharpnessStd  

Motion 
flow 

10 

motionMin  
motionMax  
motionMean  
motionMedian  
motionStd  
motionSurroundMin  
motionSurroundMax  
motionSurroundMean  
motionSurroundMedian  
motionSurroundStd  

Trajectory  15 

tracklengthMin  
tracklengthMax  
tracklengthMean  
tracklengthMedian  
tracklengthStd  
trackBoundingBoxMin  
trackBoundingBoxMax  
trackBoundingBoxMean  
trackBoundingBoxMedian  
trackBoundingBoxStd  
trackTravelsMin  
trackTravelsMax  
trackTravelsMean  
trackTravelsMedian  
trackTravelsStd  

Global 
loopability 

5 

globalLoopCostsMin  
globalLoopCostsMax  
globalLoopCostsMean  
globalLoopCostsMedian  
globalLoopCostsStd  

Face ratio  5 

faceRatiosMin  
faceRatiosMax  
faceRatiosMean  
faceRatiosMedian  
faceRatiosStd 

Figure 7: Hand-designed feature list used in the human preference
learning part. It has total 55 dimension.

class denotes that original class name is used and left in-
tact.
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Figure 8: Class mapping table used in the semantic-based cinema-
graph generation method.
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