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(a) With inplane rotations

(b) Without inplane rotations

Figure S1. Full set of PSFs of Fig. 2(b) illustrating the effect of
inplane rotations for wide-angle setting (29 mm) using [6].

We begin by revisiting the problem motivation. This is
followed by section S2 which contains our proof for claim
2 (section 3). Section S3 gives implementation details, and
section S4 is devoted to additional evaluations.

S1. Problem Motivation (illustrative)

As mentioned in section 1 in the main paper, our method
advances the state-of-the-art in RS deblurring, as it can deal
with wide-angle configuration, unconstrained ego-motion
and unconstrained shutter, without the need for timing in-
formation. Here, we further elaborate the significance of
these problems that we have addressed in our work.
Unconstrained Focal-length: The PSFs provided in
Fig. 2(b), which illustrates the importance of inplane rota-
tions for wide-angle systems, is created using a focal length
of 29 mm and real hand-held trajectory #39 in [6]. The full
set of PSFs is provided in Fig. S1. We give in Fig. S2 focal-
length settings of some popular CMOS imaging devices. It
is clearly evident from the figure that wide-angle configura-
tions are indeed important in photography (and predominant
in cell-phones and drone cameras). However, the state-of-
the-art RS-BMD [1 1] works only for narrow-angle settings.
Hence, it is important to accommodate wide-angle settings.
Unconstrained Ego-motion: Even though a polynomial
function can reasonably model human camera shake, RS
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Figure S2. Focal lengths of some popular CMOS devices. Note the
wide-angle setting predominant in cell-phone and drone cameras.

blur also exists in images captured by drones, street view
cars, etfc., wherein the ego-motion is seldom regular [11].
Fig. S3 illustrates this fact with an under-damped response
of a robotic system (which we employed in Figs. 5(d-f) us-
ing [4]). Also given is the approximation using a fourth or-
der polynomial (as used in state-of-the-art RS-BMD [11]).
From the plot it is clear that the polynomial model is un-
able to adequately capture the motion, thus underscoring
the need for handling unconstrained ego-motion.

RS timing information: Both shutter speed (t.) and inter-
row delay (¢,.) are required a priori in state-of-the-art RS-
BMD [ 1] to fragment the motion trajectory for each image-
row. Getting ¢, from a camera requires processing of videos
taken using the same camera setting (section 5.2 in [11]).
Deriving both t. and t,. without the meta-data and camera
information further escalates the difficulty. In contrast, our
method does not need any a priori timing information. Note
that we estimate the value ¢,./t. for the RS prior in Eq. (9)
solely from image intensities as discussed in section 4.4.

S2. Proof of Claim 2

Claim 2: The prior which restricts drifting of TSFs between
blocks (in Eq. (9)) is a convex function in w, and can be
represented as a norm of matrix vector multiplication, i.e.,
as |Gwl||3, with sparse G.
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Figure S3. Vibrational ego-motion of a robotic system (using [4]).
The polynomial model is inadequate to capture these trajectories.

To prove this, we draw from the following well-known

properties of convex function [ | ] which are a linear function
is always convex (prop. 1), composition of convex functions
is always convex (prop. 2), and non-negative sum of convex
functions is convex (prop. 3).
Proof: Considering n; number of image blocks and each
block-MDF w; having length [, an individual additive com-
ponent in our RS prior (in Eq. (9)) can be represented as
[T (rp(j —i+1))-Sg5 w3, where S 5) is a matrix of di-
mension [ x ny - [, with all zeros except two scaled identity
matrices of dimension [ x [ corresponding to ith TSF (with
scale 1) and jth TSF (with scale —1). Therefore, the term
{T'(ry(j —i+1))-S,5w} is a linear function in w. Since
[T (rp( —i+ 1)) - Sgijywl|3 is a composite of squared Lo
norm (which is convex) of a linear function in w, each addi-
tive component is convex (props. 1 and 2). Resultantly, the
sum of all additive components in Eq. (9), i.e., prior(w), is
a convex function in w (prop. 3).

Also, prior(w) can be represented as ||[Gw/||3, where
matrix G is obtained by vertically concatenating matrices
{I'(ry(j —i+1)) - S(,5) ) corresponding to the individual
additive component in RS prior. Since S ;) is a sparse ma-
trix, G will also be sparse. Hence proved. |

S3. Implementation Details

We implemented our algorithm in MATLAB. We empiri-
cally set 7 scales, each with 7 iterations, in our scale-space
framework (section 4). The blurred image in the <th scale
is formed by downscaling the input image by a factor of
(1/+/2)"=1. To start the alternative minimization, the coars-
est scale MDFs are initialized with Kronecker delta. For
ego-motion estimation (section 4.2), we consistently used
the RS-prior regularization (o in Eq. (13)) in level i as 27~
(so that the RS prior can cope with the increasing image
size, and thus the data fidelity magnitude |Fw — VB3,
in finer levels). We used the MDF regularization 3’ (in
Eq. (13)) as 0.01. For latent image estimation (section 4.3),
we used R = 48 such that each image-patch is square, and
with 6 patches along the shorter dimension and 8 along the
longer dimension. For the Richardson-Lucy deconvolution
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Figure S4. Cumulative time for different processes. Note the com-
putational gains of the prior-less RS-EFF based image estimation.

(employed in the last iteration of the finest level), we used a
total number of 30 iterations. For the selection of block-size
(section 4.4), we used an initial block-size ry as 145, and a
downscaling factor of 2 (i.e., My = M /2 and Ny = N/2).

Running time reported in Table 1 is obtained on the same
system with an Intel Xeon processor with 32 GB memory.
We found that for deblurring an 800 x 800 RGB image
(of maximum blur-length of 30 pixels), our unoptimized
MATLAB implementation took about 9 minutes. Fig. S4
provides a detailed break-up of the time taken for each es-
timation step. In fact, observe that a large fraction of the
total time is utilized for latent image estimation in the fi-
nal iteration which involves a costly image-prior (see sec-
tion 4.3). This underscores the importance of our efficient
prior-less estimation in the initial iterations derived from
RS-EFF (Eq. (14)).

S4. Additional Evaluations

We provide in Fig. S5 iteration-by-iteration results to il-
lustrate how the algorithm works. In Fig. S6, we give full
images corresponding to the patches of synthetic experi-
ment results provided in Figs. 5(a-i). In Figs. S7-S11, we
give additional evaluations for the real RS-BMD examples
provided in Figs. 7 & 8. These include SIV-BMD [2] and
RS rectification followed with SIV-BMD [2] (as reported in
[11]), and state-of-the-art CCD-BMD [9]. We also consider
BMD without our RS prior to illustrate the ego-motion am-
biguity in RS-BMD. For low-light case, we consider [5] that
specifically addresses low-light BMD (albeit for CCD cam-
eras). The codes for [5], [11] and [9] are downloaded from
the author’s website and executed using default parameters.
Additional examples under different lighting condition and
for wide-angle settings are given in Fig. S12.

For sake of completeness; we provide GS deblurring
comparisons with state-of-the-art CCD-BMD methods of
[9, 8, 10, 13, 12] and [3] in Figs. S13 & S14. We eval-
uated on the examples from the dataset of [7] and [9] us-
ing their reported results. The results show that our method
works equally well for CCD cameras and importantly, with-
out warranting any prior knowledge of the shutter.
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Figure S5. Iteration-by-iteration results of the alternative minimization of block-wise MDFs and latent image: (a-c) Estimated block-wise
MDFs and (d) Estimated latent image. Notice the variation in block-wise MDFs, which depicts the characteristic of RS blur (as shown in
Fig. 3). Also, observe the convergence of the block-wise MDFs through iteration 5 to 7 in the finest image scale (last three rows).
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(a) Input (b) Su and Heidrich [11] (c) Ours

Figure S6. Full-sized images corresponding to the image patches given in Figs. 2(a-i): First row gives a case of wide-angle system

(Figs. 2(a-c)), second row gives a case of vibratory motion (Figs. 2(d-f)), and third row gives a case of CCD-blur (Figs. 2(g-i)). (Best
viewed on high-resolution display with zoom-in corresponding to an 800 x 800 image size.)
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Figure S7. Detailed comparisons for RS narrow-angle example in dataset [11] (Fig. 7-top-row). Note the effect of incoherent combination
due to the block shift-ambiguity (section 3, claim 1) in (i)-first row, which is successfully suppressed by our RS prior ((i)-second row).
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Figure S8. Detailed comparisons for RS narrow-angle example in dataset [| 1] (Fig. 7-second-row). Our method recovers finer details (see
bag-zipper in patch 1), and deblur with negligible ringing artefacts (see bag-badge in patch 2), as compared to competing methods.



(d) Hu et al. [5] | (e)Suetal [l I ' (f) Ours

Figure S9. Detailed comparisons for RS wide-angle example (Fig. 8-first row). In contrast to competing methods, our method models the
RS ego-motion better (observe the residual blur in the letters, and the repeated occurrence of the longest grass leaf in (c)).

(e) Ours without RS prior

Figure S10. Comparisons for RS wide-angle case (Fig. 8-second row). White boxes in images (e) and (f) show the effect of RS prior.

(d)Suetal [11] (e) Ours without RS prior (f) Ours
Figure S11. Comparisons for RS wide-angle example (Fig. 8-third row). White box in images (e) and (f) shows the effect of RS prior.
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Figure S12. Additional RS comparisons with state-of-the-art RS-BMD method [ 1] under different lighting conditions and for wide-angle
settings. Note the inefficacy of the competing method in dealing with wide angle systems.
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Figure S13. Comparisons for CCD blur example in dataset [7]. Our result is comparable with [8, 10, 13] and [9].

(d) Xueral [13] (e) Pan et al. [9] (f) Ours

Figure S14. Comparisons for CCD blur example in dataset [9]. Our result is comparable with [3, 12, 13] and [9].
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