
DeepSetNet: Predicting Sets with Deep Neural Networks
Supplemental Material

S. Hamid Rezatofighi Vijay Kumar B G Anton Milan
Ehsan Abbasnejad Anthony Dick Ian Reid

School of Computer Science, The University of Adelaide, Australia

This document accompanies our ICCV submission titled ”DeepSetNet: Predicting Sets with Deep Neural Networks” and
completes the main submission. We first provide more background on finite set statistics. Further, we add the details of our
derivations for Deep Set Network that were omitted due to space constraints. To do this, here we augment Sections 3 and
4 of the main text. Finally, we provide more discussions and results on all object counting, multi-label classification and
pedestrian detection applications.

Video. The accompanying video shows an example sequence from the UCSD dataset for people counting. It shows the
video frame along with the input to our network, which is a superimposed image of pedestrian detection proposals, as
described in Sec. 5.2 in the main submission. The plot on the bottom shows the number of ground truth pedestrians and our
prediction.

1. Background on Finite Set Statistics
Finite Set Statistics provide powerful and practical mathematical tools for dealing with random finite sets, based on the

notion of integration and density that is consistent with the point process theory [5]. In this section, we review some basic
mathematical background about this subject of statistics.

In the conventional statistics theory, a continuous random variable y is a variable that can take an infinite number of
possible values. A continuous random vector can be defined by stacking several continuous random variables into a fixed
length vector, Y = (y1, · · · , ym). The mathematical function describing the possible values of a continuous random vector,
and their associated joint probabilities, is known as a probability density function (PDF) p(Y) such that

∫
p(Y)dY = 1.

A random finite set (RFS) Y is a finite-set valued random variable Y = {y1, · · · , ym} ⊂ Y. The main difference between
an RFS and a random vector is that for the former, the number of constituent variables, m, is random and the variables
themselves are random and unordered, while the latter is of a fixed size with a predefined order.

A statistical function describing a finite-set variable Y is a combinatorial probability density function p(Y), which consists
of a discrete probability distribution, the so-called cardinality distribution, and a family of joint probability densities on the
values of the constituent variables for each cardinality. Similar to the definition of a PDF for a random variable, the PDF of
an RFS must sum to unity over all possible cardinality values and all possible element values and their permutations, i.e.∫

p(Y)µ(dY) ,
∞∑
m=0

1

m!Um

∫
p({y1, · · · , ym}||)dy1 · · · dym = 1, (1)

where µ is the dominating measure and U is the unit of hypervolume in Y [6]. The PDF of an m-dimensional random vector
can be defined in terms of an RFS as:

p(y1, · · · , ym) ,
1

m!
p({y1, · · · , ym}||). (2)

The denominator m! =
∏m
k=1 k appears because the probability density for a set {y1, · · · , ym}|| must be equally distributed

among all the m! possible permutations of the vector [5].
The cardinality distribution p(m) over the number of elements in the random finite set Y is obtained by

p(m) =

∫
|Y|=m

p(Y)µ(dY) ,
1

m!Um

∫
p({y1, · · · , ym}||)dy1 · · · dym. (3)

1

Algorithm 1: Drawing samples from a set distribution.

Sampling an RFS Probability Distribution
• Initialise Y ← ∅
• Sample cardinality m ∼ p(m)
• Sample m points from an m-dimensional joint distribution
Y ∼ p({y1, y2, · · · .ym}||)← m!× p(y1, y2, · · · .ym)

In the case of i.i.d. samples:
for i← {1, . . . ,m}

sample yi ∼ p(y)
set Y ← Y ∪ yi

end

Similar to the conventional statistics for random variables, the expectation of an RFS has been defined above. The first
statistical moment, or the expected value, of an RFS is known as intensity density or probability hypothesis density (PHD)
and is calculated by definition as

v(y) ,
∫
δY(y)p(Y)µ(dY), (4)

where δY(y) =
∑
x∈Y δx(y) and δx(y) denotes the Dirac delta function concentrated at x. The PHD function v(y) is

interpreted as the instantaneous expected number of the variables that exist at that point y. Moreover, the integral of the
PHD over a region gives the expected number of elements in that region and the peaks of the PHD indicate highest local
concentrations of the expected number of elements.

Having an RFS distribtuion p(Y), the samples can be drawn from this distribution as shown in Algorithm 1.

2. Deep Set Network
Let us begin by defining a training set D = {Yi,xi}, where each training sample i = 1, . . . , n is a pair consisting of an

input feature xi ∈ Rl and an output (or label) set Yi = {y1, y2, . . . , ymi
}, yk ∈ Rd,mi ∈ N0. In the following we will drop

the instance index i for better readability. Note that m := |Y| denotes the cardinality of set Y . The probability of a set Y
with an unknown cardinality is defined as:

p(Y|x,θ,w) =p(m|x,w)× Um × p({y1, y2, · · · , ym}|||x,θ)

=p(m|x,w)×m!× Um × p(y1, y2, · · · , ym|x,θ),
(5)

where p(m|·, ·) and p(y1, y2, · · · , ym|·, ·) are respectively a cardinality distribution and a symmetric joint probability density
distribution of the elements. U is the unit of hypervolume in Rd, which makes the joint distribution unitless [6]. θ denotes the
parameters that estimate the joint distribution of set element values for a fixed cardinality, while w represents the collection
of parameters which estimate the cardinality distribution of the set elements.

The above formulation represents the probability density of a set which is very general and completely independent from
the choices of both cardinality and spatial distributions. It is thus straightforward to transfer it to many applications that
require the output to be a set. However, to make the problem amenable to mathematical derivation and implementation, we
adopt two assumptions: i) the outputs (or labels) in the set are independent and identically distributed (i.i.d.) and ii) their
cardinality follows a Poisson distribution with parameter λ. Thus, we can write the distribution as

p(Y|x,θ,w) =

∫
p(m|λ)p(λ|x,w)dλ×m!× Um ×

(
m∏
k=1

p(yk|x,θ)

)
. (6)

2.1. Posterior distribution

To learn the parameters θ and w, it is valid to assume that the training samples are independent from each other and the
distribution over the input data p(x) is independent from the output and the parameters. Therefore, the posterior distribution

over the parameters can be derived as

p(θ,w|D) =
1

Z
p(D|θ,w)p(θ)p(w)

=
1

Z
p({Yi,xi}∀i|θ,w)p(θ)p(w)

=
1

Z

n∏
i=1

[
p(Yi|xi,θ,w)p(xi)

]
p(θ)p(w)

=
1

Z

n∏
i=1

[∫
p(mi|λ)p(λ|xi,w)dλ×mi!× Umi ×

(
mi∏
k=1

p(yk|xi,θ)

)
p(xi)

]
p(θ)p(w),

(7)

where Z is a normaliser defined as

Z =

∫ ∫ n∏
i=1

[∫
p(mi|λ)p(λ|xi,w)dλ×mi!× Umi ×

(
mi∏
k=1

p(yk|xi,θ)

)
p(xi)

]
p(θ)p(w) dθdw. (8)

The probability p(xi) can be eliminated as it appears in both the numerator and the denominator. Therefore,

p(θ,w|D) =
1

Z̃

n∏
i=1

[∫
p(mi|λ)p(λ|xi,w)dλ×mi!× Umi ×

(
mi∏
k=1

p(yk|xi,θ)

)]
p(θ)p(w), (9)

where

Z̃ =

∫ ∫ n∏
i=1

[∫
p(mi|λ)p(λ|xi,w)dλ×mi!× Umi ×

(
mi∏
k=1

p(yk|xi,θ)

)]
p(θ)p(w) dθdw. (10)

A closed form solution for the integral in Eq. (9) can be obtained by using conjugate priors:

m ∼ P(m;λ)

λ ∼ G(λ;α(x,w), β(x,w))

α(x,w), β(x,w) > 0 ∀x,w
θ ∼ N (θ; 0, σ2

1I)

w ∼ N (w; 0, σ2
2I),

where P(·, λ), G(·;α, β), and N (·; 0, σ2I) represent respectively a Poisson distribution with parameters λ, a Gamma distri-
bution with parameters (α, β) and a zero mean normal distribution with covariance equal to σ2I.

We assume that the cardinality follows a Poisson distribution whose mean, λ, follows a Gamma distribution, with pa-
rameters which can be estimated from the input data x. Note that the cardinality distribution in Eq. 5 can be replaced by
any other discrete distribution. For example, it is a valid assumption to model the number of objects in natural images by
a Poisson distribution [2]. Thus, we could directly predict λ to model this distribution by formulating the cardinality as
p(m|x,w) = P(m;λ(x,w)) . However, this would limit the model’s expressive power; because two visually entirely dif-
ferent images with the same number of objects would be mapped to the same λ. Instead, to allow for uncertainty of the
mean, we model it with another distribution, which we choose to be Gamma for mathematical convenience. Consequently,
the integrals in p(θ,w|D) are simplified and form a negative binomial distribution,

NB (m; a, b) =
Γ(m+ a)

Γ(m+ 1)Γ(a)
.(1− b)abm, (11)

where Γ is the Gamma function. Finally, the full posterior distribution can be written as

p(θ,w|D) =
1

Z̃

n∏
i=1

[
NB
(
mi;α(xi,w),

1

1 + β(xi,w)

)
×mi!× Umi ×

(
mi∏
k=1

p(yk|xi,θ)

)]
p(θ)p(w). (12)

2.2. Learning

For simplicity, we use a point estimate for the posterior p(θ,w|D), i.e. p(θ,w|D) = δ(θ = θ∗,w = w∗|D), where
(θ∗,w∗) are computed using the following MAP estimator:

(θ∗,w∗) = arg max
θ,w

log (p (θ,w|D)) . (13)

Since the solution to the above problem is independent from the normalisation constant Z̃, we have

(θ∗,w∗) = arg max
θ,w

log (p(θ)) +

n∑
i=1

[
log (mi!) +mi logU +

mi∑
k=1

log (p(yk|xi,θ))

+ log

(
NB

(
mi;α(xi,w),

1

1 + β(xi,w)

))]
+ log (p(w))

= arg max
θ,w

f1(θ) + f2(w).

(14)

Therefore, the optimisation problem in Eq. (14) can be decomposed w.r.t. the parameters θ and w. Therefore, we can
learn them independently in two separate problems

θ∗ = arg max
θ

f1(θ)

= arg max
θ

−γ1‖θ‖+

n∑
i=1

[
log (mi!) +mi logU +

mi∑
k=1

log (p(yk|xi,θ))

]

≡ arg max
θ

−γ1‖θ‖+

n∑
i=1

mi∑
k=1

log (p(yk|xi,θ))

(15)

and
w∗ = arg max

w
f2(w)

= arg max
w

n∑
i=1

[
log

(
Γ(mi + α(xi,w))

Γ(mi + 1)Γ(α(xi,w))

)
+ log

(
β(xi,w)α(xi,w)

(1 + β(xi,w)α(xi,w)+mi)

)]
− γ2‖w‖,

(16)

where γ1 and γ2 are the regularisation parameters, proportional to the predefined covariance parameters σ1 and σ2. These
parameters are also known as weight decay parameters and commonly used in training neural networks.

The learned parameters θ∗ in Eq. (15) are used to map an input feature vector x into an output vector Y . For example, in
image classification, θ∗ is used to predict the distribution Y over all categories, given the input image x. Note that θ∗ can
generally be learned using a number of existing machine learning techniques. In this paper we rely on deep CNNs to perform
this task.

To learn the highly complex function between the input feature x and the parameters (α, β), which are used for estimating
the output cardinality distribution, we train a second deep neural network. Using neural networks to predict a discrete value
may seem counterintuitive, because these methods at their core rely on the backpropagation algorithm, which assumes a
differentiable loss. Note that we achieve this by describing the discrete distribution by continuous parameters α, β (Negative
binomial NB(·, α, 1

1+β)), and can then easily draw discrete samples from that distribution. More formally, to estimate w∗, we
compute the partial derivatives of the objective function in Eq. (16) w.r.t. α(·, ·) and β(·, ·) and use standard backpropagation
to learn the parameters of the deep neural network.

∂f2(w)

∂w
=

∂f2(w)

∂α(x,w)
.
∂α(x,w)

∂w
+

∂f2(w)

∂β(x,w)
.
∂β(x,w)

∂w
− 2γ2w, (17)

where
∂f2(w)

∂α(x,w)
=

n∑
i=1

[
Ψ
(
mi + α(xi,w)

)
−Ψ

(
α(xi,w)

)
+ log

(β(xi,w)

1 + β(xi,w)

)]
, (18)

and
∂f2(w)

∂β(x,w)
=

n∑
i=1

[
α(xi,w)−mi.β(xi,w)

β(xi,w).
(

1 + β(xi,w)
)], (19)

where Ψ(·) is the digamma function defined as

Ψ(α) =
d

dα
log (Γ(α)) =

Γ′(α)

Γ(α)
. (20)

2.3. Inference

Having the learned parameters of the network (w∗,θ∗), for a test feature x+, we use a MAP estimate to generate a set
output as

Y∗ = arg max
Y

p(Y|D,x+), (21)

where

p(Y|D,x+) =

∫
p(Y|x+,θ,w)p(θ,w|D)dθdw

and p(θ,w|D) = δ(θ = θ∗,w = w∗|D). Since the unit of hypervolume U in most practical application in unknown, to
calculate the mode of the set distribution p(Y|D,x+), we use the sequential inference as explained in [5]. To this end, we
first calculate the mode m∗ of the cardinality distribution

m∗ = arg max
m

p(m|w∗,x+), (22)

where

p(m|w∗,x+) = NB
(
m;α(w∗,x+),

1

1 + β(w∗,x+)

)
. (23)

Then, we calculate the mode of the joint distribution for the given cardinality m∗ as

Y∗ = arg max
Ym∗

p({y1, · · · , ym∗}|||θ∗,x+). (24)

To estimate the most likely set Y∗ with cardinality m∗, we use the first CNN with the parameters θ∗ which predicts
p(y1, · · · , yM |x+,θ∗), where M is the maximum cardinality of the set, i.e. {y1, · · · , ym∗} ⊆ {y1, · · · , yM} ,∀m∗. Since
the samples are i.i.d., the joint probability maximised when the probability of each element in the set is maximised. There-
fore, the most likely set Y∗ with cardinality m∗ is obtained by ordering the probabilities of the set elements y1, · · · , yM as
the output of the first CNN and choosing m∗ elements with highest probability values.

Note that the assumptions listed in Sec. 2 are necessary to make both learning and inference computationally tractable and
amenable to an elegant mathematical formulation. A major advantage of this approach is that we can use any state-of-the-art
classifier/detector as the first CNN (θ∗) to further improve its performance. Modifying any of the assumptions, e.g. non-i.i.d.
set elements, leads to serious mathematical complexities [5], and are left for future work.

3. Further Experimental Results
Here, we provide additional arguments, evaluation plots and qualitative results that could not be included in the main

paper.

3.1. Object counting by regression

Regressing for cardinality may seem an obvious choice, but is not trivial to derive mathematically and cannot be easily jus-
tified in our framework because it a) cannot be accommodated in a Bayesian set formulation to model uncertainty and b) does
not yield a discrete distribution. Nonetheless, we have conducted the experiment by replacing our loss with the regression
loss while using the exact same architecture and setup as in Sec. 5.2 of the main text. Tab. 2 shows the comparison results
between our cardinality loss and regression loss on two datasets from two reported tasks of multi-class image classification
(MS-COCO) and pedestrian detection (MOT16). As expected, directly regressing for cardinality yields slightly worse results
both in terms of the cardinality prediction and w.r.t. the F1 score. For completeness, Tab. 3 also reports the mean absolute
error and standard deviation for cardinality estimation using our loss on four datasets.

Table 2: Loss comparison for cardinality estimation.

Mean card. error F1 score
Loss MOT16 MS COCO MOT16 MS COCO
Regression 2.05 0.83 60.16 68.4
Negative Binomial 1.94 0.74 61.86 69.4

Table 3: Mean absolute error and standard deviation for cardinality estimation on test sets.

Multi-label classification Pedestrian detection
Error PASCAL VOC MS COCO Caltech MOT16
Mean 0.32 0.74 0.54 1.94
Std 0.52 0.86 0.79 1.96

3.2. Pedestrian detection

Here, we first discuss the challenges that we confronted to use our set formulation for this application. Then we pro-
vide some information about the datasets and their split used for this experiment. Finally, we show more quantitative and
qualitative results on this experiment.

Non-maximum suppression. In the main text, we argued that the non-maximum suppression (NMS) as a heuristic step
makes the detection problem not as straightforward as what is expressed in our set formulation in Eq. (5). In fact, a major
nuisance in detection is not the NMS algorithm itself as a greedy solver, but rather its hand-crafted objective. This process
is traditionally formulated as maximising the joint distribution over pairs of samples, or equivalently as a quadratic binary
program (QBP)

Y ∗ = arg max
Y

Y TQY, (25)

where Y ∈ BM is a binary vector, indicating which of the M boxes to keep or to suppress. The diagonal values of Q are
proportional to the detection scores while the pairwise (exclusion) terms in Q are manually designed, e.g. to correspond to
the overlap ratios. The aforementioned QBP is NP-hard and cannot be solved globally in general. NMS is one greedy and
efficient approach to solve the problem locally. To enforce m∗, one could include a constraint into the QBP like

Y ∗ = arg max
Y

Y TQY,

s.t.1TY = m∗.
(26)

However, this may lead to an infeasible problem for a fixed Q with a predefined value of the threshold for an overlap ratio
TO. To this end, Q should be designed such that the above problem can have a feasible solution. Learning Q is perhaps
a more elegant approach, but is not part of this paper. To this end, for the current setup, one solution is to find a threshold
that can make the above problem feasible. Therefore, we start from the default value of TO, and adjust it step-wise until the
number of boxes reaches m∗. In the case if the number of final boxes is larger than m∗, we pick m∗ boxes with the highest
scores. To apply a solver, we experimented with the global QBP formulation using Gurobi for a small problem, but found
NMS with an adaptive threshold to be the most efficient and effective approach.

Caltech Pedestrians [3] is a de-facto standard benchmark for pedestrian detection. The dataset contains sequences captured
from a vehicle driving through regular traffic in an urban environment and provides bounding box annotations of nearly
350, 000 pedestrians. The annotations also include detailed occlusion labels. The number of pedestrians per image varies
between 0 and 14. However, more than 55% of the images contain no people at all and around 30% of the data includes
one or two persons. We use the MS-CNN [1] network model and its parameters learned on the Caltech training set as θ∗

in Eq. (15). To learn the cardinality, we use 4250 images provided as a training set, splitting it into training and validation
(80%− 20%), reaching a mean absolute error of 0.54 (cf . Tab. 3).

MOTCallenge 2016. This benchmark is primarily targeted at multi-object tracking and is not yet commonly used for evalu-
ating pedestrian detection. However, the variation in the number of pedestrians across the frames is relatively large (between
0 and 32) and is also distributed more uniformly, which makes correct cardinality estimation more important. Since the labels

for the test set are not available, we use the provided training set of this benchmark consisting of 5316 images from 7 different
sequences, and divide it into training, validation and test set with split ratios 60%, 15% and 25%, respectively. We only learn
the cardinality network w∗ on training set and we use the MS-CNN network model and its parameters learned on the KITTI
dataset [4] as θ∗ in Eq. (15).

Additional Results. ROC curves on two detection datasets are shown in Fig. 1. Qualitative results of pedestrian detection
are shown in Figure 2.

10
-2

10
-1

10
0

10
1

false positives per image

.40

.50

.64

.80

1

m
is

s
 r

a
te

MOT16 Pedestrians

83% MS-CNN

82% MS-CNN-DS (ours)

82% MS-CNN-DS (GT card.)

10
-3

10
-2

10
-1

10
0

false positives per image

.50

.64

.80

1

m
is

s
 r

a
te

Caltech Pedestrians (All)

100% VJ

90% HOG

61% MS-CNN

60% MS-CNN-DS (ours)

60% MS-CNN-DS-GT

Figure 1: ROC curves on MOT16 and Caltech Pedestrians (experiment “all”). The overall performance of a detector is
measured by the log-average miss rate as proposed by Dollár et al. [3].

3.3. Multi-class image classification.

Figure 3 shows more results for successful image tagging. Figure 4 points to some interesting failures and erroneous
predictions.

References
[1] Z. Cai, Q. Fan, R. Feris, and N. Vasconcelos. A unified multi-scale deep convolutional neural network for fast object detection. In

ECCV 2016. 6, 8
[2] A. B. Chan and N. Vasconcelos. Bayesian poisson regression for crowd counting. In CVPR, pages 545–551, 2009. 3
[3] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. IEEE T. Pattern Anal. Mach.

Intell., 34, 2012. 6, 7
[4] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The KITTI Vision Benchmark Suite. In CVPR 2012. 7
[5] R. P. Mahler. Statistical multisource-multitarget information fusion, volume 685. Artech House Boston, 2007. 1, 5
[6] B.-N. Vo et al. Model-based classification and novelty detection for point pattern data. In ICPR, 2016. 1, 2

MS-CNN MS-CNN + DeepSetNet

missed false positive true positive

Figure 2: More examples illustrating results of pedestrian detection generated using the state-of-the-art detector MS-CNN [1]
(in blue, left) and our MS-CNN + DeepSetNet (right). To generate the MS-CNN results, we display the top m∗ boxes after
applying non-maximum suppression. Arrows indicate typical failures introduced by a suboptimal NMS threshold, which are
corrected when considering the predicted number of persons for each image.

GT: fork, cake
person, bench,

sports-ball

Prediction:

person, car, traffic-light, bus---

--- fork, cake person, car, traffic-light, bus

GT:
chair, cup, tv, laptop,

keyboard, mouse
person, dining-table, cup,
bottle, fork, spoon, cake

Prediction:

chair, dining-table, sink, potted-plant
vase, oven, refrigerator, microwave

person, car, motorcycle,
bicycle, elephant

person, bench,
sports-ball

chair, cup, tv, laptop,
keyboard, mouse

person, dining-table, cup,
bottle, fork, spoon, cake

chair, dining-table, sink, potted-plant
vase, oven, refrigerator, microwave

person, car, motorcycle,
bicycle, elephant

Figure 3: Further examples showing a perfect prediction w.r.t. both the number of tags and the labels themselves using our
Deep Set Network.

GT: person ---

Prediction:

person, tie

train person, surfboard

GT:
chair, dining-table, bottle, bowl, sink,

clock, spoon, oven, wine-glass, refrigerator
car, boat,

truck, bus, traffic-light

Prediction:

dining-table, cup, bottle, knife,
wine-glass, sandwich, person, chair

car, bus, bicycle,
person, truck

dining-table, bowl, sandwich
person, sports-ball,

tie, baseball-bat

chair, dining-table, bottle, bowl, sink,
clock, vase, oven, microwave, refrigerator

dining-table, cup, bottle, knife,
wine-glass, sandwich, forkcar, bus, bicycle car, boat

Figure 4: Additional examples illustrating interesting failure cases. False negatives and false positives are highlighted in
blue and red, respectively. Note that in most examples, the mismatch between the ground truth and our prediction is due to
the ambiguity or artifacts in the annotations. Two such examples are shown in the top row, where a train (window) and the
surfboard are not annotated, probably because these are hardly visible in the image. Nevertheless, our network can predict the
objects. The two bottom rows show real failure cases of our method. Note, however, that these include extremely challenging
examples, where even for a human, it is fairly difficult to spot a traffic light in the aerial image or the person and the chair in
the image on the bottom right.

