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Abstract

We propose a new method to analyze the impact of er-
rors in algorithms for multi-instance pose estimation and a
principled benchmark that can be used to compare them.
We define and characterize three classes of errors - local-
ization, scoring, and background - study how they are in-
fluenced by instance attributes and their impact on an al-
gorithm’s performance. Our technique is applied to com-
pare the two leading methods for human pose estimation on
the COCO Dataset, measure the sensitivity of pose estima-
tion with respect to instance size, type and number of visible
keypoints, clutter due to multiple instances, and the relative
score of instances. The performance of algorithms, and the
types of error they make, are highly dependent on all these
variables, but mostly on the number of keypoints and the
clutter. The analysis and software tools we propose offer a
novel and insightful approach for understanding the behav-
ior of pose estimation algorithms and an effective method
for measuring their strengths and weaknesses.

1. Supplementary Materials

This document accompanies the paper “Benchmarking
and Error Diagnosis in Multi-Instance Pose Estimation”.

We provide clarification on how to interpret some of the
presented content and illustrate the results of our evaluation
analysis on other datasets. Finally, we include the result of
our analysis for other methods in addition to those contained
in the Main Paper.

• Human Pose and Skeleton Color Coding (Sec. 1.1):
Visualization of the color-coding of the human skele-
ton obtained from a pose estimation algorithm.

• Fine-Grained Precision Recall Plots (Sec. 1.2): In-
depth explanation on how to interpret the performance
plots computed by our analysis tools.

• Correction of Localization Errors (Sec. 1.3): Visu-
alization of a predicted human skeleton as the localiza-
tion errors it contains are progressively corrected.

• Multi-Instance Mouse Pose Evaluation (Sec. 1.4):
Analysis of the performance of a multi-instance pose
estimation algorithm on the Caltech Resident Intruder
Mouse dataset CRIM13 [2].

• Performance Analysis Reports (Sec. 1.5): The per-
formance reports obtained by running our analysis
code on several algorithms.

1.1. Human Pose and Skeleton Color Coding

Face Upper-body

Torso Lower-body

Figure 1. Human Pose and Skeleton Color Coding.
We adopt the following color coding to visualize algo-

rithm’s keypoint detections:

• The location of the left and right parts of the body is
indicated respectively with red and green dots; the lo-
cation of the nose is plotted in blue.

• Face keypoints (nose, eyes, ears) are connected by pur-
ple lines.

• Upper-body keypoints (shoulders, elbows, wrists) are
connected by blue lines.

www.vision.caltech.edu/~mronchi


• Torso keypoints (shoulders, hips) are connected by
yellow lines.

• Lower-body keypoints (hips, knees, ankles) are con-
nected by brown lines.

1.2. Fine-Granined Precision Recall Plots

Recall

0 1.2 .4 .6 .8

Pr
ec

is
io
n

0

1

.2

.4

.6

.8

Figure 2. Fine-Grained Error Analysis. We study the errors oc-
curring in multi-instance pose estimation, and provide the tools for
a fine-grained description of performance, which allows to quan-
tify the impact of each type of error at a single glance.

Fig. 2 summarizes the impact of all types of error on the
performance of a multi-instance pose estimation algorithm.
It is composed of a series of Precision Recall (PR) curves
where each curve is guaranteed to be strictly higher than the
previous as the evaluation setting becomes more permis-
sive. The legend shows the Area Under the Curve (AUC)
obtained for each of the following evaluation settings:

• Oks .95, .85: PR curves obtained at the OKS thresh-
olds of .95 and .85 respectively.

The remaining evaluations are performed with the lowest
OKS threshold considered in the legend (.85 in this case).

• Miss, Swap, Inv., Jit.: PR curves after the algo-
rithm’s keypoint detections are progressively corrected
to remove each type of localization error, as shown
in Sec. 1.3. As keypoint localization is corrected, the
OKS between a detection and ground-truth match im-
proves, possibly exceeding the current OKS evaluation
threshold and becoming an additional True Positive.
We show with different colors, the AUC improvements
obtained by fixing each type of localization error.

• Score: PR curves after the algorithm’s keypoint detec-
tions have been rescored with the optimal confidence
score described in the main paper.

• Bkg.: PR curves after all of the algorithm’s back-
ground False Positive detections are removed.

• FN: PR curves after all the False Negative errors are
ignored.

In the case of the Cmu [3] algorithm, the AUC evaluated
at Oks=.95 is only .096, but improves to .488 when low-
ering the threshold to .85. At this threshold, correcting all
the miss errors results in a large improvement of the AUC
to .628. Smaller AUC gains are obtained when correcting
swaps, .681, and inversions, .775. Another large improve-
ment is obtained when jitter errors are removed, resulting
in an AUC of .900. This shows what would the perfor-
mance of [3] be if it had a perfect localization of keypoints.
When localization is very good, the impact of scoring is not
as significant, but still results in an AUC improvement of
about 2%. Optimally scoring detections greatly diminishes
the impact of Background False Positives, as detections
rarely remain unmatched. Finally, removing background
False Negatives provides the remaining AUC to obtain per-
fect performance. In summary, Cmu’s errors are dominated
by imperfect localization, mostly miss and jitter errors, and
missed detections.

1.3. Sequential Correction of Localization Errors

The fine-grained PR curves shown in Fig. 2 are obtained
by fixing an OKS threshold and evaluating the performance
of an algorithm after progressively correcting its detec-
tions. To do so, we compute for every predicted keypoint
what is the Keypoint Similarity (KS) with its correspond-
ing ground-truth body part, and with different ground-truth
body parts of the same person, and of other people in the
image. This allows us to define the types of localization er-
ror, as done in Sec. 3.1 of the main paper, and correct them.

• Miss errors are corrected by repositioning a keypoint
prediction on the .5 KS circle centered on the true lo-
cation; left-elbow and wrists in Fig. 3.

• Swap and Inversion errors are corrected by reposi-
tioning a keypoint prediction at a distance from the
correct ground-truth location so that the new value of
KS is the same that the prediction had with the wrong
body part it mistakenly detected (belonging to a dif-
ferent/same person for swap/inversion); in Fig. 3 the
right-elbow is a swap, right-knee is an inversion.

• Jitter errors are corrected by repositioning a keypoint
prediction on the .85 KS circle centered on the true
location; left-ankle in Fig. 3.

Miss and jitter errors are corrected by bringing a pre-
diction to a fixed distance from its true position. The new
location of swaps and inversions depends instead on how
good was the prediction of the wrong joint: after correc-
tion, a good/bad prediction of the wrong body part becomes
a good/bad prediction (high/low KS) of the true body part.
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Figure 3. Correction of Keypoint Localization Errors. The change of a detection’s keypoint positions and the resulting OKS improve-
ment as localization errors are progressively corrected. We plot the ground-truth skeleton in green and the detection using the color coding
discussed below. The red concentric circles indicate the .5 and .85 KS threshold as discussed in Fig.2 of the main paper. When visualizing
the individual error types, we show the concentric circles around the ground-truth location only for the keypoints that are being corrected.

Fig. 3, 5 provide two examples of how the keypoints be-
longing to a detection can be progressivily improved. The
OKS increase obtained by correcting the localization errors
depends both on the number of errors of that type, and the
total number of visible keypoints present in an instance, see
Eq. 1 of the main paper. Fixing the position of predicted
keypoints impacts the overall AUC of the PR curves: the
detection in Fig. 3, previously a FP for OKS evaluation
thresholds above .7, has become, after correction, a TP at
all thresholds between .75 and .9.

1.4. Multi-Instance Mouse Pose Evaluation
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Figure 4. Performance Breakdown on CRIM13 [2]. (Left) The
PR curves for a multi-instance pose estimation algorithm trained
and evaluated on the CRIM13 [2] dataset. (Right) Examples of
detections containing swap errors; Top - right hip of the black
mouse; Bottom - nose of both mice. The ground-truth skeleton
of the black and white mice are shown respectively in yellow and
green, the corresponding detections in red and blue.

The study of multi-instance pose estimation errors and
performance conducted in the main paper extends beyond
humans, to any object category where the location of parts
is estimated along with a detection, and to situations where
cluttered scenes may contain multiple object instances. This

is common in fine-grained categorization, i.e. birds [1], or
animal behavior analysis, i.e. mice [2] and flies [4], where
part alignment is often crucial. To show the versatility of
our software tools, we evaluated the performance of a top-
down pose estimation algorithm on the CRIM13 [2] dataset,
which consists of images of pairs of mice (a black resident
and a white intruder) engaging in social behavior. For our
experiment, we used 10000 images, separated into a Train-
ing, Validation and Test sets of 8500, 500 and 1000 images,
for which human annotations of 7 keypoint locations (nose,
ears, neck, hips, tail) were available. During evaluation,
the Keypoint Similarity metric and the OKS between a de-
tection and an annotation are computed in the same way
described in Sec. 2.2 of the main paper. Fig. 4.(Left),
shows the performance of a top-down method, composed
of a Multi-Box object detector [6] to find each mouse, fol-
lowed by a stacked hourglass network [7] for predicting the
keypoint locations. Results indicate that the two predomi-
nant errors are jitter and miss; swap errors have a very lim-
ited impact and occur during interactions which results in
some amount of occlusion, Fig. 4.(Right); inversion errors
are mostly absent. The scoring of detections is not critical,
as in the human case, since images always contains exactly
two mice. Because of the fairly simple, clutter-free and
fixed-viewpoint image capture settings, background errors
(False Positives and False Negatives) are mostly absent.
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Figure 5. Correction of Keypoint Localization Errors.

1.5. Performance Analysis Reports

In the following pages we include the performance re-
ports1 generated by the released analysis code2 on the fol-
lowing algorithms:

• Realtime Multi-Person 2D Pose Estimation using
Part Affinity Fields [3]

• Towards Accurate Multi-person Pose Estimation in
the Wild [8]

• Mask R-CNN [5]

1Some values have been obfuscated to preserve the sanctity of the
COCO test-dev split. Check the Main Paper to find the corresponding val-
ues on the COCO training set.

2Available for download at: https://goo.gl/9EyDyN
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