Supplementary Material
AMTnet: Action-Micro-Tube Regression by
End-to-end Trainable Deep Architecture

Suman Saha

Gurkirt Singh

Fabio Cuzzolin

Oxford Brookes University, Oxford, United Kingdom

{suman .saha-2014, gurkirt.singh-2015, fabio. cuzzolin}@brookes .ac.uk

1. Implementation details

We implement our method using Torch 7 [I]. To
develop our codebase, we take coding reference from
the publicly available repository [5]. We use the coding
implementation of bilinear interpolation [7] (§ Section 3.4
in the main paper) for ROI feature pooling. Our micro-tube
linking algorithm (ML) (§ Section 5 in the main paper) is
implemented in MATLAB.

In all our experiments, at training time we pick top 2000
RPN generated 3D proposals using NMS (non-maximum
suppression). At test time we select top 1000 3D pro-
posals. However, a lower number of proposals, e.g. top
300 proposals does not effect the detection performance,
and increase the test time detection speed significantly.
In Section 3.2, we show that extracting less number of
3D proposals (at test time) does not effect the detection
performance. Shaoqing et al. [8] observed the same with
Faster-RCNN.

For UCF-101, we report test time detection results
(video-mAP) using two different action-tube generation al-
gorithms. Firstly, we link the micro-tubes predicted by the
proposed model (at test time) using our micro-tube linking
(ML) algorithm (§ Section 5 in the main paper). we denote
this as “Ours-ML” in Table 6 (main paper). Secondly, we
construct final action-tubes from the predicted micro-tubes
using the 2 pass dynamic programming (2PDP) algorithm
proposed by [9]. We denote this as “Ours-2PDP” in Table
6 (main paper). The results in Table 1, 3, 4 and 5 are gen-
erated using our new micro-tube linking algorithm (“Ours-
ML”). Further, we cross-validate the class-specific a. as in
Section 3.4 of Saha er al.’s paper [9], and generate action-
tubes using these cross-validated o values. We denote the
respective results using an asterisk (‘*’) symbol in Table 6
(main paper).

1.1. Mini-batch sampling

In a similar fashion [3], we construct our gradient de-
scent mini-batches by first sampling N pairs of successive

video frames, and then sampling R 3D proposals for each
pair. In practice, we set N = 1 and R = 256 in all our
experiments. We had one concern over this way of sam-
pling training examples because, all the positive 3D propos-
als from a single training batch (i.e. a pair of video frames)
belong to only one action category ! (that is, they are corre-
lated), which may cause slow training convergence. How-
ever, we experience a fast training convergence and good
detection results with the above sampling strategy.

1.2. Data preprocessing

The dimension of each video frame in both J-HMDB-
21 and UCF-101 is [320 x 240]. We scale up each frame
to dimension [800 x 600] as in [8]. Then we swap the
RGB channels to BGR and subtract the VGG image mean
{103.939, 116.779, 123.68} from each BGR pixel value.

1.3. Data augmentation

We augment the training sets by flipping each video
frame horizontally with a probability of 0.5.

1.4. Training batch

Our training data loader script constructs a training batch
which consists of: a) a tensor of size [2 x D x H x W] con-
taining the raw RGB pixel data for a pair of video frames,
where D = 3 refers to the 3 channel RGB data, H = 600
is the image height and W = 800 is the image width; b) a
tensor of size [2 x T' x 6] which contains the ground-truth
micro-tube annotation in the following format: [fno tid z.
Yo w h], where T is the number of micro-tubes, fno is the
frame number of the video frame, fid is an unique identifica-
tion number assigned to each individual action tube within
a video, {z.,y.} is the center and w and h are the width
and height of the ground-truth bounding box; c) a [1 x T
tensor storing the action class label for each micro-tube.
The J-HMDB-21 (Model-11+32) train set has 58k training
batches, and UCF-101 train set consists of 340k training
batches.

'Each video clip of UCF-101 and J-HMDB-21 is associated with a
single class label. Therefore, a pair of video frames belongs to a single
action class.

1.5. Training iteration

Our model requires at least 2 training epochs because,
in the first training epoch we freeze the weights of all the
convolutional layers and only update the weights of the rest
of the network. We start updating the weights of the convo-
lutional layers (alongside other layers) in the second epoch.
We stop the training after 195k and 840k iterations for J-
HMDB-21 and UCF-101 respectively. The training times
required for J-HMDB-21 and UCF-101 are 36 and 96 GPU
hours respectively using a single GPU. The training time
can be further reduced by using two or more GPUs in par-
allel.

2. Fusion methods

A fusion function f : x!, x!*2, — y fuses two con-

volution feature maps x!, x!T2 € RH' *W'xD o produce
an output map y € RH'XW'XD \where W', H' and D are
the width, height and number of channels of the respective
feature maps [2]. In this work we experiment with the
following two fusion methods.

Sum fusion. Sum fusion y**™ = f5¥m(xt x*+4) com-
putes the sum of the two feature maps at the same spatial
locations, (4, j) and feature channels d:

sum __ it t+A
Yigd = Xijd t X j4d ()

where 1 < ¢ < H')1 < j < W,1 < d < D and
xt,xHA,y c RH’XW’XD.

Mean fusion. Mean fusion is same as sum fusion, only
the difference is, instead of computing the element-wise
sum, here we compute the element-wise mean:

) t t+A
visd" = (i ja T xi54)/2 @)

3. Experiments and discussions

3.1. Effect of different fusion methods on video-
mAP

In Table 1 we report video-mAPs obtained using mean
and sum fusion methods for J-HMDB-21 dataset. We train
our model on the combined trainset (set-11+32) (§ Sec-
tion 6.1 and 6.2 in the main paper). We train two models,
one using mean and another using sum fusion and denote
these two models in Table 1 as Model-11+32 (mean-ML)
and Model-11+32 (sum-ML) respectively. Action-tubes are
constructed using our micro-tube linking (ML) algorithm.
We can observe that at higher IoU threshold § = 0.5, the
sum fusion performs better and improve the mAP by almost
1%. As a future work, we would like to explore different
spatial and temporal feature map fusion functions [2].

Table 1. Effect of element-wise mean and sum fusion methods on
video-mAP for J-HMDB-21 dataset (averaged over 3 splits).

IoU threshold § 0.1 0.2 0.3 0.4 0.5

Model-11+32 (mean-ML) 57.16 57.14 57.00 56.13 54.51
Model-11+32 (sum-ML) 5779 5776 57.68 56.79 55.31

3.2. Effect of the number of predicted 3D proposals

To investigate the effect of the number of predicted 3D
proposals on detection performance, we generate video-
mAPs using two different sets of detections on J-HMDB-21
dataset. One detection set is generated by selecting top 1000
3D proposals and another set is by selecting top 300 3D pro-
posals at test time using NMS. Once the two sets of detec-
tions are extracted, predicted micro-tubes are then linked up
in time to generate final action tubes. Subsequently, video-
mAPs are computed for each set of action tubes. The corre-
sponding video-mAPs for each detection set at different [oU
thresholds are reported in Table 2. We denote these two de-
tection sets in Table 2 as Detection-1000 and Detection-300.
It is quite apparent that reduced number of RPN proposals
does not effect the detection performance.

Table 2. Effect of the number of predicted 3D proposals on
video-mAP for J-HMDB-21 dataset (averaged over 3 splits).

IoU threshold & 0.1 0.2 0.3 0.4 0.5

Detection-1000 5779 5776 57.68 56.79 5531
Detection-300 5791 5789 57.84 56.87 55.26

3.3. Loss function hyper-parameters

We have four hyper-parameters A, A, .. ALy, and A%,
in our multi-task loss function (see Equation (3) in the main-
paper) which weigh the relative importance of the four loss
terms. To investigate the effect of these hyper-parameters
on video-mAP, we train our model with different combina-
tions of these four hyper-parameters on J-HMDB-21 split-
1. The trainset is generated as per scheme-11 (see Section
(6.1) in the main paper). The video-mAPs of these trained
models are presented in Table 3. We can observe that when
the weigths for the mid classifcation (\7}.) and regression

cls
(Ao, layers’ loss terms are too low (e.g. 0.1 & 0.05),
the model has the worst detection performance. When all
weights are set to 1, then the model exhibits good detection
performance. However, we get the best video-mAPs with
A = 1.0, A7, = 1.0, A7, = 0.5 and A}, = 0.5. In all
our experiments we set all 4 weights to 1. As a future work,

we will explore the setting [1.0, 1.0, 0.5, 0.5].
3.4. Ablation study

An ablation study of the proposed model is presented in
Section 3.5. Besides, as a part of the ablation study, per

Table 3. Effect of different combinations of hyper-parameters on
video-mAP for J-HMDB-21 split-1 train set.

Table 4. An ablation study on J-HMDB-21 (split-01). Video-mAP
is computed at loU threshold § = 0.5.

Hyper-parameters IoU threshold &
Ads Aoe A Ao 0.1 0.2 0.3 0.4 0.5
1.0 1.0 0.1 0.05 | 55.03 55.03 54.63 53.17 5033
1.0 1.0 0.1 0.1 55.62 5562 5547 5447 5051
1.0 1.0 0.5 0.25 56.3 563 5591 5476 52.30
1.0 1.0 0.5 0.5 573 5713 56.79 5582 53.81
1.0 1.0 1.0 1.0 56.86 56.85 56.57 5589 52.78

Model-11-2PDP

class frame- and video-APs of J-HMDB-21 dataset are re-
ported in Table 2, and per class video-APs of UCF-101 are
presented in Table 3 in the main paper.

3.5. Discussion

Why there is no confusion matrix present for different
action classes?
The paper is about action detection, where evaluation is by
class-wise average precision(AP) rather than classification
accuracy, a confusion matrix cannot be used.

Is the proposed model limited to learn from pairs of
consecutive frames?
Our model is not limited to learn from pairs of consecutive
frames, but can learn from pairs at any arbitrary interval A
(see Figure 2(a) in the main paper).

“Two consecutive frames will produce identical or al-
most identical outputs with no displacement information” —
is that true?

To confute this point we conducted an ablation study of our
model which is discussed below. For consecutive frames,
we trained our model on J-HMDB-21 (split-01) dataset by
passing training pairs composed of identical frames, e.g.
passing the video frame pair (65, 65) instead of (65, 66).
As you can see in Table 4, video-mAP drops significantly
by 8.13% (at IoU threshold § = 0.5) which implies that the
two streams do not output identical representations.

To double-check, we also extracted the two VGG-16 conv
feature maps (see Figure (b) in the main paper) for each
test frame pair ((f:, ft+1)) of JJHMDB-21 and UCF-101
datasets. For each pair of conv feature maps, we first flat-
tened them into feature vectors, and then computed the nor-
malised L2 distance between them. For identical frames we
found that the L2 distance is O for both J-HMDB-21 and
UCF-101 datasets. Whereas, for consecutive frames it is
quite high, in case of J-HMDB-21 the mean L2 distance
is 0.67; for UCF-101 the mean L2 distance is 0.77 which
again implies that the two streams generate significantly dif-
ferent feature encoding even for pairs consist of consecutive
video frames.

Model video-mAP (%)
Model-01 48.9
Model-02 52.7
Model-03 571

Model-01: Training pairs with identical frames

Model-02: Training pairs with consecutive frames (model-11)
Model-03: Training pairs with mixture of consecutive and
successive frames (model-11+32)

3.6. Training and test time requirements

Training time. Saha ef al. reported [10] that the state-
of-the-art [4, 11] action detection methods require at least
6+ days to train all the components (including fine-tuning
CNNs, CNN feature extraction, one vs rest SVMs) of their
detection pipeline for UCF-101 trainset (split-01). In our
case, we need to train the model once which requires 96
hours for UCF-101 and 36 hours for J-HMDB-21 to train.
The training and test time calculations are done considering
a single NVIDIA Titan X GPU. The computing time
requirement for different detection methods are presented
in Table 5. Our model requires 2 days less training time as
compared to [4, | 1] on UCF-101 trainset.

Test time. We report video-level detection speed com-
parison of our method with [4, 11, 9] on J-HMDB-21
dataset. The figures are shown in Table 6. Our method
exhibits the fastest test-time detection speed with 8.5
Sec./video as compared to [4, 11, 9]. Peng et al. [6] do
not report any computing time requirement analysis in their
paper, so we could not compare our figures with them.

Table 5. Training time on UCF-101 dataset.

Methods days

[4] 6+
[11] 6+
[9] 3+
ours 4

Table 6. Test time on J-HMDB-21 dataset.

Methods ~ Avgerage time (Sec./video)
(41 113.52

(1] 52.23

(91 10.89

ours 8.5

3.7. Qualitative results

Spatiotemporal action detection results on UCF-101.
We show the spatiotemporal action detection qualitative re-
sults in Figures 1 and 2. To demonstrate the robustness of

the proposed detector against temporal action detection, we
select those action categories which have highly temporally
untrimmed videos. We select action classes VolleyballSpik-
ing, BasketballDunk and CricketBowling. For Volleyball-
Spiking class, the average temporal extent of the action in
each video is 40%, that means, the remaining 60% of the
video doesn’t contain any action. Similarly, for Basketball-
Dunk and CricketBowling classes, we have average dura-
tions 41% and 46% respectively.

Video clip (a) (§ Figures 1) has duration 107 frames
and the action VolleyballSpiking takes place only between
frames 58 to 107. Note that our method able to successfully
detect the temporal extent of the action (alongside spatial
locations) which closely matches the ground-truth. We can
observe similar quality of detection results for video clip
(b) and (c) (§ Figures 1) which have durations 41 and 94
frames and the temporal extent of action instances are be-
tween frames 17 to 41 and frames 75 to 94 respectively for
BasketballDunk and CricketBowling. Video clips (a) and
(b) in Figures 2 show some more spatiotemporal detection
results for action classes BasketballDunk and CricketBowl-
ing.

Figures 3 shows sample detection results on UCF-101.
Note that in (1), the 2nd “biker” is detected in spite of par-
tial occlusion. Figures 3 (1), (2), (3) and (5) are examples of
multiple action instance detection with complex real world
scenarios like 3 fencers (§ (2)) and bikers (§ (3)). Further,
note that the detector is robust against scale changes as
the 3rd fencer (§ (2)) and the biker (§ (3)) are detected
accurately in spite of their relatively smaller shapes.

Spatiotemporal action detection results on J-HMDB-
21. Figure 4 presents the detection results of our model
on J-HMDB-21 dataset. In Figure 4 (1), (2) and (3), the ac-
tions “run” and “sit” are detected accurately in spite of large
variations in illumination conditions, which shows that our
detector is robust against illumination changes. In Figure 4
(5), (6) and (7), the actions “jump” and “run” are detected
successfully. Note that due to fast motion, these video
frames are affected by motion blur. Further, in Figure 4
(9) to (12), actions “stand” and “sit” are detected with cor-
rect action labels. Even for human, it is hard to infer which
instance belong to “stand” and “sit” class. This again tells
that our classifier is robust against inter-class similarity.

Frame No. 1

Frame No. 70

Video clip (b) [rasses

Frame No. 38

Frame No. 40

Frame No. 62

E 73 SAIESTT 11 4

BasketballDunk 8

T ST 11 4
; — »
< a BasketballDunk

=l

=
-
-)\
-

S BT T

BasketballDunk

Y
]

Frame No. 20

Video clip (c)

Frame No. 75

Frame No. 27

Frame No. 77

Frame No. 30

CricketBowling

Y

'i?‘é\

Frame No. 90

Frame No. 94

Figure 1. Spatiotemporal action detection results. Video clips (a), (b) and (c) are test videos belong to UCF-101 action classes

VolleyballSpiking, BasketballDunk and CricketBowling respectively.

Video clip (a) fREerre—

- s

=

: BasketballDunk L :
)

Frame No. 29 Frame No. 35 Frame No. 45 Frame No. 51

Figure 2. Spatiotemporal action detection results. Video clips (a) and (b) are test videos belong to UCF-101 action classes BasketballDunk
and CricketBowling respectively.

Fencing
Fenciriy

P e |l forl-

Figure 3. More sample detection results on UCF-101 test videos.

shoot-bow

PERSONALITY

(23)

Figure 4. Spatiotemporal action detection results on J-HMDB-21 test videos.

References

(1]

(2]

(3]

(4]

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, number EPFL-CONF-192376, 2011. 1

C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional
two-stream network fusion for video action recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1933-1941, 2016. 2

R. Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 14401448,
2015. 1

G. Gkioxari and J. Malik. Finding action tubes. In /EEE Int.
Conf. on Computer Vision and Pattern Recognition, 2015. 3

[5] jcjohnson. densecap, 2016. https://github.com/

(6]

(7]

(8]

(9]

(10]

(11]

jcjohnson/densecap. 1

X. Peng and C. Schmid. Multi-region two-stream R-CNN
for action detection. In ECCV 2016 - European Conference
on Computer Vision, Amsterdam, Netherlands, Oct. 2016. 3
gassemoquab. stnbhwd, 2015. https://github.com/
gassemoquab/stnbhwd. 1

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. In Advances in Neural Information Processing Sys-
tems, pages 91-99, 2015. 1

S. Saha, G. Singh, M. Sapienza, P. H. S. Torr, and F. Cuz-
zolin. Deep learning for detecting multiple space-time action
tubes in videos. In British Machine Vision Conference, 2016.
1,3

S. Saha, G. Singh, M. Sapienza, P. H. S. Torr, and F. Cuz-
zolin. Deep learning for detecting multiple space-time ac-
tion tubes in videos, 2016. http://tinyurl.com/
map6lde. 3

P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Learning to
track for spatio-temporal action localization. In IEEE Int.
Conf. on Computer Vision and Pattern Recognition, June
2015. 3

https://github.com/jcjohnson/densecap
https://github.com/jcjohnson/densecap
https://github.com/qassemoquab/stnbhwd
https://github.com/qassemoquab/stnbhwd
http://tinyurl.com/map6lde
http://tinyurl.com/map6lde

