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Abstract

In this supplemental, we present some further details on
our models and their training procedure, provide additional
insights about the influence of the different loss functions
to the super-resolution reconstruction, discuss applications
and limitations of our approach and show further results
and comparisons with other methods. The sections in the
supplementary are numbered to match the corresponding
sections in the main paper.

4 Additional details on the method

4.2.3 Patch size of texture matching loss

We compute the texture loss L patch-wise to enforce lo-
cally similar textures between Iy and Iygr. We found a
patch size of 16x16 pixels to result in the best balance be-
tween faithful texture generation and the overall perceptual
quality of the images. Figure [I] shows ENet-PAT when
trained using patches of size 4x4 pixels for the texture
matching loss (ENet-PAT-4) and when it is calculated on
larger patches of 128x128 pixels (ENet-PAT-128). Using
smaller patches leads to artifacts in textured regions while
calculating the texture matching loss on too large patches
during training leads to artifacts throughout the entire im-
age since the network is trained with texture statistics that
are averaged over regions of varying textures, leading to un-
pleasant results.

4.2.4 Architecture of the adversarial network

Table [T shows the architecture of our discriminative adver-
sarial network used for the loss term L 4. We follow com-
mon design patterns [[13] and exclusively use convolutional
layers with filters of size 3x3 pixels with varying stride
lengths to reduce the spatial dimension of the input down to
a size of 4x4 pixels where we append two fully connected

’ Output size \ Layer ‘

128 x 128 x 3 Input I or Iygr
128 x 128 x 32 Conv, IReLLU
64 x 64 x 32 Conv stride 2, IReLU
64 x 64 x 64 Conv, IReLU
32 x 32 x 64 Conv stride 2, IReLU
32 x 32 x 128 Conv, IReLU
16 x 16 x 128 Conv stride 2, IReLU
16 x 16 x 256 Conv, IReLU
8 X 8 X 256 Conv stride 2, IReLU
8 x 8 x 512 Conv, IReLLU
4 x4 x 512 Conv stride 2, IReLU
8192 Flatten
1024 Fc, IReLU
1 Fc, sigmoid
] 1 Estimated label |

Table 1. The network architecture of our adversarial discrimina-
tive network at 4x super-resolution. As in the generative network,
we exclusively use 3x3 convolution kernels. The network design
draws inspiration from VGG [17] but uses leaky ReLU activa-
tions [[11] and strided convolutions instead of pooling layers [13]].

layers along with a sigmoid activation at the output to pro-
duce a classification label between 0 and 1.

5 Further evaluation of results

Our models only learn the residual image between the
bicubic upsampled input image and the high resolution out-
put which renders training more stable. Figure [3] displays
examples for residual images that our models estimate.
ENet-E has learned to significantly increase the sharpness
of the image and to remove aliasing effects in the bicubic
interpolation (as seen in the aliasing effects in the resid-
ual image that cancel out with the aliasing in the bicubic
interpolation). ENet-PAT additionally generates fine high-



frequency textures in regions that should be textured while
leaving smooth areas such as the sky and the red front areas
of the house untouched.

5.1 Additional combinations of losses

In general, we found training models with the adversarial
and texture matching loss in conjunction with the Euclidean
loss (in place of the perceptual loss) to be significantly less
stable and the perceptual quality of the results oscillated
heavily during training, i.e., ENet-EA and ENet-EAT are
harder to train than ENet-PA and ENet-PAT. This is because
the adversarial and texture losses encourage the synthesis
of high frequency information in the results, increasing the
Euclidean distance to the ground truth images during train-
ing which leads to loss functions that counteract each other.
The perceptual loss on the other hand is more tolerant to
small-scale deviations due to pooling. The results of ENet-
EA and ENet-EAT are shown in Fig. 2] We note that the
texture matching loss in ENet-EAT leads to a more stable
training than ENet-EA and slightly better results, though
worse than ENet-PAT. This means that the texture matching
loss not only helps create more realistic textures, but it also
stabilizes the adversarial training to an extent.

5.2 Comparison with further methods

Figure [5|shows a comparison of our method with Bruna
et al. [2]]. Our model does not suffer from jagged edges and
is much sharper.

Figure [6] shows a comparison with RAISR [14] at 2x
super-resolution. Since RAISR has been designed for speed
rather than state-of-the-art image quality, it reaches a lower
performance than previous methods [7, 8 [12] so ENet-E
yields visually sharper images even at this low scaling fac-
tor. ENet-PAT is the only model to reconstruct sharp de-
tails and it is visually much less distinguishable from the
ground truth. Despite not being optimized for speed, En-
hanceNet is even faster than RAISR at test-time: 9/18ms
(EnhanceNet) vs. 17/30ms (RAISR) on average per image
at 4x super-resolution on Set5/Set14, though EnhanceNet
runs on a GPU while RAISR has been benchmarked on a
6-core CPU.

To demonstrate the performance of our method, we com-
pare the result of ENet-PAT at 4x super-resolution with the
current state of the art models at 2x super-resolution in
Fig.[ Although 4x super-resolution is a greatly more de-
manding task than 2x super-resolution, the results are com-
parable in quality. Small details that are lost completely in
the 4x downsampled image are more accurate in VDSR and
DRCN’s outputs, but our model produces a plausible image
with sharper textures at 4x super-resolution that even out-
performs the current state of the art at 2x super-resolution in
sharpness, e.g., the area below the eyes is sharper in ENet-
PAT’s result and looks very similar to the ground truth.

Model || Loss Weight [ VGG layer
ENet-P Lp 2-1071 pool,
2-1072 pooly
ENet-PA || Lp 2-1071 pool,
2-1072 pool;
La 1 -
ENet-PAT || Lp 21071 pool,
2-1072 pooly
La 2 -
Lr  3-1077 convy |
1-10° convy |
1-10°6 convs 1

Table 2. Weights for the losses used to train our models.

5.2.1 Quantitative results by PSNR, SSIM and IFC

Tables [3] [] and [5] show quantitative results measured by
PSNR, SSIM and IFC [16] for varying scaling factors.
None of these metrics is able to correctly capture the per-
ceptual quality of ENet-PAT’s results.

5.2.3 Screenshot of the survey

Figure |7| shows a screenshot of the survey that we used to
evaluate the perceptual quality of our results. The subjects
were shown the target image on the top and were asked to
click the image on the bottom that looks more similar to the
target image. Each subject was shown up to 30 images.

5.3 Implementation details and training

The model has been implemented in TensorFlow
r0.10 [1]]. For all weights, we apply Xavier initialization [5]].
For training, we use the Adam optimizer [9] with an initial
learning rate of 10~%. We found common convolutional
layers stacked with ReLU’s to yield comparable results,
but training converges faster with the residual architecture.
All models were trained only once and used for all results
throughout the paper and the supplementary, no fine-tuning
was done for any specific dataset or image. Nonetheless,
we believe that a choice of specialized training datasets for
specific types of images can greatly increase the perceptual
quality of the produced textures (c.f. Sec. 6).

For the perceptual loss £p and the texture loss L7, we
normalized feature activations to have a mean of one [4].
For the texture matching loss, we use a combination of the
first convolution in each of the first three groups of layers in
VGG, similar to Gatys et al. [4]]. For the weights, we chose
the combination that produced the most realistically looking
results. The exact values of the weights for the different
losses are given in Table[2]



Bicubic ENet-PAT-4

ENet-PAT-128

ENet-PAT-16 (default) Tyr

Figure 1. Comparing different patch sizes for the texture matching loss during training for ENet-PAT on images from ImageNet at 4x
super-resolution. Computing the texture matching loss on small patches fails to capture textures properly (ENet-PAT-4) while matching
textures on the whole image leads to unpleasant results since different texture statistics are averaged (ENet-PAT-128).
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Figure 2. Replacing the perceptual loss in ENet-PA and ENet-PAT with the Euclidean loss results in images with sharp but jagged edges
and overly smooth textures (4x super-resolution). Furthermore, these models are significantly harder to train.

6 Specialized training datasets

Figure [8| shows an example for an image where the ma-
jority of subjects in our survey preferred ENet-E’s result
over the image produced by ENet-PAT. In general, ENet-
PAT trained on MSCOCO struggles to reproduce realisti-
cally looking faces at high scaling factors and while the
overall image is significantly sharper than the result of
ENet-E, the human perception is highly sensitive to small

changes in the appearance of human faces which is why
many subjects preferred the blurry result of ENet-E in those
cases. To demonstrate that this is not a limitation of our
model, we train ENet-PAT with identical hyperparameters
on the CelebA dataset [10] (ENet-PAT-F) and compare the
results with ENet-PAT trained on MSCOCO as before. The
results are shown in Fig.[9] When trained on CelebA, ENet-
PAT-F has significantly better performance.



ENet-PAT residual ENet-EAT result
Figure 3. A visualization of the residual image that the network produces at 4x super-resolution. While ENet-E significantly sharpens
edges and is able to remove aliasing from the bicubic interpolation, ENet-PAT produces additional textures yielding a sharp, realistic result.
Image taken from the SunHays80 dataset [18].
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Figure 4. Comparing the previous state of the art by PSNR value at 2x super-resolution (75% of all pixels missing) with our model at 4x
super-resolution (93.75% of all pixels missing). The top row shows the input to the models and the bottom row the results. Although our
model has significantly less information to work with, it produces a sharper image with realistic textures.

Scatter [2] Fine-tuned scatter [2]] VGG [2] ENet-PAT

Figure 5. Comparing our model with Bruna ef al. [2]] at 4x super-resolution. ENet-PAT produces images with more contrast and sharper
edges that are more faithful to the ground truth.
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RAISR [14] ENet-E ENet-PAT

Figure 6. Comparing our model with Romano et al. [14] at 2x super-resolution on the butterfly image of Set5. Despite the low scaling
factor, image quality gradually increases between RAISR, ENet-E and ENet-PAT, the last of which is not only sharper but also recreates
small details better, e.g., the vertical white line in the middle of the picture is fully reconstructed only in ENet-PAT’s result.

o =2 Bicubic RFL A+ SelfEx | SRCNN | PSyCo | DRCN | VDSR | ENet-E | Enet-PAT
Dataset || Baseline [19] (6l (31 (8] ] ours ours
Set5 || 33.66 | 36,54 | 30.14 | 3649 | 3666 | 3688 | 37.63 | 37.53 | 3732 | 33.89
Set14 30.24 3226 | 27.24 | 32.22 32.42 32.55 33.04 33.03 33.25 30.45
BSD100 29.56 31.16 | 26.75 | 31.18 31.36 31.39 31.85 31.90 31.95 28.30
Urban100 26.88 29.11 | 24.19 | 29.54 29.50 29.64 30.75 30.76 31.21 29.00

Table 3. PSNR for different methods at 2x super-resolution. Best performance shown in bold.

a=2 Bicubic RFL A+ SelfEx | SRCNN | PSyCo | DRCN | VDSR | ENet-E | Enet-PAT
Dataset || Baseline (6l 131 (8] [71 ours ours

Set5 0.9299 | 0.9537 | 0.9544 | 0.9537 | 0.9542 | 0.9559 | 0.9588 | 0.9587 | 0.9581 0.9276
Setl4 || 0.8688 | 0.9040 | 0.9056 | 0.9034 | 0.9063 | 0.8984 | 0.9118 | 0.9124 | 0.9148 0.8617
BSD100 || 0.8431 | 0.8840 | 0.8863 | 0.8855 | 0.8879 | 0.8895 | 0.8942 | 0.8960 | 0.8981 0.8729
Urban100 || 0.8403 | 0.8706 | 0.8938 | 0.8947 | 0.8946 | 0.9000 | 0.9133 | 0.9140 | 0.9194 0.8303

a=14 Bicubic RFL A+ SelfEx | SRCNN | PSyCo | DRCN | VDSR | ENet-E | Enet-PAT
Dataset || Baseline [13] [19] (6l 131 [12] [8]] (71 ours ours
Set5 || 0.8104 | 0.8548 | 0.8603 | 0.8619 | 0.8628 | 0.8678 | 0.8854 | 0.8838 | 0.8869 | 0.8082
Setl4 || 0.7027 | 0.7451 | 0.7491 | 0.7518 | 0.7503 | 0.7525 | 0.8670 | 0.7674 | 0.7774 | 0.6784
BSD100 0.6675 0.7054 | 0.7087 | 0.7106 | 0.7101 0.7159 | 0.7233 | 0.7251 | 0.7326 0.6270
Urban100 0.6577 | 0.7096 | 0.7183 | 0.7374 | 0.7221 0.7317 | 0.7510 | 0.7524 | 0.7703 0.6936

Table 4. SSIM for different methods at 2x and 4x super-resolution. Similar to PSNR, ENet-PAT also yields low SSIM values despite the
perceptual quality of its results. Best performance shown in bold.

a=4 Bicubic RFL A+ SelfEx | SRCNN | PSyCo | DRCN | VDSR | ENet-E | ENet-PAT
Dataset || Baseline (el 30 (8] [71 ours ours
Set5 2.329 3.191 | 3.248 | 3.166 2.991 3.379 3.554 3.553 3.413 2.643
Setl4 2.237 2919 | 2.751 | 2.893 2.751 3.055 3.112 3.122 3.093 2.281
Urban100 2.361 3.110 | 3.208 | 3.314 2.963 3.351 3.461 3.459 3.508 2.635

Table 5. IFC for different methods at 4x super-resolution. Best performance shown in bold. The IFC scores roughly follow PSNR and do
not capture the perceptual quality of ENet-PAT’s results.



Image Quality Assessment

30 images to go!

Click the image that looks more similar to the target image above.

Figure 7. Example screenshot of our survey for perceptual image quality. Subjects were shown a target image above and were asked to
select the image on the bottom that looks more similar to the target image. In 49 survey responses for a total of 843 votes, subjects selected
the image produced by ENet-PAT 91.0%, underlining its higher perceptual quality compared to the state of the art by PSNR, ENet-E.
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Figure 8. Failure case for ENet-PAT on an image from ImageNet at 4x super-resolution. While producing an overall sharper image than
ENet-E, ENet-PAT fails to reproduce a realistically looking face, leading to a perceptually implausible result.

Bicubic ENet-E ENet-PAT (MSCOCO) ENet-PAT-F ITur

Figure 9. Comparing our models on images of faces at 4x super resolution. ENet-PAT produces artifacts since its training dataset did not
contain many high-resolution images of faces. When trained specifically on a dataset of faces (ENet-PAT-F), the same network produces
realistic very realistic images, though the results look different from the actual ground truth images (similar to the results in Yu and
Porikli [20]). Note that we did not fine-tune the parameters of the losses for this specific task so better results may be possible.
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