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In this supplementary document, we provide

• Section 1: Derivation to show that Grad-CAM is a generalization to CAM for any CNN-based architecture and hence
doesn’t require any architectural change or retraining.

• Section 2: Qualitative results showing Grad-CAM and Guided Grad-CAM visualizations for image classification, image
captioning, and visual question answering (VQA). For image captioning and VQA, our visualizations (Grad-CAM, and
Guided Grad-CAM) expose the somewhat surprising insight that even non-attention based CNN + LSTM models can
often be good at localizing discriminative input image regions despite not being trained on grounded image-text pairs.

• Section 3: We make a slight modification to Grad-CAM that can provide Counterfactual explanations- which highlight
the support for the regions that would make the network change its decision.

• Section 4: We provide Grad-CAM explanations for the two models described in Section 6.3 (Identifying dataset bias).

• Section 5: Ablation studies to explore and validate our design choices for computing Grad-CAM visualizations.

• Section 6: Weakly-supervised segmentation results on PASCAL VOC 2012 by using weak-localization cues from
Grad-CAM as a seed for SEC [24].

• Section 8: Comparison to existing visualization techniques, CAM and c-MWP on PASCAL and COCO, where we find
that our visualizations are superior, while being faster to compute and at the same time being possible to visualize a
wide variety of CNN-based models, including but not limited to, CNNs with fully-connected layers, CNNs stacked with
Recurrent Neural Networks (RNNs), ResNets etc..

• Section 9: Analysis of Grad-CAM visualizations for 200-layer Residual Network.

1. Grad-CAM as generalization of CAM
In this section we formally prove that Grad-CAM is a generalization of CAM, as mentioned in Section 3 in the main paper.
Recall that the CAM architecture consists of fully-convolutional CNNs, followed by global average pooling, and linear
classification layer with softmax.
Let the final convolutional layer produce K feature maps Ak, with each element indexed by i, j. So Ak

ij refers to the activation
at location (i, j) of the feature map Ak.
CAM computes a global average pooling (GAP) on Ak

ij . Let us define F k to be the global average pooled output,
So,

F k =
1

Z

∑
i

∑
j

Ak
ij (1)
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CAM computes the final scores by,

Y c =
∑
k

wc
k · F k (2)

where wc
k is the weight connecting the kth feature map with the cth class.

Taking the gradient of the score for class c (Y c) with respect to the feature map F k we get,

(From Chain Rule)
∂Y c

∂F k
=

∂Y c

∂Ak
ij

∂Fk

∂Ak
ij

(3)

Taking partial derivative of (1) w.r.t. Ak
ij , we can see that ∂Fk

∂Ak
ij

= 1
Z . Substituting this in (3), we get,

∂Y c

∂F k
=
∂Y c

∂Ak
ij

· Z (4)

From (2) we get that, ∂Y c

∂Fk = wc
k. Hence,

wc
k = Z · ∂Y

c

∂Ak
ij

(5)

Now, we can sum both sides of this expression in (5) over all pixels (i, j) to get:

∑
i

∑
j

wc
k =

∑
i

∑
j

Z · ∂Y
c

∂Ak
ij

, which can be rewritten as (6)

Zwc
k = Z

∑
i

∑
j

∂Y c

∂Ak
ij

(Since Z and wc
k do not depend on (i, j)) (7)

Note that Z is the number of pixels in the feature map (or Z =
∑

i

∑
j 1). Thus, we can re-order terms and see that:

wc
k =

∑
i

∑
j

∂Y c

∂Ak
ij

(8)

We can see that up to a proportionality constant (1/Z) that is normalized out during visualization, the expression for wc
k is

identical to αc
k used by Grad-CAM (as described in the main paper).

Thus Grad-CAM is a generalization of CAM to arbitrary CNN-based architectures, while maintaining the computational
efficiency of CAM.

2. Experimental Results

In this section we provide more qualitative results for Grad-CAM and Guided Grad-CAM applied to the task of image
classification, image captioning and VQA.

2.1. Image Classification

We use Grad-CAM and Guided Grad-CAM to visualize the regions of the image that provide support for a particular prediction.
The results reported in Fig. A1 correspond to the VGG-16 [41] network trained on ImageNet.
Fig. A1 shows randomly sampled examples from COCO [27] validation set. COCO images typically have multiple objects per
image and Grad-CAM visualizations show precise localization to support the model’s prediction.
Guided Grad-CAM can even localize tiny objects. For example our approach correctly localizes the predicted class “torch”
(Fig. A1.a) inspite of its size and odd location in the image. Our method is also class-discriminative – it places attention only
on the “toilet seat” even when a popular ImageNet category “dog” exists in the image (Fig. A1.e).



Figure A1: Visualizations for randomly sampled images from the COCO validation dataset. Predicted classes are mentioned at the top of
each column.

2.2. Image Captioning

We use the publicly available Neuraltalk2 code and model1 for our image captioning experiments. The model uses VGG-16 to
encode the image. The image representation is passed as input at the first time step to an LSTM that generates a caption for the
image. The model is trained end-to-end along with CNN finetuning using the COCO [27] Captioning dataset. We feedforward
the image to the image captioning model to obtain a caption. We use Grad-CAM to get a coarse localization and combine it
with Guided Backpropagation to get a high-resolution visualization that highlights regions in the image that provide support
for the generated caption.

2.3. Visual Question Answering (VQA)

We use Grad-CAM and Guided Grad-CAM to explain why a publicly available VQA model [30] answered what it answered.
The VQA model by Lu et al. uses a standard CNN followed by a fully connected layer to transform the image to 1024-dim to
match the LSTM embeddings of the question. Then the transformed image and LSTM embeddings are pointwise multiplied
to get a combined representation of the image and question and a multi-layer perceptron is trained on top to predict one
among 1000 answers. We show visualizations for the VQA model trained with 3 different CNNs - AlexNet [25], VGG-16 and
VGG-19 [41]. Even though the CNNs were not finetuned for the task of VQA, it is interesting to see how our approach can
serve as a tool to understand these networks better by providing a localized high-resolution visualization of the regions the
model is looking at. Note that these networks were trained with no explicit attention mechanism enforced.
Notice in the first row of Fig. A3, for the question, “Is the person riding the waves?”, the VQA model with AlexNet and
VGG-16 answered “No”, as they concentrated on the person mainly, and not the waves. On the other hand, VGG-19 correctly
answered “Yes”, and it looked at the regions around the man in order to answer the question. In the second row, for the
question, “What is the person hitting?”, the VQA model trained with AlexNet answered “Tennis ball” just based on context

1https://github.com/karpathy/neuraltalk2

https://github.com/karpathy/neuraltalk2


Figure A2: Guided Backpropagation, Grad-CAM and Guided Grad-CAM visualizations for the captions produced by the Neuraltalk2 image
captioning model.



Figure A3: Guided Backpropagation, Grad-CAM and Guided Grad-CAM visualizations for the answers from a VQA model. For each
image-question pair, we show visualizations for AlexNet, VGG-16 and VGG-19. Notice how the attention changes in row 3, as we change
the answer from Yellow to Green.



without looking at the ball. Such a model might be risky when employed in real-life scenarios. It is difficult to determine
the trustworthiness of a model just based on the predicted answer. Our visualizations provide an accurate way to explain the
model’s predictions and help in determining which model to trust, without making any architectural changes or sacrificing
accuracy. Notice in the last row of Fig. A3, for the question, “Is this a whole orange?”, the model looks for regions around the
orange to answer “No”.

3. Counterfactual Explanations
Using a slight modification to Grad-CAM we obtain counterfactual explanations, which highlight the support for the regions
that would make the network change its decision. Removing concepts occurring in those regions would make the model more
confident about the given target decision.
Specifically, we negate the gradient of yc (score for class c) with respect to feature maps A of a convolutional layer. Thus the
importance weights αc

k, now become,

αc
k =

global average pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

− ∂yc

∂Ak
ij︸ ︷︷ ︸

Negative gradients

(9)

As in (2), we weighted sum the forward activation maps, A with weights αc
k, and follow it by a ReLU to obtain counterfactual

explanations as shown in Fig. A4.

(a) Original Image (b) Cat Counterfactual exp (c) Dog Counterfactual exp
Figure A4: Counterfactual Explanations with Grad-CAM

4. Identifying and removing bias in datasets
In this section we provide qualitative examples showing the explanations from the two models trained for distinguishing
doctors from nurses- model1 which was trained on images (with an inherent bias) from a popular search engine, and model2
which was trained on a more balanced set of images from the same search engine.
As shown in Fig. A5, Grad-CAM visualizations of the model predictions show that the model had learned to look at the
person’s face / hairstyle to distinguish nurses from doctors, thus learning a gender stereotype.
Using the insights gained from the Grad-CAM visualizations, we balanced the dataset and retrained the model. The new
model, model2 not only generalizes well to a balanced test set, it also looks at the right regions.
Statistics for the two models can be found in Table. A1a and Table. A1b

5. Ablation studies
In this section we provide details of the ablation studies we performed.

5.1. Varying mask size for occlusion

Fig. 1 (e,k) of main paper show the results of occlusion sensitivity for the “cat” and “dog” class. We compute this occlusion
map by repeatedly masking regions of the image and forward propagate each masked image. At each location of the occlusion
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doctor 79 34
(22 female) 113

nurse 7
(6 male) 106 113

total 86 140
(a) Confusion Matrix for model trained with biased examples from search engine. Note
that the text in () indicate the number of mistakes made due to gender bias.
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doctor nurse total

doctor 101 12
(6 female) 113

nurse 10
(3 male) 103 113

total 111 115
(b) Confusion Matrix for model trained after correcting dataset bias learned from Grad-
CAM visualizations. See that mistakes due to gender bias has reduced significantly.

Table A1: Statistics for biased and unbiased model

(a) Original image (b) Grad-CAM for biased model (c) Grad-CAM for unbiased model

(d) Original Image (e) Grad-CAM for biased model (f) Grad-CAM for unbiased model

(g) Original Image (h) Grad-CAM for biased model (i) Grad-CAM for unbiased model
Figure A5: Grad-CAM explanations for biased and unbiased model. In (a-c) even though both made the right decision, the biased model was looking at the face of the person
to make the decision (b), whereas the unbiased model was correctly looking at the short sleeves (c). For (d) and (g) the biased model made the wrong prediction (misclassifying
doctor as a nurse) by looking at the face/ hairstyle (e, h), unlike the unbiased model which made the right prediction by looking at the white coat and the stethoscope (f, i).



map we store the difference in the original score for the particular class and the score obtained after forward propagating the
masked image. Our choices for mask sizes include (10× 10, 15× 15, 25× 25, 35× 35, 45× 45, and 90× 90). We zero-pad
the images so that the resultant occlusion map is of the same size as the original image. The resultant occlusion maps can be
found in Fig. A6. Note that blue regions correspond to a decrease in score for a particular class (“tiger cat” in the case of
Fig. A6) when the region around that pixel is occluded. Hence it serves as an evidence for the class. Whereas the red regions
correspond to an increase in score as the region around that pixel is occluded. Hence these regions might indicate existence of
other confusing classes. We observe that 35× 35 is a good trade-off between sharp results and a smooth appearance.

Figure A6: Occlusion maps with different mask sizes for the “tiger cat” category.

5.2. Guided Grad-CAM on different layers

We show results of applying Grad-CAM for the “Tiger-cat” category on different convolutional layers in AlexNet and VGG-16
CNN. As expected, the results from Fig. A7 show that localization becomes progressively worse as we move to shallower
convolutional layers. This is because the later convolutional layers capture high-level semantic information and at the same
time retain spatial information, while the shallower layers have smaller receptive fields and only concentrate on local features
that are important for the next layers.

5.3. Design choices

Method Top-1 error

Grad-CAM 59.65

Grad-CAM without ReLU in Eq.1 74.98
Grad-CAM with Absolute gradients 58.19

Grad-CAM with GMP gradients 59.96
Grad-CAM with Deconv ReLU 83.95
Grad-CAM with Guided ReLU 59.14

Table A2: Localization results on ILSVRC-15 val for the ablation studies. Note that the localizations reported in this table were created for a
single-crop, compared to the 10-crop evaluation reported in the main paper.

We evaluate design choices via top-1 localization error on the ILSVRC15 val set [9].

5.3.1 Importance of ReLU in Eq. 2 in main paper

Removing ReLU (Eq. 1 in main paper) increases error by 15.3%. See Table. A2. Negative values in Grad-CAM indicate
confusion between multiple occurring classes. Thus, localization improves when we suppress them (see Fig. A9).

5.3.2 Absolute value of each derivative in Eq. 1 in main paper

Taking the absolute value of each derivative in Eq. 1 in main paper decreases the error by 1.5% (see Table. A2). But
qualitatively maps look a bit worse (see Fig. A9), and this evaluation does not fully capture class discriminability (most
ImageNet images have only 1 class).



Figure A7: Grad-CAM at different convolutional layers for the ‘tiger cat’ class. This figure analyzes how localizations change qualitatively
as we perform Grad-CAM with respect to different feature maps in a CNN (VGG16 [41]). We find that the best looking visualizations are
often obtained after the deepest convolutional layer in the network, and localizations get progressively worse at shallower layers. This is
consistent with our intuition described in Section 3 of main paper.

Figure A8: Grad-CAM localizations for “tiger cat” category for different rectified convolutional layer feature maps for AlexNet.

Figure A9: Grad-CAM for “tiger cat” category stating the importance of ReLU and effect of using absolute gradients in Eq. 1 of main paper.

5.3.3 Global Average Pooling vs. Global Max Pooling

Instead of Global Average Pooling (GAP) the incoming gradients to the convolutional layer, we tried Global Max Pooling
(GMP) them. We observe that using GMP lowers the localization ability of our Grad-CAM technique. An example can be
found in Fig. A10 below. This observation is also summarized in Table. A2. This may be due to the fact that max is statistically
less robust to noise compared to the averaged gradient.

5.3.4 Effect of different ReLU backward on Grad-CAM

We experiment with different modifications to the backward pass of ReLU - using Guided-ReLU [42] and Deconv-ReLU [45].



Figure A10: Grad-CAM visualizations for “tiger cat” category with Global Average Pooling and Global Max Pooling.

Effect of Guided-ReLU:
Springenberg et al. [42] introduced Guided Backprop, where they modified the backward pass of ReLU to pass only positive
gradients to regions with positive activations. Applying this change to the computation of our Grad-CAM maps introduces
a drop in the class-discriminative ability of Grad-CAM as can be seen in Fig. A11, but it gives a slight improvement in the
localization ability on ILSVRC’14 localization challenge (see Table. A2).
Effect of Deconv-ReLU:
Zeiler and Fergus [45] in their Deconvolution work introduced a slight modification to the backward pass of ReLU, to pass
only the positive gradients from higher layers. Applying this modification to the computation of our Grad-CAM gives worse
results as shown in Fig. A11.

Figure A11: Grad-CAM visualizations for “tiger cat” category for different modifications to the ReLU backward pass. The best results are
obtained when we use the actual gradients during the computation of Grad-CAM.



6. Weakly-supervised segmentation
In recent work Kolesnikov et al. [24] introduced a new loss function for training weakly-supervised image segmentation
models. Their loss function is based on three principles: 1. to seed with weak localization cues, 2. to expand object seeds to
regions of reasonable size, 3. to constrain segmentations to object boundaries. They showed that their proposed loss function
leads to better segmentation.
They showed that their algorithm is very sensitive to seed loss, without which the segmentation network fails to localize
the objects correctly [24]. We used Grad-CAM as seed (weak-supervision for localizing foreground classes), and train their
segmentation architecture. This model achieves an accuracy (intersection/union measure) of 49.6 %. Note that to obtain the
Grad-CAM localization, we take off-the-shelf classification CNN (VGG-16), trained only with class labels and not bounding
box annotations. We show qualitative results in Fig. A12. The last row shows 2 failure cases. In the bottom left image, the

Figure A12: PASCAL VOC 2012 Segmentation results with Grad-CAM as seed for SEC [24].

clothes of the 2 person weren’t highlighted correctly. This could be because the most discriminative parts are their faces, and
hence Grad-CAM maps only highlights those. This results in a segmentation that only highlights the faces of the 2 people.
In the bottom right image, the bicycles, being extremely thin aren’t highlighed. This could be because the resolution of the
Grad-CAM maps are low (14× 14) which makes it difficult to capture thin areas.



7. More details of Pointing Game
In [46], the pointing game was setup to evaluate the discriminativeness of different attention maps for localizing ground-truth
categories. In a sense, this evaluates the precision of a visualization, i.e. how often does the attention map intersect the
segmentation map of the ground-truth category. This does not evaluate how often the visualization technique produces maps
which do not correspond to the category of interest. For example this evaluation does not penalize the visualization in Fig. A14
top-left, for highlighting a zebra when visualizing the bird category.
Hence we propose a modification to the pointing game to evaluate visualizations of the top-5 predicted category. In this case
the visualizations are given an additional option to reject any of the top-5 predictions from the CNN classifiers. For each of the
two visualizations, Grad-CAM and c-MWP, we choose a threshold on the max value of the visualization, that can be used to
determine if the category being visualized exists in the image.
We compute the maps for the top-5 categories, and based on the maximum value in the map, we try to classify if the map is
of the GT label or a category that is absent in the image. As mentioned in Section 4.2 of the main paper, we find that our
approach Grad-CAM outperforms c-MWP by a significant margin (70.58% vs 60.30%). Fig. A14 shows the maps computed
for the top-5 categories using c-MWP and Grad-CAM.

8. Qualitative comparison to Excitation Backprop (c-MWP) and CAM
In this section we provide more qualitative results comparing Grad-CAM with CAM [47] and c-MWP [46].

8.1. PASCAL

We compare Grad-CAM, CAM and c-MWP visualizations from ImageNet trained VGG-16 models finetuned on PASCAL
VOC 2012 dataset. While Grad-CAM and c-MWP visualizations can be directly obtained from existing models, CAM requires
an architectural change, and requires re-training, which leads to loss in accuracy. Also, unlike Grad-CAM, c-MWP and CAM
can only be applied for image classification networks. Visualizations for the ground-truth categories can be found in Fig. A13.

8.2. COCO

We compare Grad-CAM and c-MWP visualizations from ImageNet trained VGG-16 models finetuned on COCO dataset.
Visualizations for the top-5 predicted categories can be found in Fig. A14. It can be seen that c-MWP highlights arbitrary
regions for predicted but non-existent categories, unlike Grad-CAM which seem much more reasonable. We quantitatively
evaluate this through the pointing experiment.

9. Analyzing Residual Networks
In this section, we perform Grad-CAM on Residual Networks (ResNets). In particular, we analyze the 200-layer architecture
trained on ImageNet2.
Current ResNets [16] typically consist of residual blocks. One set of blocks use identity skip connections (shortcut connections
between two layers having identical output dimensions). These sets of residual blocks are interspersed with downsampling
modules that alter dimensions of propagating signal. As can be seen in Fig. A15 our visualizations applied on the last
convolutional layer can correctly localize the cat and the dog. Grad-CAM can also visualize the cat and dog correctly in the
residual blocks of the last set. However, as we go towards earlier sets of residual blocks with different spatial resolution, we
see that Grad-CAM fails to localize the category of interest (see last row of Fig. A15). We observe similar trends for other
ResNet architectures (18 and 50-layer ResNets) including ones finetuned for other tasks such as image captioning or VQA.
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