
266_Sup/266_Sup.pdf


Long-Term Tracking Through Policy Learning - Supplemental


James Supančič, III
University of California, Irvine


jsupanci@uci.edu


Deva Ramanan
Carnegie Mellon University


deva@cs.cmu.edu


A. Introduction
This document provides additional implementation details for our proposed algorithms. We also encourage you to view


the supplementary video, where we better explain our method’s qualitative behavior. We begin with a detailed overview
of our tracker’s test-time pipeline in Sec. B. Then, in Sec. C we describe how we implement our Q-functions. Finally, we
describe our policy learning algorithm (Sec. D) and offline training heuristics (Sec. E).


B. The p-track Pipeline
In Fig. 1 we show a flowchart for our tracker’s test-time pipeline. We use a UML Activity Diagram [3].


a. Define the tracker’s input state as si = ((θi−1, hi−1), oi). This state consists of the previous appearance model θi−1, pre-
vious localization heatmap hi−1 and the current observation oi. Importantly, extract the localization heatmap predicted
for the previous frame hi−1. We will use hi−1 ∈ si as the argument of our decision function.


b. Evaluate the Q-function on this heatmap for the track and rinit actions. Compare the value of Qw(si, t) to the value of
Qw(si, r) and choose the action with the greater value.


c. If we decide to track


• Extract a ROI from the current observation image, centered at the mode of the previous localization heatmap.


• Evaluate the FCNT [4] (Sec 4.2) GNet and SNet models to predict two localization heatmaps.


• Based on FCNT’s distractor selection (Sec 4.2 of [4]), decide which heatmap to use. This becomes hi.


d. If we decide to reinit


• Extract a random ROI from the current observation image.


• Evaluate the FCNT [4] (Sec 4.2) GNet and SNet models to predict two location prediction heatmaps.


Figure 1. p-track’s test-time pipeline is shown above as a standard flow chart. We explain each step in Sec. B.


1







Figure 2. Q-CNNs: We implement our two Q-functions (for track vs reinit and update vs ignore) using the architecture shown above.
Note that Q(1)


w and Q
(2)
w share the first two convolutional layers. But, each has its own fully-connected layer.


• Based on FCNT’s distractor selection (Sec 4.2 of [4]), decide which heatmap to use. This becomes hi.


e. Now evaluate the Q-function for each of the candidate actions (update or ignore) using the old heatmap hi−1. We could
instead use the newly predicted heatmap hi, but we don’t 1.


f. If we decide to update


• Assume the tracker correctly localized the target. Use this assumption to define new labeled training examples for
the appearance model.


• Update the appearance model as described in [4] (Sec 4.3).


g. Repeat on the next frame.


C. Q’s Functional Form
We will explain how we train our Q-functions in the next section. But first, we introduce their architecture. We implement


our two Q-functions (for track vs reinit and update vs ignore) using a single CNN with shared weights. Sharing weights can
help mitigate overfitting. But, more importantly, the experience replay Q-learning algorithm [1, 2] is defined using a singleQ
function. For training, we define our single Q-function, Qw = Q


(1)
w +Q


(2)
w , withQ(1)


w being for track vs reinit andQ(2)
w being


for update vs ignore. We deliberately use addition to define our unified Q function because it makes our two Q-functions (for
each binary decision) independent:


arg max
a
(1)
i ,a


(2)
i


Qw(si, (a
(1)
i , a


(2)
i )) =


(
arg max


a
(1)
i


Q(1)
w (si, a


(1)
i ), arg max


a
(2)
i


Q(2)
w (si, a


(2)
i )


)
(1)


where we have re-encoded our unified Q-function’s four-bit one-hot encoding ai by decomposing it into two two-bit one-hot
arguments: a(1)i and a(2)i . In Fig. 2 we show a more detailed schematic of the multi-layer CNN we train to approximate
Q(si, ai).


D. Interactive Policy Learning
In Fig. 3 we show pseudocode and a flowchart for our interactive training algorithm. The outer loop interactively processes


videos from the Internet to improve our tracker’s policy. It first (L2) downloads a new video from the Internet. In the first
frame, a human marks a target to track (L3). Then, for each frame in the video, our tracker tries to track the target using its
current policy (L5-L11) to choose tracking actions ai. For each frame, a human rewards the tracker ri = 1 if it correctly
tracked the target on frame i. After each frame, we record the tracker’s state si, action ai, reward ri and nextstate si+1


into our experience replay memory D = (si, ai, ri, si+1) on L13. Finally, we re-optimize our policy against our experience
memory database on L14, as described in the main paper. Empirically, our policy improves (on average) with each iteration
of the outer loop.


1Empirically using hi does not improve performance. Using hi−1 here is computationally faster because our implementation actually evaluates (b) and
(e) in parallel.


2







Figure 3. Our Reinforcement Learning flowchart is shown above (left). On the right, we list the pseudo-code.


E. Implementing the Update Heuristic
Recall that our offline (train-time) heuristic decides when to set the target action a∗i to update. Our tracker could retrain


(i.e. update) its appearance model (as described in Sec 4.3 of [4]) using its localization at frame i to get new parameters θ′


for GNet and SNet. Or, it may choose not to update its appearance model θ. We, let ∆+ indicate the number of future frames
where updating the appearance model increases confidence at correct localizations, let ∆− be the number future frames
where the update decreases confidence at the incorrect localizations, and let N be the total number of remaining frames. Our
heuristic sets a∗i to update if and only if (on average) updating increases confidence for correct localizations and reduces
confidence for incorrect localizations: ∆+ + ∆− > .5N . During training, we have reinforcement rj which tells us which
frames the tracker got correct. So we may formally define ∆+ and ∆− as


∆+ =
1∑
j>i rj


∑
j>i


rjI
[
ρθ


′


j > ρθj


]
(2)


∆− =
1∑
j>i r̄j


∑
j>i


r̄jI
[
ρθ


′


j < ρθj


]
(3)


where ρθj is the confidence of the appearance model θ at the tracker’s test-time localization in frame j.


3







References
[1] S. Adam, L. Busoniu, and R. Babuska. Experience replay for real-time reinforcement learning control. IEEE Transactions on Systems,


Man, and Cybernetics, 42(2):201–212, 2012. 2
[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,


et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015. 2
[3] J. Rumbaugh, I. Jacobson, and G. Booch. Unified modeling language reference manual, the. Pearson Higher Education, 2004. 1
[4] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual Tracking with Fully Convolutional Networks. CVPR, 2015. 1, 2, 3


4







266_Sup/video_small.mp4

